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Abstract—As the decarbonization of power systems accelerates,
there has been increasing interest in capacity expansion models
for their role in guiding this transition. Representative period
selection is an important component of capacity expansion
modeling, enabling computational tractability of optimization
while ensuring fidelity between the representative periods and the
full year. However, little attention has been devoted to selecting
representative periods longer than a single day. This prevents
the capacity expansion model from directly simulating interday
energy sharing, which is of key importance as energy generation
becomes more variable and storage more important. To this
end, we propose a novel method for selecting representative
periods of any length. The method is validated using a capacity
expansion model and production cost model based on California’s
decarbonization goals. We demonstrate that the representative
period length has a substantial impact in the results of the
capacity expansion investment plan.

Index Terms—Capacity expansion planning, representative
period selection, production cost modeling.

I. INTRODUCTION

A. Background & Problem Statement

Decarbonization of power grids has been identified as a crit-
ical component of the response to climate change, and many
governments have adopted laws to this end. For example, the
California State Legislature passed SB100 in 2018 and set the
target of 60% by 2030 and 100% by 2045 of retail electricity
sales from renewable sources [1]. This requires substantial
investment in green technology, especially in renewable gen-
eration and energy storage, with the value of investment and
operation over this timeline on the order of 100s of billions of
US dollars. As a result, effective planning of the investment
rollout is of critical importance for minimizing cost, ensuring
reliable operation, and meeting policy regulations.

Models which enable this planning are known as capacity
expansion models (CEMs), and are related to the task of
generation expansion planning. These models have been used
for decades, but have been subject to additional attention in
recent years for their role in guiding the transition to lower-
carbon, high-renewable grids.

CEMs seek to optimize generation and transmission invest-
ment strategies, and typically model two timescales: annual in-
vestment decisions and hourly operation decisions. As a result
of the hourly timescale, CEMs can quickly become intractable
if all 8760 hours in a year are modeled. To address this, CEMs

will typically utilize representative periods instead of all 8760
hours. The main goal in selecting these representative periods
is to maximize the similarity between the annual behavior
and the surrogate representation, while achieving a sufficient
reduction in the associated computational load.

B. Related Work & Paper Contribution

The problem of representative period selection in CEMs has
received much attention in the literature. The majority of the
work on this topic has been built around the framework of
time series clustering. The authors in [2] compare a variety of
clustering methods. The authors in [3] present a comparison of
clustering and downsampling approaches. In [4], a clustering
method is proposed which requires that each cluster consist
of a contiguous set of days, while a downsampling-based ap-
proach is proposed in [5]. These clustering-based approaches
all share the common drawback that they are only suitable
for the selection of representative days, and not periods of
multiple days in length, as will be discussed in detail later.

In addition, several works have focused on modeling the
full year contiguously to allow for the tracking of interday and
long-term energy storage by reducing the modeling frequency
[6], [7]. The key drawback to these works is that they lose
the sequentiality of hours, and thus cannot model important
inter-hour details, such as ramping in power plants.

The references cited above primarily concentrate on the
selection of representative days and offer general assertions
regarding the algorithm’s ability to choose periods of varying
lengths, such as a representative day or week. However,
let us consider the case where the desired period is of an
intermediate length, such as 3 days. The time series clustering
framework upon which the majority of representative period
selection algorithms are built, requires the full time series to
be divided into subsequences. Clustering these subsequences
becomes highly dependent on the starting point. In particular,
the load exhibits significant differences in both shape and
magnitude between weekdays and weekends. For example, the
Euclidean distance of a Friday-Saturday-Sunday subsequence
to a Saturday-Sunday-Monday subsequence would likely be
large because the loads of Friday would be compared to
Saturday and the loads of Sunday would be compared to
Monday. On the other hand, clustering of overlapping sub-
sequences, obtained by sliding a window across the full time



series with a stride shorter than the subsequence length, has
been established to return essentially random results [8]. Even
in the case of representative weeks, there are considerable
drawbacks. Generally speaking, capacity expansion problems
tend to reduce the annual temporal coverage to roughly 10% or
less. In the case of days, this permits 37 days, but in the case
of weeks, this permits only 5 weeks. Intuitively, one would
expect that representing a full year is more difficult given 5
choices than 37 choices.

