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Abstract—The reconfiguration of distribution networks is a
complex problem that involves optimizing network topology to
ensure efficient and reliable power delivery. Traditional ap-
proaches to this problem have relied on heuristics and opti-
mization algorithms, which are computationally expensive and
not scalable to large networks. In this paper, we propose a link
prediction model based on a physics-informed graph neural net-
work (GNN) by using the nodal and topological information of the
distribution network. Numerical studies on a 119-bus distribution
network show that the proposed physics-informed GNN exhibits
a high level of accuracy in predicting the connectivity of tie lines.
By synergistically combining the physics-informed GNN with an
optimization model, the proposed algorithm significantly reduces
the computation time of the network reconfiguration problem by
using a subset of the link prediction results as the final tie switch
connectivity.

Index Terms—Graph neural network, link prediction, distri-
bution system, network reconfiguration.

I. INTRODUCTION

Distribution network reconfiguration (DNR) is crucial in
power distribution systems, with the goal of improving the
performance of the distribution network by changing its topol-
ogy. The primary objectives of network reconfiguration include
reducing power losses and improving the voltage profile of the
distribution system.

Over the years, researchers have proposed various algo-
rithms to solve the distribution network reconfiguration prob-
lem. Heuristic approaches [1, 2] have been extensively used
for DNR due to high computational efficiency and practi-
cality. Most of the previous work on distribution network
reconfiguration adopted mathematical optimization techniques,
such as mixed-integer programming (MIP) [3, 4], dynamic
programming (DP) [5], benders decomposition (BD) [6], and
approximated Newton method [7]. These techniques offer an
effective way to optimize the network topology by rigorously
modeling the operational constraints and objectives of the
problem. However, they can be computationally intensive,
particularly for large-scale distribution networks.

In the past few years, machine learning algorithms were ap-
plied to solve the distribution network reconfiguration problem
due to their ability to learn from historical data and make pre-
dictions in unforeseen operation scenarios. In [8], a novel data
augmentation method is proposed to create an additional syn-
thetic dataset to train a reinforcement learning agent to solve

the dynamic distribution network reconfiguration problem. In
[9], a batch-constrained reinforcement learning (RL) algorithm
is proposed to learn the network reconfiguration control policy
from a limited historical operational dataset without interacting
with the distribution network. A general robust method (GRM)
is proposed in [10], which combines deep learning and robust
optimization to minimize the operational loss in three-phase
unbalanced distribution systems. In [11], an efficient deep
convolutional neural network is developed to improve the
short-term voltage stability of distribution networks.

To embed the network topology information into data-driven
monitoring, control, and optimization solutions in power sys-
tems, graph neural network (GNN) based algorithms are
receiving increasing interest from the researchers in the field
[12]. The GNN-based approach has been adopted to solve
the many problems in power systems such as fault detec-
tion in distribution networks [13, 14], solar power prediction
[15, 16], optimal power flow (OPF) [17, 18], distribution
network parameter estimation [19], state estimation [20], and
system health index prediction [21]. However, the majority
of the existing applications of GNN in power systems do not
explicitly take into account the change in the network topology
in system operation procedures.

On one hand, the power distribution grid continues to be
expanded and upgraded with tie switches to accommodate
increasing penetration of distributed energy resources, its com-
plexity and number of feasible configurations will experience
further growth. This will lead to higher computation costs and
time for network reconfiguration controls. On the other hand,
the substantial fluctuations in power outputs from distributed
renewable energy resources call for network reconfiguration to
be performed at shorter time intervals. To develop a compu-
tationally efficient network reconfiguration algorithm, we first
propose a GNN-based link prediction model for distribution
network reconfiguration, which can capture both the dynamic
topology configuration and spatial load information. Following
this, we go on to solve the network reconfiguration problem,
which is formulated as a MIP by selecting a subset of the
link prediction results to be fixed variables. The GraphSAGE
model [22] is chosen for information propagation in the
distribution network-based GNN. This model is selected due
to its remarkable ability to generate representations effectively
through an inductive framework that leverages node features.
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This approach enables GraphSAGE to produce representations
for not only known nodes but also for previously unseen nodes
and even entirely new input graphs and networks.

The contributions of this paper are summarized below:
• This paper proposes a physics-informed GNN to predict

the status of tie switches in real-time for the power
distribution network reconfiguration problem.

• By synergistically combining a fraction of the outputs
of the physics-informed GNN and the MIP formulation,
the proposed algorithm can find a global optimal network
reconfiguration solution while reducing the computation
time.

