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Abstract—The ability to learn complex system dynamics is
crucial to enhancing the reliability and stability of power systems.
In this paper, we develop a novel neural ordinary differential
equation (ODE) based algorithm to predict the transient tra-
jectories of power systems. To handle noisy measurements, we
propose a noise-removal module, which is implemented before
the neural ODE module. The proposed algorithm is validated
using the IEEE 118-bus system. The numerical study results
demonstrated the superior accuracy of the proposed model over
the baseline neural network (NN) and its robustness against
measurement noise. Furthermore, the analytics results verified
the generalization performance across different fault durations
and locations.

Index Terms—Neural ordinary differential equation, power
system dynamics, transient trajectory.

I. INTRODUCTION

Learning the dynamic behaviors of power systems is essen-
tial to performing stability analysis and to designing adaptive
real-time control mechanisms. However, with the integration
of renewable energy resources and the emergence of dis-
tributed generation, the behavior of power system dynamics
becomes increasingly fast-evolving and complex. Under this
changing environment, the ability to learn complex power sys-
tem dynamics becomes indispensable for the reliable operation
of power systems.

Traditionally, power system dynamic simulations have been
widely used for transient stability assessment. This method
relies on accurate physical dynamic parameters and the solving
of a large set of differential algebraic equations. However,
as electrical networks grow in complex and unpredictable
ways, obtaining precise dynamic parameters for the various
components within the system becomes a daunting task. Fur-
thermore, solving a large number of differential equations is
computationally intensive, making the real-time power system
analysis and control extremely challenging.

In recent years, many machine learning (ML) algorithms
have been proposed to learn the dynamic behavior of real phys-
ical systems with limited observation [1]. ML-based methods
have the potential to address the challenges of computation
burden and inaccurate dynamic parameters. In the domain
of power system dynamic simulation, researchers often use
binary classification models such as gated recurrent units
(GRU) [2], recurrent neural network (RNN) [3], convolutional
neural network (CNN) [4]–[6] to identify system stability

issues. However, binary classification models do not provide
detailed system dynamic trajectories to facilitate decision-
making. To address the issue of inaccurate dynamic param-
eters, researchers have proposed physics-based neural ODEs
to learn the parameters of the generator dynamic model using
data from phasor measurement units (PMU) [7]. However, it
is important to note that this approach does not accelerate the
dynamic simulation process.

Therefore, data-driven machine learning approaches have
emerged to predict power system dynamic trajectories. To fully
utilize physical information, physics-informed approaches
have been developed to learn the dynamic model by embed-
ding the exact physical equations [8] or energy conservation
law [9]. However, this group of models is still in the early stage
of its development and has difficulties generalizing to a larger
power system. Deep learning methods, such as long short-
term memory (LSTM) network [10] and extreme learning [11],
have been developed to predict future transient trajectories
based on given initial conditions or past sensor measurements.
But learning the power system dynamics directly does not
guarantee good performance due to the high level of network
complexity, the limited number of sensors and low sampling
rate.

Neural ODEs present a strong and elegant method for
learning the differential equations governing a dynamic system
through trajectory data [1]. This technique efficiently utilizes
state information from both nearby and distant time points,
showing particular strength in scenarios with sparse or irreg-
ularly spaced sampling. In this paper, we propose a novel
framework for learning the power system dynamic model
using neural ODE with noisy power system measurements.
The developed neural ODE-based algorithm is validated using
the IEEE 118-bus system, which can reproduce complex power
system dynamic behavior. The software modules and data for
this research are available at [12].

The main contributions of this paper are listed below:
• We developed a neural ODE-based algorithm for learning

complex power system dynamics and transient trajecto-
ries with limited training data.

• To mitigate noisy measurements in the system, we incor-
porated a noise-removal module in the proposed solution.

• Numerical study results show that the proposed algorithm
achieves better performance in transient trajectory predic-



tion than the baseline neural network.
• Furthermore, the proposed algorithm demonstrates not

only strong robustness against measurement noise but
also great generalization capability across different sys-
tem fault durations and locations.

The remainder of this paper is organized as follows. Section
II formulates the power system dynamic model. Section III in-
troduces the proposed technical methods. Section IV presents
the numerical studies. Section V gives the conclusion.

