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ABSTRACT This paper develops a forecasting-based missing value replacement model for Phasor
Measurement Unit (PMU) data during power system events. The proposed forecasting model leverages
a sequence-to-sequence (Seq2Seq) long short-term memory (LSTM) network with an attention mechanism,
which is trained with both pre-event and post-event data. The trained forecasting model is utilized to
accurately estimate and recover missing measurements in PMU data. To improve the accuracy of the
proposed model, we introduced two novel techniques: (1) integrating a prior knowledge matrix into the
attention mechanism that effectively preserves correlations within PMU data, and (2) decoupling the
magnitude and trend components of the residual forecast so that such forecasting models are separately
trained, which boosts the resistance to the noisy signal. Numerical studies on real-world PMU data collected
from the North American electric power grid demonstrate that our proposed model achieves 5% to 30%
error reduction compare to the baseline models for all key power grid measurements in both root mean
square error and mean absolute error metrics. Furthermore, our model exhibits robust missing data recovery
performance even when nearly all of the grid event data is missing.

INDEX TERMS Power systems, machine learning, deep learning, missing value replacement, phasor
measurement unit, grid disturbance, multivariate time series.

Nomenclature
βτ Attention weights at time step τ
X Pre-processed multivariate time-series data
xi Observed PMU values at time step i
Xi,m Subset time-series of X start from index i with

length m
yτ Observed PMU values at time step τ in subsequence

Yt

Yt Future time-series values after time step t
τ Time step of the output (forecast) sequence
b The bias of the fully connected layer to generate final

forecasting result
cτ Context vector at time step τ

dτ Hidden state vector at time step τ in the decoder
LSTM network

Fforecast Forecasting model
Fmag Magnitude module in the forecasting model
Ftre Trend module in the forecasting model
ht Hidden state vector at time step t in the encoder

LSTM network
hbt Backward hidden state at time step t in the encoder

LSTM network
hft Forward hidden state at time step t in the encoder

LSTM network
l Attention score calculation function
n Number of PMUs in the power system
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P Prior knowledge matrix
R Cell function for recurrent neural network
t Time step of the input (past) sequence
V T
a Second layer weights of the perceptron to calculate

attention score
W The weights of the fully connected layer to generate

final forecasting result
Wa The weights of the first layer of the perceptron to

calculate attention score
yτ Forecasted PMU values at time step τ

I. INTRODUCTION

PHASOR Measurement Units (PMUs) are measurement
devices used in electric power systems to retrieve time-

synchronized, real-time measurements of electrical quantities
such as voltage and current phasors (magnitudes and phase
angles) at various locations in the power transmission grid. In
the past two decades, electric utilities around the world [1],
[2] have widely deployed PMUs in the bulk power system to
enhance system observability and improve situational aware-
ness for system operators. In the United States alone, more
than 2500 PMUs have been deployed in transmission grids,
resulting in a significant increase in streaming data available
for power grid monitoring. In academia, many researchers
have developed PMU data-based algorithms which include
power system state estimation [3], [4], event detection (in-
cluding fault detection) [5], [6], event classification [7]–
[10], and offline event analysis [11]. In the power industry,
various PMU applications related to situational awareness for
high-frequency dynamics, such as renewable energy sources
[12], [13], continuous generator model validation [14], asset
health monitoring [15]–[17], and linear state estimation [18],
[19] have been adopted by Regional Transmission Operators
(RTOs) and Independent System Operators (ISOs) in syn-
chrophasor projects. However, there are very few commercial
PMU applications, such as eLSE [20], due to the poor PMU
data quality and the lack of the grid operators’ understanding
of the data-driven PMU applications. The poor PMU data
quality issue caused by bad data and missing values is one of
the most pressing technical challenges for PMU applications
to overcome. Missing value replacement is crucial, as data
drop as well as latency in PMU data can significantly deteri-
orate the performance of synchrophasor-based applications,
particularly those involving real-time feedback control [21].

The major factor affecting data quality is PMU data
loss [22]. Such missing data can be caused by PMU hard-
ware malfunction, GPS-time synchronization issues, and data
transmission/communication delays. The current generation
of PMU applications merely isolate bad PMU measurements
and rarely recover missing PMU measurements. Such data
recovery functions are obviously crucial for PMU applica-
tions to capitalize on measured data. The most advanced data
recovery function is based on model-based estimates and is
currently implemented in PMU applications [18]. However,
such data recovery functions are used for steady-state PMU
measurements only. Applying data recovery functions to

grid event PMU applications is still in the research phase.
Although power systems normally operate in the normal
condition (steady-state), the PMU data integrity during power
system events is more critical to the power system operators
because blackouts or brownouts may occur following major
grid disturbances. Missing value recovery during the events
should get more attention for future PMU applications.

The availability of PMU measurements from across the
United States has greatly accelerated the research on machine
learning-based PMU data analytics. Many researchers have
developed data-driven algorithms to recover missing PMU
data. The current approaches for replacing missing values
in streaming PMU data can generally be classified into two
categories.

The first category of methods for handling missing data
in PMUs is matrix completion, which relies on past and
currently available PMU measurements to fill in the gaps.
[23] fills in the missing PMU data by utilizing other PMUs’
dynamic behaviors by averaging the begged multiple linear
regression model. [24] performs a tensor decomposition on
PMU measurements that have missing data, and converts the
decomposed factor matrices back to determine the missing
values. [25] introduces an event-decomposition participation
method that separates PMU data into steady-state and dy-
namic components, taking advantage of the low-rank matrix
characteristic of streaming PMU data. [26] uses low-rank ten-
sor factorization and subspace selection (known as OnLine
Algorithm for PMU data processing, or OLAP) to replace
missing values. [27] proposes an OLAP specializing in the
temporal aspect of the PMU data that primarily uses past
values to fill in missing data, and reference [28] advocates
that this version is the most advanced algorithm in the field
of PMU missing value replacement. However, these matrix
completion-based methods are not able to handle extreme
cases where all or a majority of PMUs are out of service for a
period of time, such as when GPS signals are out-of-service
or malfunctioning.