Considering the limitations of existing clustering methods,
along with the need to capture interday variability in CEMs
subject to high levels of energy storage and renewables pene-
tration, the selection of representative periods longer than one
day becomes imperative. Indeed, enabling interday sharing
of energy through storage modeling is a crucial, yet often
ignored, aspect that would become particularly valuable during
days of low generation from renewable resources.

While the selection of a representative period length is
fundamentally an experimental design decision, there exists
a noticeable gap in research when it comes to effectively
choosing a period longer than a day but shorter than a week. To
bridge this knowledge gap, we introduce a novel snippet algo-
rithm specifically designed for selecting representative periods
that extend beyond a single day. By comparing subsequences
instead of full sequences, the proposed snippet algorithm is
able to select representative periods of arbitrary length from
complex datasets. The proposed algorithm draws significant
inspiration from [9]; however, we have made several tailored
adjustments to accommodate the unique domain to which our
proposed algorithm is applied.

The remainder of this paper is structured as follows. Section
II provides an overview of the original time series snippets
algorithm, its differences from the proposed algorithm, and the
proposed algorithm itself. Section III discusses the numerical
study setup and results. Section IV presents the conclusions.

II. TECHNICAL METHOD

A. Overview of time series snippets

The discussion of time series snippets below provides a
concise overview of the algorithm that served as the inspiration
for the proposed method in Section II-B. The time series
snippets algorithm is built on top of the matrix profile distance
(MPdist) [10] measure, which is in turn built on top of the
matrix profile [11]. MPdist compares two-time series and
considers them to be similar if they have similar subsequences.
At its most basic level, the distance is the j-th smallest
Euclidean distance between subsequences. More specifically,
the goal of time series snippets is to select, from a time series
T with length t, subsequences of length s that best generalize
the full-time series. First, the full-time series is separated into
non-overlapping subsequences Si with i ∈ [0, t/s − 1]. Each
of these subsequences then has an MPdist profile MPdisti
compared to the full-time series. If each MPdisti were
plotted, the goal would be to select the k profiles that minimize
the area under the curve of the combined profiles, as shown in
Fig. 1. To select these representative subsequences, a greedy

algorithm is proposed, choosing the subsequence that gives the
greatest reduction in the cumulative distance in each iteration.
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Fig. 1. Visualization of distance profiles and minimization of area under the
curve of selected profiles.

The key contribution of these matrix profile-related methods
is that they scale well to extremely long time series. The
problem of representative period selection for power system
planning typically considers one year of data at hourly fre-
quency, for a time series of length 8760, which is extremely
short in that context. Further, we don’t need to calculate the
distance measure for every subsequence, as we can exploit the
known daily periodicity of our time series. For this reason,
we can calculate a distance measure similar to the MPdist
without relying on algorithms related to the matrix profile.
This also enables us to utilize overlapping subsequences as Si.
Finally, the problem size allows us to select the representative
snippets through convex optimization rather than relying on a
greedy algorithm.

B. Proposed Method

Let T = {T [0], . . . T [h], . . . , T [t− 1]} represent the yearly
multivariate time series of length t and T [h] be the tuple
of measurements at hour h ∈ [0, t − 1]. This tuple typically
encompasses load, solar generation, and wind generation in-
formation; however, the proposed method remains agnostic to
the input features, providing adaptability in the analysis. Let
also S = {S0, . . . Sj , . . . Sm−1} be the set of subsequences,
and u the stride of the window that generates subsequences of
length s. The subsequence Sj is then defined as:

Sj = T [j · u : j · u+ s] (1)

There will be m = t−s
u + 1 total subsequences, thus j ∈

[0,m − 1]. These will be the candidate subsequences used
for selecting representative periods. Similarly, we can define
non-overlapping subsequences of T , which we will refer to
as segments. There will be n = t

u such segments, thus i ∈
[0, n− 1]. The segment Ti is then defined as:

Ti = T [i · u : (i+ 1) · u] (2)

A visual representation of the definitions can be seen in Fig. 2.
For clarity, i will be reserved to index the time series segments
Ti and j to index the subsequences Sj .

Inspired by the MPdist, let D be a matrix of distances with
shape n×m. For our case, we will assume u and s are chosen
such that n, m, and s/u are integers. We also have domain
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Fig. 2. Visualization of an example time series T and subsequences Sj with
u = 2, s = 3.

knowledge of periodicity. Each of the features, especially load
and solar generation, have strong 24-hour cycles. It is unlikely
that an afternoon subsequence from one day would be similar
to a nighttime subsequence from another day. Further, this is
physically meaningless in the context of capacity expansion.
For this reason, whereas the MPdist compares subsequences
for every timestep, we apply stride u = 24 in calculating
the distances. In essence, this compares each day in the
subsequence to each day in the full time series, and assigns a
distance correspondingly.