II. POWER SYSTEM DYNAMIC MODEL

This study employs the classical power system dynamic
model as the foundation and adds the governor model to
make the transient trajectories more realistic. This provides
a simplified yet insightful representation of the generator and
system dynamics to evaluate the performance of the baseline
and the proposed neural ODE-based algorithms.

In the dynamic simulations, each generator k (k =
1, 2, · · · , g) is modeled with a set of differential equations
representing the dynamics of the generators and governors.
The classical generator model used in this study for simulating
the dynamics is essentially the swing equation as shown in (1):
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where Mk denotes the inertia constant, ω0 is the synchronous
speed of the generator rotor, D denotes damping coefficient
of generators, Tmk

denotes mechanical torque, ∆Tmk
denotes

deviation in mechanical torque, Pek denotes active power
output, δk denotes rotor angle, and ωk denotes rotor speed.

To make the system dynamics more realistic in the simula-
tions, a governor model is integrated with the classical model:
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where RYk denotes speed relay output, CVk denotes control
valve opening degree, HPk denotes high-pressure turbine out-
put. ∆ωk = ωk − ω0 denotes deviation in rotor speed.

Finally, the electrical power of generator k, Pek , is calcu-
lated using the Kron reduced admittance matrix Y g ∈ Rg×g

and the internal voltages of the generator Ek,

Pek =

g∑
i=1

|Yki||Ek||Ei| sin(δki − θki), (3)

where Ek denotes internal voltage of synchronous generators
and θij = π

2 + arg((Y g)ij). Note that arg denotes the
argument of a complex number.

III. TECHNICAL METHODS

A. Overview of Neural ODE

Neural ODE parameterizes the derivative of the hidden
state using a neural network, which can capture the intricate
evolution of dynamic system states.

Given initial states z(t0), neural ODE learns the function f
parameterized by a neural network with weights θ [1]:

dh(t)

dt
= f(h(t), t, θ). (4)

The corresponding loss function is defined as:

L(z(t1)) = L(z(t0) +

∫ t1

t0

f(z(t), t, θ)dt). (5)

To update the model parameters during training, we use
the adjoint method proposed in [1] to calculate the derivative
of the loss function with respect to model parameters: dL

dθ .
Specifically, the dynamics of adjoint a(t) = ∂L

∂z(t) are given
by another ODE:
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The gradient of the loss function with respect to the param-
eters θ depends on both a(t) and z(t):
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dθ
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dt. (7)

In practice, Ricky et al. provides the “torchdiffeq“ library,
which is equipped with ODE solvers implemented in PyTorch
[13]. This ODE solvers have the option to output the state at
multiple time steps z(t1), · · · , z(tT ) and supports backpropa-
gation using the adjoint method, where T denotes batch time.

B. Learning System Transient Trajectories with Neural ODE

The power system data utilized in this study is generated
by solving Differential-Algebraic Equations (DAEs), which
accurately encapsulate the intricate dynamics of the power
system. In general, DAE have a semi-explicit form [14]:

ẏ = f̄(y, z), y (t0) = y0,
0 = ḡ(y, z), z (t0) = z0,

(8)

where y = y(t) ∈ Rn are the dynamic states, z = z(t) ∈ Rm

are the algebraic variables, f̄ : Rn × Rm → Rn describes
differential equations, ḡ : Rn×Rm → Rm describes algebraic
equations. Under the assumption that the algebraic equation
have a unique solution for z: z = G(y), the DAE is equivalent
to the following system of ODEs:

ẏ = f̄(y,G(y)), y (t0) = y0. (9)

In the classical power system dynamic model, the algebraic
variables P ek have a unique analytical solution (see equation
(3)). Thus, we assume that the power system dynamic model
can be approximated as a neural network parameterized by
θ: ẋ = f(x, θ). Theoretically, x should include all the
state variables. However, not all of them are observable. To
simplify the model, we let x = [δ,ω]

T , δ = [δ1, δ2, · · · , δg]T ,



Fig. 1. Baseline neural network and neural ODE model

ω = [ω1, ω2, · · · , ωg]
T . It has been observed from numercial

study that the performance difference between the model with
complete state vector and the simplified model is negligible.
Next we present two learning schemes.

