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ABSTRACT

The ability of Compressive Sensing (CS) to recover sparse
signals from limited measurements has been recently exploited in
computational imaging to acquire high-speed periodic and near-
periodic videos using only a low-speed camera with coded exposure
and intensive off-line processing. Each low-speed frame integrates a
coded sequence of high-speed frames during its exposure time. The
high-speed video can be reconstructed from the low-speed coded
frames using a sparse recovery algorithm. This paper presents a
new streaming CS algorithm specifically tailored to this application.
Our streaming approach allows causal on-line acquisition and re-
construction of the video, with a small, controllable, and guaranteed
buffer delay and low computational cost. The algorithm adapts to
changes in the signal structure and, thus, outperforms the off-line
algorithm in realistic signals.

1. INTRODUCTION
Modern digital acquisition and sensing technology, largely based in
the pioneering work of Shannon and Nyquist, has enabled the ac-
quisition, transmission, and storage of ever increasing amounts of
physical signals. However, the increasing demand for higher acqui-
sition rates and improved resolution is placing significant burden on
existing hardware architectures, reaching their performance limits.
Fortunately, recent work in various signal processing fields, mostly
in the area of Compressive Sensing (CS) [1–3] but also in the field of
signal models and representations has provided new powerful frame-
works that enable the acquisition of signals at rates significantly be-
low the Nyquist rate. The rapid success of CS—which uses ran-
domized incoherent measurements to acquire the signal and exploits
sparse structure of the signal for the reconstruction— demonstrates
the paradigm-shifting potential and the need for the technology.

One area significantly affected by the introduction of inexpen-
sive computation and signal models is image and video acquisition.
The field of computational imaging enables us to computationally
achieve de-blurring, super-resolution, large dynamic range, variable
depth-of-field and other desired properties, using simple modifica-
tions to inexpensive sensors [4, 5].

A recent example of such a breakthrough technology is coded
strobing and coded exposure video acquisition [6, 7], which enables
the acquisition of high-speed video using a standard speed low-cost
video sensor enhanced by an inexpensive coded strobe or coded shut-
ter (also known as flutter-shutter). The coding on the exposure1 and
the reconstruction algorithms are designed using CS principles, as-
suming a periodic signal model. In [7] each pixel location of the
video is considered an independent periodic frequency-sparse sig-
nal of unknown fundamental period, compressively acquired at the
rate of the low-speed video sensor. The well-established CoSaMP

1We will use coded exposure and coded strobing terms interchangeably.

[8] reconstruction algorithm is combined with several computational
heuristics to recover the high-speed time waveform of each pixel and
reconstruct the high-speed video from the acquired data.

In this paper we significantly enhance this work in several ways:
• We develop a streaming reconstruction algorithm, the Stream-
ing Greedy Pursuit (SGP) [9], which enables on-line reconstruction
of the high-speed video. The CoSaMP-based SGP is specifically de-
signed for streaming CS scenarios, with explicit guarantees on the
computational cost per sample and on the input-output delay.
• We formulate a signal model to incorporate the similarities in
the sparsity structure of nearby pixels in the reconstruction algorithm
using the principles of joint sparsity and model-based CS [10, 11].
• We combat matrix-conditioning problems that arise due to the
non-negative nature of imaging measurements by revisiting the min-
imum variance (or Capon) beamformer from the array processing
literature [12] and re-introducing it in the context of CS.

Our work significantly improves the reconstruction performance
of coded strobing video and, more importantly, enables on-line re-
construction of the acquired video.

2. BACKGROUND
2.1. Compressive sensing
The recently emerged field of compressive sensing [1–3] demon-
strates that a signal sparse or compressible in some basis can be ef-
ficiently sampled and reconstructed using very few linear measure-
ments. The signal of interest, x ∈ RN , is measured using the system

y = Ax, (1)

where y denotes the measurement vector and A an M × N mea-
surement matrix with M � N . The signal x is assumed K-sparse
in some basis B, i.e., B−1x contains only K non-zero coefficients.

The measurement matrix A satisfies the Restricted Isometry
Property (RIP) of order 2K if there exists a constant δ2K < 1 such
that

(1− δ2K)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2K)‖x‖22, (2)

for all x that are 2K-sparse in the basis B. If the RIP constant δ2K is
sufficiently small, then the signal can be exactly reconstructed using
the convex optimization [3]

x̂ = arg min ‖B−1x‖1 s.t. y = Ax. (3)

or a greedy algorithm such as CoSaMP [8]. Furthermore, a small
RIP constant provides robustness guarantees for recovery in the pres-
ence of measurement noise and for sampling signals that are not ex-
actly sparse but can be well-approximated by a sparse signal [13].