The second category is the forecasting-based method,
which primarily uses historical PMU measurements to fill
in the missing data. One of the most significant strengths is
that the forecasting-based method can cope with the afore-
mentioned severe conditions, i.e., most or all of the PMUs
are out of service. [29] employs the Auto Regressive model
that uses the past three observations to infer the current PMU
measurements. A Lagrange interpolation method is proposed
in [30] that effectively recovers the missing values using a
few past observations and the Lagrange polynomial coeffi-
cient. [31] proposed a time series-based prediction model that
effectively combines Kalman filtering and smoothing algo-
rithms to improve data accuracy. Methods in this category fill
in the missing PMU data using the observations from the past
few time steps. However, during power system events (e.g.,
line faults and generator tripping), the PMU measurements
often demonstrate abrupt and significant dynamic change.
The observations from the past few time steps alone are
not sufficient to forecast the event behaviors of hundreds of
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milliseconds ahead.
To the best of our knowledge, no data-driven missing value

replacement schemes (in the second category) are based on a
deep neural network trained with historical power grid event
data. This paper employs the forecasting-based scheme and
develops a deep learning model that is trained with hundreds
of recorded power system events and corresponding PMU
data to replace missing values. The proposed model uses
a sequence-to-sequence (Seq2Seq) long short-term memory
(LSTM) neural network equipped with an attention mecha-
nism, which is well-suited for predicting multivariate time-
series data. The model is specifically designed to accurately
predict PMU data for 2-8 seconds in the future using pre-
event time-series data of 1 second. Observed short-term
correlation patterns among the time-series data inspire us
to express these patterns as a prior knowledge matrix and
integrate this matrix into the attention mechanism to improve
data forecast accuracy. Additionally, we introduce a novel
method, which decouples the magnitude and trend compo-
nents of the data and trains two separate Seq2Seq LSTM
models to forecast these components simultaneously. The
forecasting model is trained with hundreds of real-world
power system events and the corresponding PMU data. The
testing results show that our proposed model can provide
accurate forecasts and effectively replace missing data even
when all PMU measurements are missing simultaneously.

The main contributions of this paper are listed as follows:
• Development of a forecasting-based model with the

following two novel techniques to fill the missing mea-
surement in PMU data during the events even when no
PMUs are available:

-- Integrate the prior knowledge matrix into the atten-
tion mechanism embedded in the Seq2Seq LSTM
to improve the data prediction performance.

-- Decouple the PMU data into magnitude and trend
components and separately train two deep learning
models to better estimate the upward/downward
trend of missing PMU data and improve the pre-
diction accuracy.

• Superb prediction accuracy for missing PMU data com-
pared to five baseline deep learning-based missing value
replacement models.

• Outstanding prediction accuracy specifically for a large
fraction of missing PMU data (over 30%) compared
to the state-of-the-art matrix completion-based missing
value replacement model.

The rest of this paper is organized as follows: Section
II formulates the PMU data forecasting problem and illus-
trates the overall framework of the proposed method. Section
III presents two innovative techniques in the deep learning
model. Section IV evaluates the performance of the proposed
and baseline models for replacing missing PMU data with a
large-scale real-world PMU dataset. Section V concludes this
paper.

II. PROBLEM SETUP AND OVERALL FRAMEWORK
The focus of this section is the formulation of the online
PMU data forecasting problem and the introduction of a
deep learning-based missing value replacement framework.
The proposed model utilizes an attentional Seq2Seq LSTM
network, which is enhanced with the incorporation of a prior
knowledge matrix and magnitude trend decoupling scheme.
The input for the model is the historical time-series data
for PMU consisting of four different measurements (real
power, reactive power, voltage magnitude, and frequency).
The output is a prediction of these same measurements that
can be used to replace missing values.

A. PROBLEM SETUP
The grid-wide sensor system of each interconnection in the
U.S. includes a large number of PMUs (hundreds). In this
paper, we formulate the replacement of missing values in
PMU data as a multivariate time-series forecasting problem.

Notation 1: X = [x1,x2, ...xT ] is the pre-processed
multivariate PMU time-series data, where T is the length of
the time series X, xi ∈ Rn represents the recorded value
of different PMUs at the time of i, and n is the number of
PMUs.

Notation 2: Xi,w = [xi,xi+1, ...xi+w−1] is the expres-
sion of a continuous subset time-series of X with the length
of w and the start time index of i, which is used in notation
3.

Notation 3: Xt−m+1,m = [xt−m+1,xt−m+2, ...xt] is
the historical time-series values with the fixed length m (1
second), which is used as the input of the forecasting model.

Notation 4: Yt = [xt+1,xt+2, ...] = [y1,y2, ...] is
the future time-series, which is used as the output of the
forecasting model.

The goal of this forecasting task is to predict the fu-
ture measurement value (Yt) using past time-series values
(Xt−m+1,m). Xt−m+1,m and Yt are matrices with two
dimensions that correspond to the spatial and temporal infor-
mation, i.e., the PMU IDs and timestamps. The output time-
series’ lengths are 2 seconds for voltage-related events and 8
seconds for frequency-related events.

B. OVERALL FRAMEWORK
The overall framework of the proposed deep learning-based
missing value replacement model is depicted in Fig. 1. The
raw dataset undergoes noise removal, outlier detection, and
normalization using an Apache Spark Cluster [32]. Then,
the pre-processed and normalized training dataset is used
to calculate the prior knowledge matrix. The deep learning
neural network is constructed based on the Seq2Seq LSTM
with an attention mechanism and prior knowledge matrix
embedding. The model is trained using the pre-processed
PMU data. The deep learning-based model consists of two
separately trained neural network modules, the magnitude
forecasting module and the trend forecasting module, which
are both depicted in Fig. 1 and discussed later (see III-A2).
The future PMU data is forecasted by combining the results
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FIGURE 1. Overall framework of the forecasting-based missing value replacement model.

from the aforementioned two modules. Each module will be
detailed in the next section.

III. TECHNICAL METHODS
In this section, we describe the technical methods used in the
forecasting model, which tries to predict the residual time
series in the future based on the past time series data. First,
the time series is separated into the magnitude and trend
components, and two separate neural networks are trained
to predict each component. The forecast for PMU data is
generated by combining the outputs of these two neural
networks. Second, we provide a detailed description of the
neural network structure of our proposed model with the
uniquely designed prior knowledge matrix.

A. OVERVIEW OF THE FORECASTING MODEL
1) Forecasting Residual
To predict future PMU data, the proposed model learns the
residual mapping and predicts the change (residual) in mea-
surements after the last input measurement instead of directly
predict the PMU data time-series. The final prediction is
obtained by adding the output of the neural network to the
last input measurements, as shown in the following equation:

yτ = Fforecast(x1,t,y1,τ−1) + xt, (1)

where yτ is the predicted PMU data at the time step of τ ,
Fforecast(x1,t,y1,τ−1) is the output from the decoder of the
LSTM network. The forecasting model Fforecast only needs to
learn the residual mapping between the yτ and xt.