Di,j = min
x

||Sj [x · u : (x+ 1) · u]− Ti||, x ∈
[
0,

s

u

)
(3)

The goal is then to find a subset of those candidate days
which best captures the patterns for the year as a whole. This
goal is the same as the one visualized in Fig. 1. Time series
snippets were originally proposed with a greedy algorithm
that iteratively selects the subsequence which minimizes the
cumulative sum of distances to the full time series, necessitated
by the long time series the algorithm was designed for. Be-
cause our time series is rather short, we can instead formulate
this problem as a mixed integer linear program and find the
solution using any suitable optimization solver.

min
α

n−1∑
i=0

disti (4)

s.t.

m−1∑
j=0

αj = k

disti =

m−1∑
j=0

mdi,j · Di,j , ∀i ∈ [0, n)

m−1∑
j=0

mdi,j = 1, ∀i ∈ [0, n)

mdi,j ≤ αj , ∀i ∈ [0, n), ∀j ∈ [0,m)

dist ∈ Rn, md ∈ [0, 1]n×m, α ∈ [0, 1]m,

where k is the desired number of representative periods; αj is a
binary indicator selecting subsequence Sj as a representative
period; disti is the minimum distance between the selected

representative periods to Ti; and mdi,j is a binary indicator
signifying that subsequence Sj has the smallest distance to day
Ti. Within CEM, representative periods are typically weighted
by the amount of the year that they account for. The weights
associated with each representative period are a function of
mdi,j , and can be written then as:

wj =

n−1∑
i=0

mdi,j/(s/u), (5)

where s/u ensures the weights sum to 365.

III. EXPERIMENTAL VALIDATION

A. Experimental Setup

To the author’s knowledge, no paper has made a dedicated
attempt to address the sampling of intermediate-length repre-
sentative periods in capacity expansion planning. This absence
poses a challenge when comparing the proposed method with
widely used state-of-the-art approaches. We will compare the
performance of the proposed algorithm to a popular method
for selecting representative days, and show that our algorithm
is at least comparable with the state-of-the-art for this task.
The proposed method will also be used to compare single-day
planning to multi-day planning. The goal of this comparison
is to show the value in simulating representative periods
longer than one day, particularly in sizing energy storage. Our
goal is not necessarily to show the optimality of a particular
representative period length, but rather to demonstrate the
differences between period lengths on investment plans and
operational cost.

The following general experimental design will be used to
validate the proposed method. First, the representative days
are selected and used within the CEM. Then, the investment
decisions are fixed, and the model is solved again as a
production cost model. The production cost model (PCM) is
ran for the full year in two-week stages, and results from
this will be referred to as fullspace results. The choice of
two weeks is somewhat arbitrary, with the key being that
this length is considerably longer than each of the candidate
representative period lengths to avoid giving bias towards any
particular length.

B. Simulation Models

The PCM and CEM used are both zonal models of the West-
ern Interconnection, primarily focused on California. Both
utilize a MILP adaptation of the formulation and data of E3’s
RESOLVE decarbonization model [12]. Further discussion of
the decarbonization model including full formulations of the
objective and constraints are available in [13]. The principle
goal of both models is minimizing the cost of serving load.
The PCM focuses on operational decisions, including the
scheduling of power plants, to minimize operating costs while
satisfying operating and reliability constraints (6). Operating
constraints maintain safe resource limits (e.g., power plant



capacities), while reliability constraints guarantee zonal power
balance and ancillary services for secure power supply.

min Cgen

s.t. Operating constraints
Reliability constraints

(6)

The CEM essentially adds an additional level to the PCM by
allowing investment in additional generation capacity. It solves
operational and investment decisions to minimize the total cost
of generation Cgen, maintenance Cmaint and investment Cinv

(7). Investment decisions include both the addition of new
resource capacity and retirement of existing gas generators.
Policy constraints are integral to a decarbonization model, and
include emissions limits and renewable portfolio standards.

min Cinv + Cmaint + Cgen

s.t. Policy constraints
Operation constraints
Reliability constraints

(7)

C. Results and Discussions

First, we compare our method to a popular approach for
representative day selection: k-means clustering using load,
wind, and solar profiles with medoid cluster center repre-
sentation used in the CEM. We use our proposed algorithm
with subsequence length s = 24 to select 21 representative
days. Our algorithm has a total cost (investment, maintenance,
fullspace operations) of 14.560 billion US dollars as compared
to 14.611 billion US dollars. [2] compared many clustering
techniques for power system planning, and established that
there are not clear patterns on which technique is best, and
many have comparable performance. With this in mind, we can
suggest that even for representative day selection, our proposed
method is at least comparable with one of the most commonly
used representative day selection approaches.