2.2. Coded strobing camera
Coded exposure or flutter-shutter photography is a popular technique
in computational imaging where the light intensity is coded during
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Fig. 1. (Left) Snapshot of signal sparsity model.(Right) Snapshot of
coded strobing system.

the exposure duration of the camera [6, 7]. Active strobing illumi-
nates the scene with a rapid sequence of flashes within a frame inter-
val. Passive strobing is performed using sensors or a flutter-shutter
assembly, with multiple exposures within a frame interval.

To observe a high-speed video at a rate of N frames per second
(fps) a coded strobing camera working at M � N fps is used in-
stead of a high-frame-rate camera. The exposure time is coded by
a pseudorandom binary sequence. Each coded frame integrates the
light from a few randomly selected high-speed frames, as described
in [7] and the next section.

3. SIGNAL AND SYSTEM MODEL

3.1. Signal model
In contrast to standard finite-length CS signal models, streaming
videos do not have a pre-determined length. While it is possible to
acquire the whole stream and post-process it, the storage and com-
putational requirements for such an endeavor are often prohibitive.
Furthermore, several applications often require on-line processing of
such signals. Standard CS approaches perform on-line computation
by processing the stream in finite-length blocks which are consid-
ered independent of each other. However, this approach ignores the
continuity of the signal and introduces significant blocking artifacts.
Instead, the algorithm we propose assumes a streaming signal model.

Under our model the signal intensity of each pixel is an infinite
length streaming signal xn which is compressible in the short-time
Fourier transform basis of length N . Specifically, we assume the
discrete Fourier transform of any length-N window of the signal,
s = Fx, has only K � N significant coefficients, as shown in the
left hand side of Fig. 1.

We further assume that the support set (i.e., the location of the
significant coefficients in the frequency domain) changes slowly in
time, so the reconstruction algorithm has time to adjust. Thus, a time
shift of the windowed signal should be similar to a circular shift of x
by the same amount or an equivalent frequency-domain phase shift.

The sparsity structure of nearby pixels is captured using joint
sparsity models, such as [10, 11]. We assume that signal snapshots
of nearby pixels have similar frequency-domain support. The vector

sj =
∑

l

(sj,l)
2, (4)

where sj,l denotes the jth frequency component of the lth pixel in
the block, captures the support structure and, thus, is also compress-
ible.

3.2. Measurement model
For each pixel, we measure the signal xn by modulating it with
a pulsing sequence pn taking the values of 0 or 1, depending on
whether the strobe is on or off (or, equivalently, whether the flutter-
shutter is open or closed), and accumulating every R coefficients to

produce a measurement sequence ym:

ym =

(m+1)R−1∑
n=mR

xnpn, (5)

The system has input rate ofN coefficients per unit time (the implied
frame rate of the high-speed video) for xn and an output (measure-
ment) rate ofM = N/Rmeasurements per unit time (the frame rate
of the low-speed sensor), where R denotes the down-sampling rate.

A finite-length snapshot of the streaming system (5) can be cap-
tured, as shown in the left hand side of Fig. 1, using

y = Ax ≡ AF−1s, (6)

where y denotes a finite-length window of the measurements, A
denotes an M × N measurement matrix, F−1 is N -point inverse
DFT matrix, and s denotes Fourier transform of x.

The mathematical formulation of coded strobing is similar to
the random demodulator, introduced in [14] to compressively sam-
ple temporal one-dimensional signals that are sparse in the frequency
domain. The measurement matrix implemented in hardware has the
same structure, representing a multiplication of the signal by the
coded pulsing sequence pn, followed by integration and low-rate
sampling. However, a major difference of the two approaches is
that while the random demodulator uses pn = ±1 for the pulsing
sequence, coded strobing is restricted to pn = 0 or 1, due to non-
negativity of light.

The positivity constraint on the pulsing sequence has the effect
of significantly amplifying the DC component of the signal, which
is already strong since the signal itself is positive. Thus, while the
matrix implied by the random demodulator satisfies the RIP [14],
this is not the case in the coded strobing camera and the matrix is
not well conditioned around the zero frequency. A high-speed video
reconstruction algorithm should accommodate this issue.

4. STREAMING GREEDY PURSUIT
In contrast to the standard CoSaMP reconstruction algorithm used
in [7] for high-speed video reconstruction, the SGP (described in
detail in [9]) is an on-line algorithm that receives one frame per iter-
ation from the sensor and outputs R frames of the high-speed video.
As with the off-line version, streaming recovery algorithm estimates
a time-series for each pixel (or a block of neighboring pixels), and
can be parallelized in a straightforward manner.

Section 4.1 describes the high-level streaming iterations of SGP,
presented in Algorithm 1, and Sec. 4.2 discusses in detail the signal
refinement part, presented in Algorithm 2.