2) Magnitude-Trend Decoupling
The multivariate time-series data stream from PMU is char-
acterized by noisy signals, which significantly lower the
mean directional accuracy (MDA) of its forecasting result.
An inaccurate trend in predicting future values can have far
more severe consequences than an erroneous magnitude, and
the ambient noise in PMU data can significantly reduce the

accuracy of trend predictions in forecasting models. To ad-
dress this issue, this paper proposes breaking down the fore-
casting problem into two simpler sub-problems: magnitude
forecasting and trend forecasting. This can be accomplished
by leveraging two distinct models, one dedicated to capturing
magnitude, and the other specifically designed to capture
trend. We decouple the magnitude and trend components of
the residual time-series data using the following equation:

yτ = Fmag(x1:t,y1:τ−1)× Ftre(x1,t,y1,τ−1) + xt, (2)

where Ftre(x1,t,y1,τ−1) predicts the future trend (i.e., trend
of the time-series data). Each forecasted value equals to +1
(increasing) or -1 (decreasing). Fmag(x1,t,y1,τ−1) predicts
the magnitude of the future PMU data point, i.e., a positive
value indicating the absolute value of the change in the
measurement.

In this study, we start from a Seq2Seq LSTM model with
an attention mechanism to forecast PMU data, subsequently
utilizing the model to impute missing values. This model is
used by two separate modules for trend and magnitude, and
the outputs from these modules are combined to generate the
final prediction. The architecture of the neural network will
be discussed in further detail in the following subsection.

B. NEURAL NETWORK ARCHITECTURE
The neural network architecture of the Seq2Seq LSTM
equipped with the attention mechanism is illustrated in Fig. 2.
Since the network design is based on the Seq2Seq structure,
it has no limit on the input and output data length.

This model consists of two key components: the encoder
and the decoder, and the decoder is equipped with an atten-
tion layer and prior knowledge matrix. Both the encoder and
the decoder have a bi-directional recurrent neural network
(RNN) structure. The attention mechanism with the prior
knowledge matrix in the decoder extracts a weighted feature
to model the temporal dependency between the input and
output time series. How the above two components extract
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FIGURE 2. Neural network architecture to predict missing PMU values.

and learn the temporal correlations in the time-series data is
discussed below.

1) Encoder
The encoder is built on an RNN, which can learn inherent
features in past time-series values to predict the future.
Given a time-series data, [xt−m+1,xt−m+2, ...,xt], where
xi ∈ Rn. An RNN generally defines a recurrent function,
R, and calculates the hidden state, ht ∈ Rm, for each time
step, t, as:

ht = R(ht−1, xt), (3)

where the function, R, depends on the type of RNN cell
(a loop-shaped neural network structure in hidden layers) is
used.

Backpropagation through time allows the hidden states to
capture temporal features during training, but it can suffer
from gradient vanishing or exploding over longer timescales,
which can significantly degrade the model performance. To
cope with this issue, the LSTM network was introduced as a
variant of the basic RNN. LSTM units consist of a memory
cell and three controlled gates, as described in [33]. There-
fore, we chose to use an LSTM network in our forecasting
model to effectively capture time dependencies and extract
features for each time step in the input sequence.

Additionally, the proposed model utilizes a bi-directional
LSTM network to capture temporal features at each time
step by incorporating both past time-series values, hft, and
future values, hbt. This allows for a more comprehensive
understanding of the temporal dynamics within the time-
series data set.

forward: hft = LSTM(xt, hft−1) (4)

backward: hbt = LSTM(xt, hbt+1) (5)

ht = [hft;hbt] (6)

As shown in (4) and (5), the forward and backward LSTMs
in the encoder network simultaneously process the time-

series data in opposite directions. The forward LSTM pro-
cesses data from t = 1 to T using a forward hidden layer,
while the backward LSTM processes data from t = T to
1 using a backward hidden layer. The final hidden state for
each time step, denoted as ht, is obtained by concatenating
the output of the forward and backward hidden layers at
time step t. The time-series data is fed to the encoder as the
input. The output is a time-series of hidden states ht that are
further processed in the decoder layer’s attention mechanism
to calculate the attention distribution for each time step in the
output time-series data.

2) Attention-based Decoder

The decoder neural network is also built based on a bi-
directional LSTM network. To prevent squashing all the
time-series data into a fixed-length vector (the last hidden
state from the encoder), [34] and [35] proposed the atten-
tion mechanism, which enables the forecasting model to
selectively focus on specific aspects of the input time-series
data. Because all the input hidden states are equally and
fully leveraged, the model’s performance is not affected by
the hidden states squashing. Thus, our proposed forecasting
model capitalizes on the attention mechanism to propagate
predominant features in the time-series data from the encoder
to the decoder. Moreover, a prior knowledge matrix is inte-
grated into the attention mechanism as fixed parameters to
sharpen the attention.

The calculation of the forecast value of each time step in
the decoder is based on the LSTM hidden state at the current
time step, dτ , all the hidden states of the input time-series
data, h1..t, the latest previous forecasting result, yτ−1, and a
pre-calculated prior knowledge matrix, P:

yτ = F (dτ , yτ−1, h1..t,P) (7)

Each element of the prior knowledge matrix Pi,j is calcu-
lated by the average Pearson correlation coefficient between
the measurements, xi and yj . The prior knowledge matrix
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directly captures the temporal correlations between various
time steps of the input and output time-series.

Pi,j = Averagex,y∈Training(Corr(xi,yj)) (8)

The attention mechanism is implemented by a two-layer
perceptron, followed by an LSTM network in the decoder.
For each encoder output hi, its attention score, l(dτ , hi), is
computed as:

l(dτ , hi) = Pτ,i × V T
a tanh(Wa[dτ ;hi]), (9)

where dτ refers to the decoder’s hidden state at time step τ ,
hi denotes the hidden state of the input time-series from the
encoder at time step i. V T

a and Wa are the weights of the
two-layer perceptron in the attention mechanism.

