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Abstract—With the growing penetration of electric vehicles
(EVs) in power distribution networks, electric utilities are facing
many challenges. For example, the growing EV charging load
may cause degradation in voltage quality, higher network losses,
and overloading of equipment. The distribution grid infrastruc-
ture needs to be upgraded to handle these problems. In this study,
we develop an integrated data-driven planning framework for
electric utilities to predict EV adoption and analyze their impacts
on distribution feeders. This planning framework consists of
two modules. In the first module, we design a generalized Bass
diffusion model (GBM), which utilizes historical adoption data,
EV availability, incentives, cost, and demographic information to
predict EV adoption at the zip code or feeder level. Subsequently,
in the second module, we combine the EV adoption prediction
and the representative EV charging load profiles to analyze the
impacts of EVs on distribution feeders such as voltage violations
and equipment overloading. The proposed solution framework
was tested in a case study in Maryland, U.S. using real-world
data and distribution circuit models. The results feature accurate
predictions of EV adoption and reveal when, where, and how
severe the voltage violations and overloading issues will be with
the growing EV penetration. The proposed framework serves
as a valuable tool for system planners to determine distribution
system upgrade plans.

Index Terms—Electric vehicle, transport electrification, EV
adoption prediction, diffusion models, EV impact analysis.

I. INTRODUCTION

The penetration of EVs in the U.S. has been surging.
Alongside this fast adoption, the EV charging network has
been expanding rapidly as well [1], [2]. In the State of
Maryland, Baltimore Gas and Electric has the fastest growing
EV charging network, with 250 existing charging stations
and plans to install another 250 by 2025. Meanwhile, Pepco
Holdings, another prominent local utility, is on track to operate
350 chargers across Maryland by the third quarter of 2024.

However, electric utilities are facing difficulties in accom-
modating the growing EV load. For example, during peak EV
charging times, the power distribution system may experience
deteriorated voltage quality, higher network losses, and over-
loaded transformers, leading to reliability issues [3], [4]. The
grid infrastructure may need to be upgraded to handle the

increasing load from EVs. However, upgrading the distribution
system is a time-consuming and expensive process [5]. These
challenges underscore the need for effective planning tools to
address the impacts of EV integration on power distribution
systems.

For electric utilities, a pivotal task in preparing for the surge
of EVs is accurately forecasting their adoption within their
service territories, a subject extensively explored in existing lit-
erature [6], [7]. The adoption rate of EVs is influenced by mul-
tiple factors such as vehicle cost, fuel prices, the availability of
charging infrastructure, local demographics, and government
incentives. To enhance prediction accuracy, several advanced
modeling techniques have been developed. The discrete choice
model [8], [9], for instance, evaluates individual consumer
decisions, taking into account their preferences and the varying
attributes of available options. The agent-based model [10], on
the other hand, simulates individual agent interactions to gauge
their collective impact on the system. Additionally, the Bass
diffusion model (BM), a prevalent tool for forecasting new
product adoption, analyzes the adoption trajectory based on
previous adopters and the potential market size [11], [12]. The
generalized Bass diffusion model (GBM) further enhances the
traditional Bass framework by integrating external influences
such as model availability, costs, and incentives, thereby
providing a more refined and accurate depiction of adoption
trends [13], [14]. However, it is worth noting that despite the
advancements in modeling techniques, there is a scarcity of
studies that handle EV predictions at the feeder level — a
granularity that is critical for utilities to develop actionable
strategies for feeder upgrades.

Once the EV adoption prediction is performed, the focus
shifts to understanding its impacts on power distribution
systems, especially on each specific feeder. The extent of these
impacts depends on factors such as the number of EVs, their
charging patterns, and the existing distribution infrastructure’s
capacity. An obvious challenge is the risk of overloading dis-
tribution transformers, especially during peak charging periods



[15]. This scenario could also lead to increased losses, reduced
efficiency [16], and necessitate expensive equipment upgrades
or replacements [17]. Uncoordinated EV charging further risks
voltage instability [18] and power quality issues [19], affecting
both EV owners and other consumers on the distribution
network. Addressing these issues necessitates a comprehensive
analysis at the feeder level. This includes evaluating each
feeder’s unique characteristics and constraints while factoring
in the anticipated EV charging patterns. Such an analysis
will enable utilities to pinpoint potential bottlenecks, and then
facilitate necessary infrastructure enhancements [3] and the
implementation of intelligent demand response programs [4].

In this paper, we propose a solution that can provide the
utilities with an integrated, data-driven planning framework
for predicting EV adoption and analyzing their impacts on
the distribution network at the feeder level. This framework
consists of two modules. In the first module, we design a
GBM, which utilizes historical adoption data, EV availabil-
ity, incentives, cost, and demographic information to predict
EV adoption at the zip code or feeder level. Then, in the
second module, we combine the outputs of the EV adoption
and the representative EV charging load profiles to analyze
impacts such as voltage violations and equipment overloading
on distribution feeders using power flow simulations. The
proposed solution framework is validated using a case study
in Maryland, U.S. using real-world data and circuit models.
The results showed that the proposed solution has enhanced
prediction accuracy and can reveal when, where, and how
severe the voltage violations and overloading issues will be
with the growing EV penetration. The proposed approach can
be a helpful tool for system planners to design the circuit
upgrades.