4.1. Streaming iteration
The recovery algorithm continuously re-estimates the video se-
quence on a sliding window of N high-speed frames using M
low-speed captured frames (measurement frames). After each iter-
ation, a new measurement frame is incorporated at the end of the
measurement window and the oldest measurement frame is removed
from the beginning. Similarly, R new high-speed frames (to be
estimated) are included in the signal window and the oldest R are
removed from the window and committed to the output. Almost
all the steps of the algorithm (except where noted) operate on each
pixel independently, so we present the algorithm as it operates on
the time signals xn and ym generated by the value of one pixel.

In the ith iteration, the recovery algorithm maintains a working
signal estimate of length N , denoted x̂i, a working measurement
matrix of dimensionM×N , denoted Âi, and a measurement vector
of length M , denoted ŷi. The iteration is presented in Algorithm 1,



Algorithm 1 Streaming iteration for recovery algorithm
1: Increase iteration count: i← i+ 1
2: Refine working estimate:

x̃i ← Refine(x̂i−1, ŷi−1, Âi−1),

where Refine(·) is described in Algorithm 2.
3: Update the weighted average of all the samples in the window

and commit the estimate for the oldest samples:

x̄i ←
[
x̄i−1
{R+1,...,N}

0R

]
+ Wx̃i,

0R is a vector with R zeros, W is the diagonal weight matrix.
x̂Ri+j = x̄i

j , j = 1, . . . , R

where x̂n is the streaming signal estimate at the output.
4: Slide working coefficients window (circular shift in time):

x̂i ←
[

x̃i
{R+1,...,N}
x̃i
{1,...,R}

]
5: Slide working measurement window:

ŷi ←
[

ŷi
{2,...,M}
yi+M

]
6: Slide working measurement matrix:

Âi ←
[

Âi−1
{2,...,M},{R+1,...,N} 0[M−1×R]

0[1×N−R] p{(i+M)R,...,(i+M+1)R−1}

]
,

where 0[m×n] denotes m× n zero matrix.

where the subscript (·)m notation denotes the mth element of a vec-
tor and (·){m1,...,m2} denotes a range of elements. Non-boldface
letters denote the underlying infinite-length streaming signals.

It takes M streaming iterations for any sample of xn to pass
through the signal window and the SGP computes its estimate at ev-
ery iteration. The final estimate of each sample is a weighted average
over all the iterations, maintained and stored in xi. The diagonal ma-
trix W contains the positive weights for the averaging, and has trace
equal to unity: tr(W) =

∑M
i=1 wii = 1.

Also note that since we use the old estimate of the support of the
DFT coefficients during the refinement procedure, the circular shift
of the old estimate in step 4 of Algorithm 1 only introduces a phase
shift and does not disturb the support.

4.2. Signal estimation and refinement
The signal estimation and refinement step 2 of the recovery algo-
rithm, summarized in Algorithm 2, is inspired by CoSaMP [8]. Both
CoSaMP and SGP refine the signal estimate using the unexplained
residual to identify a candidate support for the signal estimate (steps
1–3 in Alg. 2), inverting the measurements in that support to obtain
a new signal estimate (step 4), and truncating the signal estimate to
have the required sparsity (step 5).

However, three major modifications are required to adapt the re-
finement steps to the particular application. The first modifies the
signal proxy formation to accommodate for the bad conditioning of
the acquisition system around the DC component of the signal and
the strong presence of such DC components. The second modifies
the support identification to incorporate the signal model that dic-
tates that nearby pixels have common support in the frequency do-
main. The third reduces the number of support coefficients added to
the candidate support in step 3, in order to reduce the computation
burden for on-line performance.

The refinement algorithm comprises the following steps:
Residual and proxy computation: This step uses the current signal
estimate to compute the unexplained residual in the measurements.

Algorithm 2 Signal Refinement function: Refine(x̂, ŷ, Â)

1: Calculate residual:
r = ŷ − Âx̂,

2: Compute proxy:

p = WS

(
ÂF−1

)∗
r,

where WS is the diagonal strobing weight matrix, F denotes
the DFT matrix and (·)∗ denotes the conjugate transpose.

3: Identify and merge support:

Ω = supp (Fx̂) ∪ supp
(
p|T,block

)
,

where supp (·) denotes the support index set of a vector, and
p|T,block denotes truncation of the vector p to the T dominant
coefficients in the surrounding block.

4: Estimate DFT coefficients over the merged support:

b =
(
ÂF−1

∣∣∣
Ω

)†
ŷ

5: Truncate DFT coefficients and compute the new estimate:
s̃← b|K,block

6: Output:
x̃← F−1s̃.