The attention weight, βτ , is calculated by applying the
softmax normalization for the attention scores l:

βτ (dτ , hi) = softmax(l(dτ , hi)) =
exp(l(dτ , hi))∑t
i=1 exp(l(dτ , hi))

(10)
The attention weight βτ (dτ , hi) represents the degree of

correlation between the τ -th output and the input at the time
of i. To synthesize the temporal features across all the input
time steps, the context vector, cτ is used. It is calculated as
the weighted sum of all encoder outputs as shown below:

cτ =

t∑
i=1

βτ (dτ , hi) · hi (11)

Each context vector at the time of τ , cτ , combines the
encoder’s hidden states at every time step. It should be noted
that the context vector contains the feature from all previous
time-series data.

Finally, the concatenation of the context vector cτ and the
hidden state dτ form the feature vector for the output series,
and a fully connected layer is used to get the forecast result
for time step τ . This is shown in (12).

yτ = W × [dτ ; cτ ] + b, (12)

where W and b are the weights and bias of the fully con-
nected layer.

IV. NUMERICAL STUDY
This section assesses the performance of the proposed fore-
casting model by comparing it to five forecasting-based
models and the matrix completion model. The prediction
accuracy of the forecasting-based models is evaluated using
two indicators: root mean square error (RMSE) and mean
absolute error (MAE). These indicators are chosen due to
their suitability for evaluating voltage and frequency behav-
iors during voltage and frequency events. The prediction ac-
curacy of the matrix completion model is evaluated using the
mean absolute percentage error (MAPE) when a significant
portion of PMU data is missing. The contribution of the
prior knowledge matrix is also analyzed by visualizing the
attention weights.

A. DATA SOURCE AND DATA PRE-PROCESSING
1) Data Source
The data for this study was collected from the PMUs located
in the Western Electric Coordination Council (WECC) over
a two-year period (2016-2017) at a sampling frequency of
30 Hz. The original data set consists of 42 PMUs, totaling
over 6 Terabytes. However, one PMU was excluded from the
analysis due to being mostly out of service, resulting in a final
sample of 41 PMUs.

In addition, historical operator logs from RTOs and ISOs
provided 958 power system event labels, which were divided
into voltage-related (caused by system faults at transformers,
lines, and buses) and frequency-related (generating unit trip)
events.

2) Data Pre-processing
The data cleaning process involves the removal of outliers
from the dataset, filling in missing data using the method
described in [25], calculating the real and reactive power, and
organizing the streaming PMU data into a three-dimensional
tensor. The three dimensions correspond to the timestamp,
PMU ID, and measurement channel. This process is per-
formed using a data pipeline implemented with a five-node
Apache Spark and Hadoop cluster, which allows for the
efficient handling of large-scale data. In Fig. 3, we present
examples of voltage-related and frequency-related events to
demonstrate the behavior of four distinct measurements taken
during the event after the data pre-processing. The start time
of the event is at 9 seconds. These event labels included the
timing and category/type of the event.

(a) Voltage related event (b) Frequency related event

FIGURE 3. PMU data for example frequency- and voltage-related events (with
forecast data range marked by the dotted area). Each curve on the plot
corresponds to data collected from a unique PMU, with the colors chosen to
provide clear differentiation between them.

6 VOLUME 4, 2016



3) Dataset and Case Study Setup
After cleaning the data, we pre-process it based on the event
types. During the model training process, we use different
forecasting lengths depending on the event type, as shown in
Fig. 4. This figure illustrates the period for data extraction of
each event in the dataset. The event period sequence that we
extracted starts one second before the event label time stamp
and continues for either two or eight seconds after the event
label time stamp, depending on the event type.

Input data

𝑥 , 𝑥 , … , 𝑥PMU data

Event
Voltage‐event (2s)

Pre‐event (1s)

State Steady‐state (static) Emergency‐state (dynamics)

Grid event
(disturbance)

Forecast
model Output (forecast) data

𝑥 , 𝑥 , … , 𝑥 𝑦 , 𝑦 ,…, 𝑦

Frequency‐event (8s)

FIGURE 4. Time-series PMU data to be trained and predicted.

The PMU data are extracted from all 958 labeled events.
60% of the events are selected as the training dataset, 20%
of the events are used as the validation dataset for the hyper-
parameter tuning, and the remaining 20% are to evaluate the
model performance.

The model parameters are learned with the training dataset,
while the early-stopping function is used to monitor the
loss on the validation dataset to avoid overfitting. RMSE is
adopted as the evaluation metric for the proposed model,
which is given by:

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2, (13)

where ŷ is the forecasted data, while y is the measured data.
The training process uses the Adam optimizer and the

learning rate is selected to be 0.001. A Linux server with 4
Nvidia RTX 2080 Ti GPU is used to train the proposed and
baseline machine learning models.

B. BASELINE METHODS
The present study investigates the performance of five
baseline forecasting models: linear regression, fully con-
nected neural network, convolutional neural network (CNN),
Seq2Seq LSTM model, and the Seq2Seq LSTM model with
Luong attention. The parameters for each model are provided
in Table 1, including the range of hyperparameters used in
training. All models are trained using the Adam optimizer
and the RMSE loss function on the same dataset. The spe-
cific characteristics and performance of each model will be
discussed in the subsequent subsections.

1) Linear Regression
The linear regression model assumes the output measure-
ments have a linear relationship with the input subsequence.

2) Fully Connected Neural Network
This model uses a multi-layer fully connected neural network
to model the relationship between the input and the output
subsequences. This neural network model consists of 3 layers
of fully connected neurons.

3) Convolutional Neural Network
This model uses CNN to perform the forecasting task. This
neural network model comprises five layers with a sliding
filter size of 5 × 5, and 64 filters for each internal layer.

4) Seq2Seq LSTM Model
This model uses the original Seq2Seq LSTM neural network
to conduct the forecasting task. Both the encoder and decoder
are two-layer Bi-LSTM models. The number of neurons for
every layer of the LSTM model is 128.

5) Attentional Seq2Seq LSTM Model
This model appends the Luong attention mechanism to the
above mentioned Seq2Seq LSTM model.

C. PERFORMANCE INDICATORS
Two evaluation metrics are used to compare the prediction
performance of the five baseline models and our proposed
forecasting model. RSME emphasizes large errors. On the
other hand, MAE equally treats the individual errors, which
means it has weaker weights for outliers compared to the
RMSE. Note that voltage events tend to contain abrupt
changes in the voltage signal, while frequency events gen-
erally illustrate gradual changes in the system frequency.