The remainder of the paper is organized as follows. Section
II presents the mathematical formulation of the distribution
network reconfiguration problem. Section III introduces the
proposed GNN-based link prediction model. Numerical studies
are performed in Section IV and conclusions are given in
Section V.

II. PROBLEM FORMULATION

In this section, the mathematical formulation of the distri-
bution network reconfiguration problem is presented. Here we
consider the static network reconfiguration problem at an op-
erating point. The mixed-integer conic programming (MICP)
formulation from [4] is adopted. As shown in (1), the objective
of the network reconfiguration problem is to minimize the
distribution network loss. (2) and (3) are the active and reactive
power balance constraints. Constraint (4) and (5) express the
relation between any two connected buses. (6) to (9) are the
constraints for network radiality and connectivity. (10) is the
conic constraint. (11) is the current magnitude constraint. (12)
and (13) are the voltage limit constraints.

min
∑

(i,j)∈E

rij lij (1)

PGi−PDi =
∑

(i,j)∈E

Pij −
∑

(k,i)∈E

(Pki−rkilki)+givi, i ∈ N

(2)
QGi−QDi =

∑
(i,j)∈E

Qij−
∑

(k,i)∈E

(Qki−xkilki)+bivi, i ∈ N

(3)

vj ≤ M(1− αij) + vi − 2(rijPij + xijQij)+(r2ij + x2
ij)lij ,

(i, j) ∈ E (4)

vj ≥ −M(1− αij) + vi − 2(rijPij + xijQij)+(r2ij + x2
ij)lij ,

(i, j) ∈ E
(5)∑

(i,j)∈E

αij = n− 1, (6)

βij + βji = αij , (i, j) ∈ E (7)∑
j∈N (i)

βij = 1, i ∈ N and i /∈ Ns (8)

βij = 0, i ∈ Ns, j ∈ N (i) (9)

lij ≥
P 2
ij +Q2

ij

vi
(10)

lij ≤ αijIij
2

(11)

vi = 1, i ∈ Ns, (i, j) ∈ E (12)

Vi
2 ≤ vi ≤ Vi

2
, (13)

where PGi and QGi are the active and reactivate power
generation at bus i. PDi and QDi are the active and reactive
power demands at bus i. Pij and Qij are the active and
reactive power flow of line ij. rij and xij are the resistance
and reactance of line ij. gi and bi are the conductance and
susceptance of bus i. lij is the squared current magnitude of
line ij. vi is the squared voltage magnitude at bus i. N and
Ns are the set of buses and substation buses. E is the set
of lines. αij is a binary variable which equals to 1 if line
ij are connected and 0 otherwise. βij is a binary variable
which equals to 1 if bus j is the parent of bus i and 0
otherwise. M is a large constant number. Iij is the maximum
current magnitude of line ij. Vi and Vj are the minimum and
maximum voltage magnitude at bus i.

III. DISTRIBUTION NETWORK RECONFIGURATION WITH
PHYSICS-INFORMED GRAPH NEURAL NETWORK

The overall framework of our proposed algorithm, which
combines GNN and optimization model is shown in Fig. 1.
A spatial graph is constructed using the topology and load
information of the distribution network, which is then fed into
a GNN along with a link classifier to predict the status of tie
switches. Subsequently, a subset of the link prediction results
is used by a MIP solver to determine the distribution network
reconfiguration results.
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Fig. 1. Overall framework for distribution network reconfiguration



A. Representing the power distribution network as a graph

The distribution network can be represented as a graph,
denoted by G = (V,A). The graph should not only encapsulate
bus information but also capture the interconnections among
them. The set of nodes V of the graph corresponds to the buses
in the distribution system. n = |V| is the number of buses. The
adjacent matrix A delineates the connections between them,
A ∈ {0, 1}n×n. Specifically, Aij takes the value of 1 if bus i
and bus j are connected.

The operation status of the distribution system is highly in-
fluenced by the power injection, withdrawal, voltage upper and
lower bounds, and conductance and susceptance information
at each node. To this end, the features of a node, denoted by
vi, are defined as vi = [PGi, QGi, PDi, QDi, V i, V i, gi, bi].
Note that PGi and QGi are set to zero if bus i does not have
a generator. Similarly, PDi and QDi are set to zero if bus i
does not have a load. The training label of the tie switch yij
for line ij is the connectivity of the tie switch. In other words,
yij = αij .