We first present a baseline NN to learn the dynamic model.
The baseline NN is parameterized as a multi-layer perception
(MLP) f1. The corresponding loss function is defined as:

L1 = ∥f1 (x, θ1)− ẋ∥22. (10)

In contrast, neural ODE parameterizes the dynamic model by
neural ODE block f2(x, θ2). Given a pair of states x(t0) and
a set of future states {x(tk)}Lk=1, where t0 < tk for all k, the
corresponding loss function is:

L2 =

L∑
k=1

∥x(t0) +
∫ tk

t0

f2(x(t), θ2)dt− x(tk)∥22. (11)

The architecture of the baseline NN and neural ODE block
are shown in Fig. 1. The dimension of the input and output
layers are both 2g, where g is the number of generators. The
hidden layer dimension is h. To make it a fair comparison,
the baseline NN and neural ODE models have similar network
structures. The only difference is that three dropout layers were
added in the baseline NN to mitigate overfitting.

C. Noise Removal Block
Suppose the measurements of rotor angle δ̃ and rotor speed

ω̃ are noisy observations: δ̃ = δ + nδ , ω̃ = ω + nω , where
nδ and nω are Gaussian noise. The presence of measure-
ment noise can significantly increase the transient trajectory
prediction error. To mitigate this problem, we introduce a
noise removal block before feeding the data to the neural
networks for model training. Specifically, the function of
smoothing is estimating x̄ at point k given a set of data points
{{tk, x̃(tk)}}. x̄ can be calculated as:

x̄(k) =

∑k+w
i=k−w Ku(ti − tk)x̃(tk)∑k+w

i=k−w Ku(ti − tk)
, (12)

where Ku(t) =
1
uK( t

u ) is a kernel function with bandwidth u.
The window size is 2u+1. Different kernels can be selected.
Depending on the need for simplicity or precision, either the
boxcar kernel or the Gaussian kernel can be adopted. This
noise removal block will degenerate to moving average when
selecting Boxcar as kernel for equidistant sampling time series.

The noise removal block includes padding and convolution,
we add padding to handle boundary conditions and use con-
volution for smoothing data. The bandwidth and window size
critically influences the regression’s extent of smoothing. A
smaller u and w yield a regression that closely follows the
data, while a larger u provides a smoother estimate.

IV. NUMERICAL STUDIES

A. Simulation Setup of IEEE 118-bus System

The transient trajectories of rotor angle and rotor speed are
generated using time-domain simulations of the IEEE 118-bus
system [15]. The simulation covers 11s of dynamic behavior
of the system. During this period, two events occurred: at
t1 = 1s, a balanced ground fault causes the breakers of the
transmission line l to open; at t2(> 1), the fault is cleared.
The simulation time step is set as 10ms for all events.

Three datasets were generated using a commercially avail-
able software[16]. They have the same initial states, highlight-
ing the variation across fault durations and diverse fault points.
The specific configuration is shown in Table I. For example,
the disturbance location of the first dataset is in the middle of
the 345 kV transmission line between buses 38 and 65. 471
trajectories are generated for different fault durations ranging
from 30ms to 500ms with an interval of 1ms.

TABLE I
SIMULATION DATASET

Dataset Fault location Fault duration range IncrementBus I Bus J
1 38 65 [30ms, 500ms] 1ms
2 69 70 [50ms, 500ms] 50ms
3 110 112 [50ms, 500ms] 50ms

B. Generalization Across Fault Durations

To evaluate the generalization capability of the neural
ODE and baseline NN models across different fault dura-
tions while fixing the fault location, dataset 1 is selected
for training and testing. Specifically, the training data com-
prises dynamic trajectories corresponding to fault durations
of {30, 80, 130, 180, 230, 280, 330, 380, 430, 480}ms. The test
data consists of trajectories with fault duration of 100ms; To
ensure the same differential equations of the trajectories, we
only use the post-fault state (after 2s) for training and testing.

The hyperparameters of the neural network models are
shown in Table II. Both neural networks use mean square error
(MSE) as the loss function and Adam as the optimizer. During
the training of neural ODE, the selection of {x(tk)}Lk=1 will
significantly influence the performance and training time of
neural ODE. When ∆t = tL − t0 is excessively large, the
training time increases significantly. Conversely, an overly



small ∆t compromises the accuracy of trajectory prediction.
We make a trade-off by setting tk = t0 + k × 10ms and
L = 10, with L referring to the batch time as shown in Table
II. For each training iteration, we randomly select an initial
timestamp with replacement from the range [t2, t3 − 100ms].
Then starting from the selected initial state, we step forward-
in-time through the ODE solver for 10 contiguous timestamps
and back-propagate to update the neural network parameters,
using the ODE solver Runge-Kutta of order 5 of Dormand-
Prince-Shampine with absolute tolerance equal to 10−6.