MAE =
1

n

n∑
j=1

|yj − ŷj |, (14)

where ŷ is the forecasted data, while y is the measured data.

D. PMU DATA FORECASTING ACCURACY
The performance metrics of various PMU data prediction
algorithms are presented in Table 2. The abbreviation “PKM"
represents the “prior knowledge matrix" while “MTD" stands
for “magnitude-trend decoupling."

As shown in Table 2, the Seq2Seq LSTM algorithm
demonstrates superior forecasting performance for all mea-
surement types (active power, reactive power, voltage, fre-
quency) compared to linear regression, fully connected neu-
ral networks, and CNN. This is likely due to the LSTM’s
ability to model temporal correlations in the PMU time-series
effectively. The incorporation of the attention mechanism in
the ATT-Seq2Seq-LSTM model leads to a reduction in the
forecasting error by enabling the model to better capture the
temporal dependencies between the input and output time-
series.

The integration of the prior knowledge matrix results in
a reduction of prediction error across all four measurement
types, particularly for real and reactive power. The applica-
tion of the magnitude and trend decoupling technique also en-
hances the expressive power of the forecasting model, which
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TABLE 1. Specifications of Baseline Forecasting-based Models

Linear
regression
(Linear)

Fully connected
neural network
(FC NN)

Convolutional
neural network
(CNN)

Seq2Seq LSTM
(Seq2Seq-LSTM)

Seq2Seq LSTM
with attention mechanism
(ATT-Seq2Seq-LSTM)

Optimizer Adam Adam Adam Adam Adam
Learning rate 0.001 0.001 0.001 0.001 0.001
Loss function RMSE RMSE RMSE RMSE RMSE

Hidden layer 0 3 (2-8) 5 (2-8) 2 (encoder) (1-4)
2 (decoder) (1-4)

2 (encoder) (1-4)
2 (decoder) (1-4)

Number of hidden neurons 0 128 (32, 64, 128) 64 (32, 64, 128) 128 (32, 64, 128) 128 (32, 64, 128)
Attention algorithm No No No No Yes (Luong attention mechanism)

The numbers enclosed in parentheses were used as candidates for hyperparameter tuning, which is the process of selecting the best set of hyperparameters
for each forecasting-based model.

TABLE 2. Prediction Errors for Baseline Models and Proposed Forecast Model

Model Measurement type Voltage Event Frequency Event
RMSE MAE RMSE MAE

Linear

Real Power (p.u.) 0.00962 0.00589 0.00698 0.00335
Reactive Power (p.u.) 0.0177 0.00970 0.00722 0.00399

Voltage (p.u.) 0.0044 0.0020 0.0013 0.00093
Frequency (Hz) 0.0023 0.0015 0.0028 0.0021

Fully-connected Neural Network (FC NN)

Real Power (p.u.) 0.00493 0.00295 0.00395 0.00246
Reactive Power (p.u.) 0.00432 0.00205 0.00246 0.00142

Voltage (p.u.) 0.0028 0.00093 0.00053 0.00033
Frequency (Hz) 0.0015 0.00095 0.0012 0.0009

Convolutional Neural Network (CNN)

Real Power (p.u.) 0.00471 0.00252 0.00430 0.00263
Reactive Power (p.u.) 0.00367 0.00181 0.00249 0.00143

Voltage (p.u.) 0.0026 0.00089 0.00044 0.00027
Frequency (Hz) 0.0012 0.00069 0.0011 0.00082

Seq2Seq LSTM

Real Power (p.u.) 0.00347 0.00187 0.00366 0.00231
Reactive Power (p.u.) 0.00340 0.00147 0.00151 0.00086

Voltage (p.u.) 0.0019 0.00067 0.00041 0.00025
Frequency (Hz) 0.0010 0.00059 0.00065 0.00045

ATT-Seq2Seq-LSTM

Real Power (p.u.) 0.00320 0.00173 0.00359 0.00229
Reactive Power (p.u.) 0.00333 0.00140 0.00148 0.00085

Voltage (p.u.) 0.0017 0.00062 0.00040 0.00024
Frequency (Hz) 0.00094 0.00052 0.00061 0.00042

ATT-Seq2Seq-LSTM-PKM

Real Power (p.u.) 0.00302 0.00168 0.00329 0.00211
Reactive Power (p.u.) 0.00304 0.00134 0.00143 0.00082

Voltage (p.u.) 0.0016 0.00058 0.00039 0.00022
Frequency (Hz) 0.00088 0.00051 0.00060 0.00041

ATT-Seq2Seq-LSTM-MTD

Real Power (p.u.) 0.00283 0.00159 0.00259 0.00165
Reactive Power (p.u.) 0.00286 0.00127 0.00141 0.00082

Voltage (p.u.) 0.0014 0.00054 0.00037 0.00021
Frequency (Hz) 0.00086 0.00049 0.00059 0.00039

ATT-Seq2Seq-LSTM-PKM-MTD
(Proposed Model)

Real Power (p.u.) 0.00275 0.00155 0.00247 0.00152
Reactive Power (p.u.) 0.00280 0.00122 0.00139 0.00081

Voltage (p.u.) 0.0014 0.00054 0.00036 0.00021
Frequency (Hz) 0.00083 0.00048 0.00059 0.00039

Base complex power for real power and reactive power is 1000 MVA.

led to significant improvements in PMU data forecasting
performance. In the following subsection, we will examine
the ways in which the proposed techniques contribute to the
success of the proposed forecasting model.

Note that the RMSE is larger than the MAE for most of
the measurement types in Table 2. This occurs when large
errors appear in the prediction results. This is mostly due
to the fact that PMU time-series include transient signals
with significant noise. As shown in the Table, our proposed
forecasting model significantly lowers the prediction error
in voltage signals during voltage events. During frequency
events, our proposed forecasting model significantly lowers

the active power prediction error. This is because voltage and
active power signals are the most predominant signals in the
voltage and frequency events respectively.

Fig. 5 shows that the MTD is the major contributor to
improving the forecasting model accuracy for voltage events.
On the other hand, not only the MTD but also PKM con-
tributes to improving the forecasting accuracy for frequency
events, especially the active power signals. Thus, both the
PKM and MTD effectively reduce the error of the proposed
forecasting model for both event types.
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FIGURE 5. Percentage reduction in prediction error by PKM and MTD from
ATT-Seq2Seq-LSTM.