B. Proposed Network Architecture

As aforementioned, GraphSAGE is an inductive framework
that utilizes nodal attributes to generate representations effec-
tively, even for previously unseen nodes or entirely new input
graphs. The nodal features will be first processed by several
GraphSAGE layers and then passed to the link classifier layer
to generate predictions for tie switch connections.

1) GraphSAGE: The node features vi are propagated to v′i
with (14).

v′i = W1vi +W2
1

|N (i)|
∑

j∈N (i)

vj ,∀ i ∈ N, (14)

where W1 and W2 are the weight matrices, and N (i) is the
set of neighboring nodes of node i.

2) Link Classifier: The propagated node features are
mapped to the link and tie switch level with (15).

ei,j = hΘ(vi)⊙ hΘ(vj),∀ (i, j) ∈ E, (15)

where hΘ is a neural network, which processes the node
features. Here we use a multi-layer perceptron.

3) Loss Function: The output of the proposed physics-
informed GNN is a prediction for the connection of tie switch
ij, which is calculated by (16):

ŷij =
1

1 + exp(−
∑D

d=1 ei,j [d])
,∀ (i, j) ∈ E, (16)

where ŷij is the probability that tie switch ij is connected.
Note that ŷij ∈ (0, 1) and D is the dimension of eij .

Since this is a binary classification problem, the binary cross
entropy loss shown in (17) is used.

l(y, ŷ) = −
∑

(i,j)∈E

(yij log(ŷij) + (1− yij) log(1− ŷij))

(17)

C. Solving a Sub-problem of the Original MIP

Upon training the GNN, the learned probability distribution
pθ is utilized to predict the connectivity for lines and tie
switches. Subsequently, a fraction of binary variables αij

are set to either 0 or 1 based on these predictions. Next,
we leverage a MIP algorithm to solve a sub-problem of the
original MIP (sub-MIP), which significantly reduces the search
space. The detailed steps can be found in Algorithm 1. First,
the spatial graph G is constructed based on the inputs to the
MIP problem I . Then a transformed probability distribution
p̂θ is calculated using the outputs of the trained GNN’s model
pθ. The transformed probability distribution p̂θ is subsequently
sorted in descending order. For tie switches that have a
probability of connectivity closer to 0 or 1, we sample the
predictions ŷij according to pθ and incorporate constraints
αij = ŷij into the MIP model I . Finally, we solve the resulting
sub-MIP I ′ and obtain the tie switches’ connectivity α.

Algorithm 1 Sub-MIP Solving
Input: learned distribution pθ, MIP model I , sample ratio ρ.
Output: line/tie switch connection variables α and losses.

1: Build graph G based on I .
2: Calculate p̂θ(y|G) = |pθ(y|G)− 0.5|.
3: Ψ = argsort p̂θ(y|G).
4: for (i, j) ∈ Ψ[0 : round(ρ · |E|)] do
5: Sample ŷij ∼ pθ(y|G)
6: Add constraint αij = ŷij to I .
7: Solve obtained sub-MIP I ′ and retrieve α
8: Output the result of network reconfiguration and losses

IV. NUMERICAL STUDIES

In this section, we first provide the setup for the distribution
network and the training dataset. To showcase the effectiveness
of GNNs, we introduce a baseline model where we replace
the GraphSAGE layers in the proposed model with fully-
connected layers (FNN). This comparison is conducted to
demonstrate the superior performance of the physics-informed
GNN. The prediction accuracy for the connectivity of the tie
switches on the testing dataset will be presented. Finally, we
compare the computation time of the commercial MIP solver,
the baseline algorithm, and our proposed method.

A. Setup of Numerical Studies

The 119-bus distribution network described in reference
[23] is selected as the test system, which is depicted in
Fig. 2. The distribution system tie switches are indexed to
facilitate detailed analysis and visualization of results. The
historical load data is adopted from the smart meter energy
consumption data in the London Households project [24]. The
dataset contains half-hourly energy consumption readings in
kWh for 5,567 households in London, covering the period
from November 2011 to February 2014. In order to better
mimic the load consumption of the distribution network, we
aggregate the power consumption of individual households to



derive the nodal real power injections. It is assumed that the
power factors remain constant at 0.95 lagging.

The dataset for the numerical studies is produced through
simulation. 10,000 training samples/graphs with different net-
work configurations and node features are created using the
historical load data. We used Gurobi as the MICP problem’s
solver and set the MIPGap to 0.01%. Among all the created
datasets, 8,000 samples are used for training, 1,000 for model
validation, and the remaining 1,000 for testing purposes.
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Fig. 2. The 119-bus distribution network

The hyperparameters of the proposed physics-informed
GNN model and baseline FNN model are shown in Table I,
which are tuned separately to reach their best performances.