TABLE II
HYPERPARAMETERS OF NEURAL NETWORK MODELS

Baseline NN Neural ODE
Hidden dimension 1000 1000

Learning rate 0.001 0.001
Iterations 10000 5000

Batch time - 10
Batch size 1024 256

Dropout rate 0.5 -

We evaluate the performance of the learned neural networks
with the trajectory prediction task: given the initial states
[δ0,ω0], we use neural ODE and baseline NN to solve
this initial value problem and then compare the trajectory
prediction results. We calculate the predicted rotor angle and
rotor speed as δ̂ and ω̂. The MSEs for predicted and actual
trajectories are calculated by: MSE(δ̂, t) = 1

g∥δ̂(t) − δ(t)∥2
and MSE(ω̂, t) = 1

g∥ω̂(t)− ω(t)∥2.
The trajectories with fault duration of 100ms are used for

testing and the predicted trajectories are shown in Fig. 2. The
MSEs of the predicted and actual trajectories are shown in Fig.
3. The experimental results show that the baseline NN achieves
acceptable results in the task of trajectory prediction. However,
neural ODE demonstrates significantly better performance,
especially in the long-term predictions. In addition, the average
simulation time of the proposed method is only 1.22 s, which is
much shorter than the 14.49 s required by traditional dynamic
simulation software on the same computing device.

C. Robustness Against Measurement Noise

The robustness of our proposed model against measurement
noise was evaluated in this subsection. First, measurement
noises are superimposed on the generated trajectories in
dataset 1. In practice, rotor speed usually cannot be directly
measured and must be computed based on the measurements
from PMUs. For simplicity, it is assumed that the measurement
noises on the rotor angle and rotor speed follow a Gaussian
distribution: e ∼ N(0, 0.02). Next, we evaluate the effective-
ness of the noise removal block by conducting two groups
of experiments: in the first group, the neural ODE model is
learned from noisy data, in the second group, we add a noise
removal block before the neural ODE model.

In the noise removal block, the bandwidth is set to 0.07
and window size to 15. The kernel is selected as Gaussian
for convolution. The result in Fig. 4 shows that the noise will
significantly affect the performance of neural ODE model, and

Fig. 2. Predicted and actual trajectories of the generator at bus 49 with fault
between bus 38 and bus 65 and fault duration of 100ms

Fig. 3. MSEs of predicted trajectories of all 19 generators with fault between
bus 38 and bus 65 and fault duration of 100ms

adding the noise removal block can significantly reduce the
MSE of the predicted trajectories.

Fig. 4. MSE of predicted trajectories of all 19 generators using neural ODE
with fault between bus 38 and bus 65 and fault duration of 100ms

D. Generalization Across Fault Locations

The generalization capability of the neural ODE model
is evaluated through datasets 2 and 3. The training dataset



contains all the trajectories in the dataset 2 and the test dataset
include rotor angle trajectories in dataset 3 with fault duration
of 100ms. The result in Fig.5 shows that the neural ODE
performed well predicting trajectories related to fault locations
not included in the training dataset, but it doesn’t guarantee
perfect generalization across all fault locations.

Fig. 5. Predicted and the actual rotor angles of all 19 generators, the training
data related to fault between bus 69 and bus 70, the test data related to fault
between bus 110 and bus 112 with a fault duration of 100ms

V. CONCLUSION

In this paper, we propose a novel framework that employs
neural ODEs to learn complex power system dynamics from
noisy measurements. The performance of the algorithms is
validated using the IEEE 118-bus system. The results of
numerical studies highlight the superior performance of the
proposed neural ODE-based algorithm in trajectory predic-
tion, demonstrating the generalization capability across fault
durations and locations. Furthermore, the addition of a noise
removal block significantly enhances the robustness of the
model against measurement noise, which is a common issue
in real-world power systems.

In practice, the number of sensor measurements and fault
events are limited and the operation condition varies greatly
over time. To address these challenges, a promising approach
is to improve the neural network’s generalization capability by
incorporating physics-based priors, such as network topology
and functional form of the underlying DAEs. Finally, exam-
ining a broader range of electrical variables and controllers,
such as voltage trajectories and voltage regulation could be
beneficial. These extensions will be explored in the future.
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