TABLE 3. Prediction Error of Magnitude Component and Forecast Accuracy
of Trend Component

Voltage Events Magnitude
(RMSE)

Trend
(Accuracy)

Att-Seq2Seq-LSTM 0.00832 60.19%
Att-Seq2Seq-LSTM-MTD 0.00772 81.67%
Att-Seq2Seq-LSTM-PKM 0.00784 61.42%

Att-Seq2Seq-LSTM-PKM-MTD 0.00732 82.32%

Frequency Events Magnitude
(RMSE)

Trend
(Accuracy)

Att-Seq2Seq-LSTM 0.00578 70.20%
Att-Seq2Seq-LSTM-MTD 0.00473 82.59%
Att-Seq2Seq-LSTM-PKM 0.00534 71.59%

Att-Seq2Seq-LSTM-PKM-MTD 0.00443 83.66%

E. PREDICTION ERROR FOR THE MAGNITUDE
COMPONENT AND FORECASTING ACCURACY FOR
THE TREND COMPONENT
Table 3 shows the prediction error for the magnitude com-
ponent and the forecasting accuracy for the trend component
of the PMU data for the proposed and baseline methods. The
prediction error for the magnitude component is measured by
RMSE and the forecasting accuracy for the trend component
is quantified by the accuracy, i.e., up/down binary agreement
rate. The RMSE and accuracy reported in the table are the
average results across the four measurement types. As shown
in Table 3, the proposed decoupling technique reduces the
magnitude prediction error and increases the trend prediction
accuracy, which significantly contributes to the reduction in
overall forecasting error. It can also be observed that the
proposed forecasting model exhibits higher accuracy in pre-
dicting the trend for frequency-related events than voltage-
related events. This is due to the fact that the signals in the
frequency-related events are less noisy.

Although the prior knowledge matrix technique also im-
proved the accuracy of the trend prediction and reduced the
error of the magnitude prediction, this improvement is lim-
ited in comparison to the improvement achieved through the
use of the magnitude trend decoupling technique. Thus, using
two neural networks to separately predict the magnitude and
trend components of the PMU data is the key innovation to
effectively and accurately learn the dynamic behavior in the
power system.

F. VISUALIZATION OF ATTENTION WEIGHTS

FIGURE 6. Attention weights between different time steps of forecasted
subsequence and historical data (without prior knowledge matrix integration).

The attention weights between the input and output time-
series of the forecasting model at each time step are il-
lustrated in Fig. 6. These attention weights are calculated
without considering the prior knowledge matrix. The input
consists of the subsequence that starts at one second before
the event label, while the output corresponds to the forecasted
PMU data. Higher attention weights between the input and
output are indicated by blue colors, while weaker weights
are indicated by green colors. As shown in the figure, the
attention weights are much higher between the last few
time steps of the input time-series and the first few time
steps of the output time-series. In other words, the attention
mechanism focuses more on the final few input data points
when predicting future PMU data. Note that the Seq2Seq
LSTM model without the attention mechanism relies solely
on the final input time step’s hidden state of the encoder to
make predictions about the future PMU data by the decoder.
However, the information about the previous time steps of
the input sequence may not be fully captured by the final time
step’s hidden state, which leads to performance deterioration.

G. IMPACTS OF PRIOR KNOWLEDGE MATRIX ON
ATTENTION WEIGHTS

FIGURE 7. Prior knowledge matrix weights between forecasted PMU data
and input time-series.

The heat map for the prior knowledge matrix between the
input and output time-series are illustrated in Fig. 7. The
blue and green colors indicate a strong and weak correlation,
respectively. In general, stronger correlations can be observed
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between the final few time steps of the input time-series and
the first few time steps of the output time-series. This pattern
is quite similar to that shown in Fig. 6.

FIGURE 8. Attention weights between different time steps of forecasted
subsequence and historical data (with prior knowledge matrix integration).

The impacts of incorporating the prior knowledge matrix
on the attention weights are demonstrated in Fig. 8. Here the
attention weights are calculated by the model that integrates
the prior knowledge matrix with the attention mechanism. By
comparing Figs. 6 and 8, it is evident that the incorporation of
the prior knowledge matrix in the attention mechanism leads
to an increased focus on the final few time steps of the input
sequence for predicting the first few time steps of the output
time-series. The combination of the attention mechanism
and the prior knowledge matrix, therefore, highlights the
importance of the final few time steps in the input time-
series. The improved forecasting performance demonstrated
in Table 2 further supports the significant role of the prior
knowledge matrix in the attention mechanism.

H. MISSING PMU DATA REPLACEMENT
PERFORMANCE
This subsection compares the missing value replacement per-
formance of the proposed PMU data forecasting model and
a state-of-the-art matrix-completion algorithm, OLAP. The
experiments are conducted with missing data ratios ranging
from ratio from 10% to 90%.

1) Case Study Setup
For each event and PMU time-series pair, it is assumed that
the input data is complete and p% of the output time series’
first time step data are missing. The proposed and baseline
models both estimate missing values. The averaged mean
absolute percentage error (MAPE) for the estimated missing
data points in all testing events is used as the performance
metric.

2) Baseline Method
The state-of-the-art matrix completion-based method, OLAP
[26] is used as the baseline method for missing value replace-
ment. OLAP uses singular value decomposition to process
the PMU data matrix and identifies the best linear combina-
tion of left singular vectors to fill in the missing PMU data.
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FIGURE 9. Missing value replacement error with respect to percentage of
missing data.

3) Missing Value Replacement Performance Comparison
Fig. 9 shows the missing value replacement algorithms’
MAPE under different missing data percentages. The MAPE
is calculated by averaging over all event labels and four
measurement channels for voltage and frequency events. It
can be observed that when the percentage of missing value
is 30% or lower, OLAP achieves lower MAPE compared to
the proposed forecasting-based model. This is not surprising
because OLAP capitalizes on the other PMU data at the time
when some PMUs have missing data. However, when the
percentage of missing data is above 30%, our proposed model
significantly outperforms OLAP. The comparative advantage
is more pronounced when the missing data percentage is
higher. The reason why the MAPE of our proposed model
is nearly flat with the percentage of missing data is that the
forecasting-based model does not leverage the other PMUs’
measurements at the time step when PMUs have missing
values.

Finally, the proposed forecasting-based model can be uti-
lized to replace missing PMU values in the most severe
event that is when all PMUs are offline due to GPS satellite
malfunction. In this case, the baseline method, OLAP, won’t
be able to estimate any missing values.