TABLE I
HYPERPARAMETERS OF THE GNN AND THE FNN

GraphSAGE layers
number of layers 2
hidden layer size 64

activation function ReLu

Fully-connected layers
number of layers 2
hidden layer size 64

activation function ReLu

Link classification layers
number of layers 3
hidden layer size 64

activation function ReLu

Training parameters

number of epochs 2000
training batch size 128

validation batch size 128
learning rate 5× 10−5

patience 50
early stop 50

B. Training Process

Fig. 3 illustrates the validation losses of our proposed model
and the baseline model throughout the training process. It can
be observed that both models experience a significant reduc-
tion in validation losses in the first 800 epochs. However, after

this point, the validation loss of the FNN model stabilizes at
around 0.35, while the GNN model’s validation loss continues
to decrease steadily until it reaches approximately 0.25.

Fig. 3. Validation losses in the training process

The prediction accuracy for the tie switch status on the
validation dataset of both models is shown in Fig. 4, from
which we can see that the accuracy of both models initially
increases rapidly to approximately 88% and then stabilizes
for a certain period. Subsequently, the accuracy of the GNN
model gradually increases to approximately 92%, whereas the
accuracy of the FNN model remains constant.

Fig. 4. Validation accuracy of the proposed and baseline models

C. Link Prediction Accuracy on Testing Dataset

The link prediction accuracy for all tie switches in the
testing dataset is reported in this subsection. As illustrated in
the histogram of Fig. 5, our proposed and baseline models both
yield prediction accuracy greater than 90% for the majority of
the lines and tie switches. The prediction accuracy for lines or
tie switches with an accuracy below 90% is also highlighted.
It is obvious that the proposed GNN model significantly
outperforms the FNN model in terms of accuracy for the lines
whose prediction accuracy is below 90%.

Although the proposed GNN-based link prediction approach
yields high accuracy, it may make a rare incorrect prediction,
which will lead to isolated nodes. For example, the proposed
model may recommend disconnecting line 94. However, as
shown in Fig. 2, this prediction would cause bus 99 to be



disconnected from the rest of the distribution network. To
avoid this undesirable outcome, we need to carefully select
the ratio ρ in Algorithm 1 for the proposed model and the
benchmark model. A larger value of ρ will result in a greater
number of fixed binary variables, but it may also increase the
likelihood of the sub-MIP being infeasible.

Fig. 5. Prediction accuracy of the proposed and baseline methods

D. Performance Comparison

In order to demonstrate the effectiveness of our proposed
GNN model, we use the trained models for online testing on 20
randomly selected instances. The average distribution network
loss of 20 instances and the corresponding computation time
are depicted in Fig. 6. The results were obtained using three
models: MICP, MICP + FNN (the baseline model), and MICP
+ GNN (the proposed model). The results for MICP were
obtained by setting different computation time limits for each
instance, while the results for MICP + FNN and MICP + GNN
were obtained by setting different ratios ρ in Algorithm 1.

Fig. 6. Performance comparison

As shown in the figure, the proposed model significantly
outperforms both the baseline model and MICP. When setting
ρ to 0.1, the average system loss obtained by the three models
is nearly identical, but the proposed model has a shorter
average computation time than the other two models. We
chose these ratios because when ρ exceeds 0.5, some instances
become infeasible for both the baseline and proposed models.

The number of infeasible instances for both the baseline
and proposed models is given in Table II. We can see that
our proposed model has fewer infeasible instances than the
baseline model due to its higher accuracy in predicting the
connectivity of tie switches.

TABLE II
NUMBER OF INFEASIBLE INSTANCES OF TWO MODELS

Model ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9
MIP+FNN 3 14 19 20 20
MIP+GNN 0 0 4 13 20

V. CONCLUSION

This paper proposes a physics-informed graph neural
network-based link prediction model for distribution network
reconfiguration. By capturing both network topology infor-
mation and spatial load distribution, our proposed model
can accurately predict the connection of tie switches in
power distribution networks. By seamlessly integrating the
proposed graph neural network model with a mixed integer
conic programming approach, the complexity and computation
time of the network reconfiguration task are greatly reduced.
Numerical study results on a 119-bus distribution network
demonstrate that our proposed approach outperforms the pure
optimization-based method and the baseline neural network
model in terms of computation time and accuracy.
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