It then computes a proxy for the change in the signal that can explain
the residual. The proxy is determined by correlating the residual
with all the columns of ÂF−1 and normalizing the resulting corre-
lations by the weights in the diagonal matrix WS , computed using

(WS)i,i = 1
/

(FÂ∗ÂF−1)i,i . (7)

This weighting scheme is inspired by the minimum variance beam-
former from in the array processing literature [12]. It aims to penal-
ize the signal directions according to how much they are amplified
by the proxy formation, and undo the bad conditioning of the mea-
surement system around the DC components. This weighting can
also be interpreted as the normalization of the columns of AF−1.
Support identification and merger: This step combines the proxies
determined from all the nearby pixels together with the existing sig-
nal support to determine a candidate support for the signal frequency
components that explain the proxy. To determine the support, the
magnitude of each frequency component in each of the proxies is
squared and added to the squares of the magnitudes of the same fre-
quency components from the nearby pixels in the block, as in (4).
The T largest frequency components are identified from these sums
and added to the existing support set for the signal. This step exploits
the joint sparsity model of the signal, as described in [15].
Signal estimation: This step computes the least squares inverse of
the measurements and estimates the signal coefficients over the can-
didate support, using conjugate gradient method.
Truncation: The final refinement step truncates the signal to have
support size K, as the model dictates. As with the support identifi-
cation step 3, the support is jointly updated over all the pixels in the
block, using the joint sparsity model (4) on the signal estimates.

5. EXPERIMENTS
In this section, we present experimental results to demonstrate the
performance of the SGP algorithm for reconstructing near-periodic
signals from coded strobing measurements.

One Pixel reconstruction: The first experiment measures the
reconstruction performance for one pixel of a video sequence. Each
measurement integrates R/2 randomly chosen time samples of the
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Fig. 2. Comparison between performance of SGP and Block-CS.

same pixel from R consecutive input samples, where R is the com-
pression factor. To simulate the camera and electronics noise, we add
Gaussian noise to the measurements to make the SNR equal to 35dB.
We compare the reconstruction performance of SGP algorithm with
the off-line processing described in [7], i.e., CoSaMP applied to the
entire set of measurements, which we term Block-CS. We compare
SGP and Block-CS with different values of R for two different sig-
nals.

The first signal is a near-periodic signal taken from the pixel
time-series of a high-speed video of an oscillating Crest toothbrush,
shown in Fig. 3. The period is roughly 16 samples and fluctuates
over time due to variations in the movement of the brush. We used
M = 160,K = 30, T = 10 and executed the SGP on 4800 sam-
ples. Similarly, we used the Block-CS to estimate the 4800 samples
at once using the same 4800/Rmeasurements, withK = 4800/5R.
The results for different compression ratios are shown in Fig. 2,
where SGP outperforms Block-CS.

The second signal is a perfectly periodic signal with period of
25 samples, constructed from the fractal image dataset Julia. The
SGP is used with parameters M = 150,K = 30, T = 10, over a
set of 4500 samples. Similarly, Block-CS estimates 4500 samples of
the signal using the same 4500/R strobing measurements. Since the
signal is perfectly periodic and has sparse DFT coefficients, Block-
CS is able to exploit the stationarity within the larger observation
time, and unsurprisingly outperforms the SGP. Notably, at higher
compression factors the SGP is able to perform as well as Block-CS
(Fig. 2 solid lines).

Note that the advantage of Block-CS, namely that it can observe
the whole signal off-line and thus outperform the SGP for perfectly
periodic signals, becomes a disadvantage in realistic scenarios, such
as the Crest dataset, in which the signal is approximately periodic.
In this case the SGP is able to adapt to the time variation and outper-
form Block-CS.

Video reconstruction: In this experiment we reconstruct the
whole high-speed video of the pulsating Crest toothbrush with near-
periodic linear and oscillatory motions, from coded strobing mea-
surements. Three snapshots of an image section from Crest video
sequence are shown in Fig 3. The strobing measurements are taken
at different compression factors (R) and the original frame sequence
is subsequently reconstructed using the SGP with parameters M =
200,K = 30, and T = 10.

In this experiment we use the joint-sparsity model in Algo-
rithm 2 by jointly processing blocks of 4 adjacent pixels, and esti-
mating their jointly sparse coefficients. Figure 3 shows snapshots of
reconstructed videos at different compression rates and reports the
corresponding signal to reconstruction error ratio (SER). Note that,
as expected, quality of the reconstructed video degrades with in-

High speed 
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Fig. 3. Snapshots of Crest toothbrush video, with respective recon-
structed frames and SER at compression ratio R.
creasing compression rate2. Quality can be improved by increasing
the size of the sliding window (by increasing M ) but this also leads
to increased input-output delay and computational complexity.
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2Complete videos available at http://users.ece.gatech.edu/∼sasif/icip10