V. CONCLUSION
This paper proposes a deep learning-based forecasting al-
gorithm to fill in missing PMU data during power system
events. The proposed deep learning model is trained using
PMU data from hundreds of real-world voltage-related and
frequency-related events. The proposed model is built on top
of a Seq2Seq LSTM model with attention mechanism. The
two innovative techniques, integrating the prior knowledge
matrix into the attention mechanism and decoupling the PMU
data into the magnitude and trend components, successfully
improve the prediction accuracy and reduce the forecasting
error.

The missing PMU data replacement performance of the
proposed and baseline deep learning and matrix completion-
based methods are evaluated using real-world PMU data
during system events in WECC. The testing results show that
our proposed model outperforms the baseline deep learning
models in terms of prediction accuracy. When the missing
value percentage is higher than 30%, our proposed model
achieves much lower missing data estimation error than the
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state-of-the-art matrix completion-based approach. Further
in-depth numerical study results quantify the impacts of
the two innovative techniques (prior knowledge matrix and
magnitude-trend decoupling) on the proposed forecasting
model’s accuracy. These two unique techniques helped re-
duce the RMSE of the proposed model by 10-20% compared
to the best baseline method.

In future work, it would be interesting to explore the use
of a hybrid forecasting model that combines the current
model with another method, such as the matrix completion
method, to better handle a mixture of voltage and frequency
events. Additionally, extending the scope of event types to
include power swing oscillation and converter-driven oscil-
lation would lead to a more comprehensive approach to
missing value replacement in the power system. It should
be noted that the grid topology is not disclosed, and only
PMU measurements are available for these case studies. If
grid topology is available, other advanced neural networks,
such as graph convolutional networks, can be promising to
improve the missing value imputation performance.

ACKNOWLEDGMENT
This material is based upon work supported by the Depart-
ment of Energy under Award Number DE-OE0000916.

REFERENCES
[1] A. Monti, C. Muscas, and F. Ponci, Phasor measurement units and wide

area monitoring systems. Academic Press, 2016.
[2] A. G. Phadke and T. Bi, “Phasor measurement units, WAMS, and their

applications in protection and control of power systems,” J. Mod. Power
Syst. Clean Energy, vol. 6, no. 4, pp. 619–629, Jul. 2018.

[3] J. Zhao, G. Zhang, K. Das, G. N. Korres, N. M. Manousakis, A. K. Sinha,
and Z. He, “Power system real-time monitoring by using PMU-based
robust state estimation method,” IEEE Trans. Smart Grid, vol. 7, no. 1,
pp. 300–309, Jan. 2016.

[4] F. Aminifar, M. Shahidehpour, M. Fotuhi-Firuzabad, and S. Kamalinia,
“Power system dynamic state estimation with synchronized phasor mea-
surements,” IEEE Trans. Instrum. Meas., vol. 63, no. 2, pp. 352–363, Feb.
2014.

[5] M. Alqudah, M. Pavlovski, T. Dokic, M. Kezunovic, Y. Hu, and
Z. Obradovic, “Fault detection utilizing convolution neural network on
timeseries synchrophasor data from phasor measurement units,” IEEE
Trans. Power Syst., vol. 37, no. 5, pp. 3434–3442, Sep. 2022.

[6] A. A. Hai, T. Dokic, M. Pavlovski, T. Mohamed, D. Saranovic,
M. Alqudah, M. Kezunovic, and Z. Obradovic, “Transfer learning for event
detection from PMU measurements with scarce labels,” IEEE Access,
vol. 9, pp. 127 420–127 432, Sep. 2021.

[7] J. Shi, B. Foggo, and N. Yu, “Power system event identification based on
deep neural network with information loading,” IEEE Trans. Power Syst.,
vol. 36, no. 6, pp. 5622–5632, Nov. 2021.

[8] M. Pavlovski, M. Alqudah, T. Dokic, A. A. Hai, M. Kezunovic, and
Z. Obradovic, “Hierarchical convolutional neural networks for event clas-
sification on PMU measurements,” IEEE Trans. Instrum. Meas., vol. 70,
pp. 1–13, Sep. 2021.

[9] Y. Yuan, Y. Guo, K. Dehghanpour, Z. Wang, and Y. Wang, “Learning-
based real-time event identification using rich real PMU data,” IEEE Trans.
Power Syst., vol. 36, no. 6, pp. 5044–5055, Nov. 2021.

[10] Y. Yuan, Z. Wang, and Y. Wang, “Learning latent interactions for event
classification via graph neural networks and PMU data,” IEEE Trans.
Power Syst., vol. 38, no. 1, pp. 617–629, Jan. 2023.

[11] M. Ghorbaniparvar, N. Zhou, X. Li, D. J. Trudnowski, and R. Xie, “A
forecasting-residual spectrum analysis method for distinguishing forced
and natural oscillations,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 493–
502, Jan. 2019.

[12] P. Gravois, “Synchrophasor based oscillation detection in ERCOT
detection in ERCOT operations,” in NASPI Work Group Meeting
and Vendor Show, Sep. 2017, Accessed: Dec. 30, 2022.
[Online]. Available: https://www.naspi.org/sites/default/files/2017-10/03_
ercot_gravois_synchrophasor_oscillation_detection_20170926.pdf

[13] J. Hariharan, “Odessa 2 - lessons learned,” in NERC-NASPI
IBR Workshop, Sep. 2022, Accessed: Dec. 30, 2022. [Online].
Available: https://www.naspi.org/sites/default/files/2022-10/20220928_
hariharan_ercot_NERC_NASPI_Odessa2_Presentation_FINAL.pdf

[14] K. Chen, N. Nayak, W. Schmus, and R. D. Quint, “Generator parameter
validation (GPV),” in NASPI Work Group Meeting and Vendor Show, Mar.
2015, Accessed: Dec. 30, 2022. [Online]. Available: https://www.naspi.
org/sites/default/files/2016-09/02-NASPI_0323_GPV_031115-F.pdf

[15] NASPI, “Diagnosing equipment health and mis-operations with PMU
data,” NASPI, technical report, May. 2015.

[16] B. Kasztenny and I. Stevens, “Monitoring ageing CCVTs practical solu-
tions with modern relays to avoid catastrophic failures,” in 2007 Power
Systems Conference: Advanced Metering, Protection, Control, Communi-
cation, and Distributed Resources, 2007, pp. 187–208.