With the validity of the proposed method established, we
now seek to defend the motivation behind selection of longer
representative periods. This will be explored via investment,
fullspace operation cost, emissions, and the investment port-
folio, considering representative periods of 1 to 5 days, i.e.
with subsequence length s ∈ [24, 48, 72, 96, 120]. In each case,
periods are adjusted to model a total of 35 or 36 days, nearly
10% of the annual days.

Fullspace emissions are shown in Fig. 3. None of the
scenarios meet fullspace emissions limits. The primary driver
of emissions is investment in renewable generation and energy
storage. Once these technologies are purchased, their use
incurs no additional operational costs in the unit commitment
model. However, the PCM is myopic in terms of emissions,
and may take actions which lead to lower costs but higher
emissions, such as export generation from thermal units in
CAISO. As the fullspace model is run in discontinuous seg-
ments for reasons of computational tractability, it is impossible
to effectively enforce emissions limits. It is difficult to say
which, if any, of these fleets would be able to satisfy the
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Fig. 3. Fullspace emissions

emissions limits. Still, it is notable that 3-day representative
periods present the lowest emissions, and longer, and thus
fewer, periods have substantially higher emissions. This sug-
gests that by modeling an intermediate-length period, interday
energy storage can be leveraged to lower emissions. However,
as the length of period grows, the number of periods must
shrink. Without a sufficient number of periods, it is difficult to
select periods which represent the annual behavior sufficiently
well. This is illustrated by the higher emissions in the 4 and
5-day cases, which sample 9 and 7 periods respectively.
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Fig. 4. Impact of representative period length on duration and capacity of
installed energy storage.

The duration of installed storage, and installed power and
energy capacity of storage as a function of representative
period length for 2030 and 2045 are shown in Fig. 4. With
regards to storage duration, the key takeaway is that increasing



the length of representative period allows for utilization of
storage for interday energy sharing, and the duration increases
for lengths between 1 and 3 days. However, the tradeoff
between number and length of representative seems to impact
the ability of the surrogate days to effectively represent the
full year, leading to less predictable effects with lengths over 3
days. With regards to the power and energy capacity of storage,
a similar pattern is evident. Between lengths of 1 and 3 days,
the installed capacities generally increase, and then begin to
decrease again. This result is in line with the emissions result.

Fig. 5 shows the cost by year for each scenario. As one
would expect from the emissions violations visualization, d =
4 and d = 5 have the lowest overall cost due to less build of
renewable technologies. Most notable is that the d = 3 result
is very close to the d = 1 result despite larger investment. This
suggests that by representing longer periods, it is better able to
capture the fullspace value of interday energy sharing. Thus,
the cost of additional investment is offset by lower operating
costs. Specifically, the total costs for 2030 are 1.1% higher but
have 7.1% lower emissions.
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Fig. 5. Investment and operation costs of differing representative periods

Fig. 6 shows an elbow plot of the objective function of (4).
Intuitively, for a given number of total modeled days k×s/u,
the objective is best for more, shorter representative periods.
The gap between the lines is larger at the lower total modeled
days and begins to converge at higher. This characteristic
explains why, for a fixed total modeled days, the representation
degrades with higher period length.

IV. CONCLUSION

In this paper, we proposed a novel algorithm for selecting
representative periods. The algorithm is particularly directed
towards selecting periods longer than a single day, and is well
suited for planning in systems with high penetration of variable
renewable energy and reliance on energy storage. The method
chooses representative days which minimize a distance mea-
sure to the timeseries of the full year. The proposed method
was validated on a CEM based on California’s decarbonization
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Fig. 6. Elbow plot of objective function (4) at different representative period
lengths.

targets. The proposed method is competitive with the state-of-
the-art for representative day selection, and we demonstrate the
impact of representative period length on investment strategy.
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