[17] D. D. Shipp and T. J. Dionise, “Tutorial switching transients, transformer
failures and practical solutions,” Feb. 2016.

[18] B. A. Jaradeh, “Dominion energy’s pilot deployment and evaluation of
enhanced linear state estimator for grid resiliency,” in EPG Webinar, Apr.
2022, Accessed: Dec. 30, 2022. [Online]. Available: https://www.naspi.
org/sites/default/files/2022-04/D1S3_05_abu_20220412_1.pdf

[19] H. S. Saravia, A. Nath, B. A. Jaradeh, Y. Kong, Y. Lu, F. Tu, and P. Nieves,
“Linear state estimator deployment for real-time power system monitoring
in aep’s control room,” in CIGRE USNC’s Grid of the Future Conference,
Nov. 2022, Accessed: Dec. 30, 2022.

[20] N. Nayak, K. Martin, I. Singh, and W. Ju, “Real time applications
using linear state estimation technology (RTA/LSE),” in NASPI Work
Group Meeting and Vendor Show, Oct. 2019, Accessed: Dec. 30, 2022.
[Online]. Available: https://www.naspi.org/sites/default/files/2019-10/01_
FOA1492_RealTimeApplications__Nayak_20191030.pdf

[21] H. Hooshyar, “Impact of synchrophasor data quality on low-frequency
oscillation control,” in NASPI Work Group Virtual Meeting, Apr. 2021,
Accessed: Dec. 30, 2022. [Online]. Available: https://www.naspi.org/
sites/default/files/2021-04/D3S7_02_hossein_epri_naspi_20210415.pdf

[22] C. Huang, F. Li, D. Zhou, J. Guo, Z. Pan, Y. Liu, and Y. Liu, “Data quality
issues for synchrophasor applications part I: a review,” J. Mod. Power Syst.
Clean Energy, vol. 4, no. 3, pp. 342–352, Jul. 2016.

[23] N. T. Le and W. Benjapolakul, “A data imputation model in phasor mea-
surement units based on bagged averaging of multiple linear regression,”
IEEE Access, vol. 6, pp. 39 324–39 333, Jul. 2018.

[24] D. Osipov and J. H. Chow, “PMU missing data recovery using tensor
decomposition,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4554–4563,
Nov. 2020.

[25] B. Foggo and N. Yu, “Online PMU missing value replacement via event-
participation decomposition,” IEEE Trans. Power Syst., vol. 37, no. 1, pp.
488–496, Jan. 2022.

[26] P. Gao, M. Wang, S. G. Ghiocel, J. H. Chow, B. Fardanesh, and G. Ste-
fopoulos, “Missing data recovery by exploiting low-dimensionality in
power system synchrophasor measurements,” IEEE Trans. Power Syst.,
vol. 31, no. 2, pp. 1006–1013, Mar. 2016.

[27] S. Konstantinopoulos, G. M. De Mijolla, J. H. Chow, H. Lev-Ari, and
M. Wang, “Synchrophasor missing data recovery via data-driven filtering,”
IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4321–4330, Sep. 2020.

[28] G. M. De Mijolla, S. Konstantinopoulos, P. Gao, J. H. Chow, and M. Wang,
“An evaluation of algorithms for synchrophasor missing data recovery,” in
2018 PSCC, Jun. 2018, pp. 1–6.

[29] F. Gao, J. S. Thorp, A. Pal, and S. Gao, “Dynamic state prediction based
on auto-regressive (AR) model using PMU data,” in 2012 IEEE Power and
Energy Conference at Illinois, Feb. 2012, pp. 1–5.

[30] C. Huang, F. Li, L. Zhan, Y. Xu, Q. Hu, D. Zhou, and Y. Liu, “Data quality
issues for synchrophasor applications part II: problem formulation and
potential solutions,” J. Mod. Power Syst. Clean Energy, vol. 4, no. 3, pp.
353–361, Jul. 2016.

[31] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing
synchrophasor data conditioning and validation,” IEEE Trans. Power Syst.,
vol. 30, no. 3, pp. 1121–1130, May. 2015.

[32] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine

VOLUME 4, 2016 11



for big data processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, Oct.
2016. [Online]. Available: https://doi.org/10.1145/2934664

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, Dec. 1997.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.0473

[35] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015,
pp. 1412–1421. [Online]. Available: https://aclanthology.org/D15-1166

YUANBIN CHENG received a B.S. degree in
Computer Science from the University of Science
and Technology of China, Anhui, China, in 2016.
He received his M.S. degree in Computer Science
from the University of Southern California, CA,
USA, in 2018. He is now pursuing his Ph.D.
degree in Computer Science from the University
of California, Riverside. His research interests lie
in various deep learning algorithms for big data
analysis in dynamic systems.

BRANDON FOGGO (M’19) received a B.S. de-
gree in Electrical Engineering from the University
of California, Los Angeles, in 2015, and a Ph.D.
degree in Electrical and Computer Engineering
from the University of California, Riverside, in
2019. His research interests lie in statistical learn-
ing theory and information theory, particularly in
their merging, as well as applications to cyber
physical systems with an emphasis on power dis-
tribution systems.

KOJI YAMASHITA (M’04) received his B.S.
and M.S. degrees in Electrical Engineering from
Waseda University, Tokyo, Japan, in 1993 and
1995, respectively. He also received his Ph.D. de-
gree in Electrical and Computer Engineering from
Michigan Technological University, Houghton,
MI, USA, in 2020. He was a research scientist with
the power system division of CRIEPI, Japan, from
1995–2018. He is currently a postdoctoral scholar
at the University of California Riverside, serving

as an Associate Editor of IEEE Transactions on Power Systems. His research
interests are power system dynamic performance and its modeling with data-
driven techniques.

NANPENG YU (M’11-SM’16) received his B.S.
in Electrical Engineering from Tsinghua Univer-
sity, Beijing, China, in 2006. Dr. Yu also received
his M.S. and Ph.D. degrees in Electrical Engineer-
ing from Iowa State University, Ames, IA, USA,
in 2007 and 2010, respectively. He is currently an
Associate Professor in the Department of Electri-
cal and Computer Engineering at the University
of California, Riverside, CA, USA. His current re-
search interests include machine learning in smart

grid, electricity market design and optimization, and smart energy commu-
nities. Dr. Yu is an Associate Editor of IEEE Transactions on Smart Grid and
IEEE Power Engineering Letters.

12 VOLUME 4, 2016