The rest of the paper is summarized as follows. Section II
explains the overall framework and data preparation. Section
III elaborates the technical details of the two modules in the
solution framework. Section IV demonstrates the case study
results from Maryland. Section V states the conclusion.

II. OVERVIEW OF THE SOLUTION FRAMEWORK AND DATA
PREPARATION

A. Overview of the Solution Framework

Our proposed solution framework consists of two modules,
as illustrated in Figure 1. Module 1 predicts EV adoption at the
state, county, zip code, and feeder levels by utilizing historical
adoption data, EV incentives, and demographic information.
Module 2 uses the outputs of module 1 (the EV adoption) and
real-world charging load profiles to analyze the impacts on
distribution feeders.

B. Data Summary and Preparation

The datasets used in this work are summarized in Table I,
by the module they are applied to. The details of the datasets,
their sources, and how they were prepared are explained as
follows.

Module 1: Zip Code / Feeder Level 
EV Adoption Prediction

Module 2: Analyze Impacts of EV 
Charging on Power Distribution Grids

EV Charging 
Profiles

Fig. 1: The proposed framework for EV penetration prediction
and impact analysis.

TABLE I: Summary of the Dataset

Data Type

Module 1

Historical EV adoptions.

EV availability.

Average EV price.

Average EV incentive from federal govern-
ment.

Average Maryland State EV incentive.

Demographic data of counties and zip codes
in Maryland.

Module 2

EV charging profiles.

Distribution circuit model.

Distribution circuit demographic data.

1) Historical EV Adoptions: The historical EV adoption
data contain the cumulative EV registration numbers in Mary-
land, U.S., and each of its counties. These data were collected
from two sources. The yearly data from 2011 to 2020 are
collected from Exelon Corporation and the monthly data from
July 2020 to April 2023 are collected from Maryland’s open
data portal [20].

2) EV Availability: The EV availability is the number of
available EVs in the market for sale. We use the monthly
EV sales number in the U.S. from January 2011 to April
2023 to estimate EV availability. These data are collected from
Argonne National Laboratory [21].

3) Average EV Price: Given the extensive duration of this
study, we collected the average EV prices in the U.S. from two
resources. The monthly average EV prices from July 2014 to
April 2023 are collected from Kelly Blue Book press releases
[22]. The yearly price data are calculated by using the data
from the International Energy Agency (IEA) [23].

4) Average U.S. Federal EV Incentive: We prepared the
average U.S. federal EV incentive data by year from 2011
to 2019, and by month from January 2020 to April 2023.
The U.S. federal EV incentive program was initiated in 2009,
offering a $7,500 tax credit for each EV purchased. On the
other hand, each EV manufacturer had a cap of 200,000
EVs to receive this credit and the incentive would gradually
decrease to zero for this manufacturer after reaching the cap.



According to this guideline, the EVs from Tesla and General
Motors stopped receiving the federal incentive in December
2019 and March 2020, respectively. In August 2022, the U.S.
government renewed the incentive program and the cap has
been removed since then. In this work, we used the EV
sales and qualified incentive values of each manufacturer to
calculate the weighted average incentive values. The EV sales
data by manufacturer were collected through [24].

5) Average Maryland State EV Incentive: Starting from
2010, the Maryland State provides EV incentives in terms
of tax credits. The incentive value varies each year due to
changes in policies and funding caps. We estimated the yearly
and monthly average state incentive by dividing the funding
cap by the number of EV sales in Maryland. The funding cap
can be found in Maryland government bills such as [25].

6) Demographic Data at County and Zip Code Levels
in Maryland: For this study, we incorporated demographic
information, specifically the population numbers at both the
county and zip code levels in Maryland. These data were
collected from the Maryland census data portal [26].

7) EV Charging Profiles: The EV charging profiles consist
of the hourly EV charging load across various types of charg-
ers in Maryland. These data were provided by Exelon. In total,
there are 4,046 individual chargers, operated by seven different
service providers. Depending on the chargers’ locations, they
are categorized as residential, multifamily, and public chargers.

8) Distribution Circuit Model: The distribution circuit
models featured in this study represent distribution circuits in
Maryland, supplied by Exelon. Each model is a complete de-
scription of the electric circuit, including the circuit topology,
parameters of circuit elements/equipment, and load profiles
of electricity customers, which enable us to run power flow
analysis.

9) Distribution Circuit Demographic Data: To enhance
the precision of EV charging simulations at the distribution
circuit level, we gathered additional data on the corresponding
geographic location, including population number and the
customer type (residential, commercial, and mixed-use) data
were collected from Exelon.

III. METHODOLOGY

A. Methodology for EV Adoption Prediction (Module 1)

In module 1, to predict the EV adoption numbers by year
and month, we designed a generalized Bass model (GBM) [27]
by incorporating both the EV availability data and EV cost data
into the prediction model. GBM has been successfully used
to perform prediction for other types of distributed energy
resources such as rooftop solar photovoltaic systems [28].
GBM was developed on top of the basic Bass diffusion model
(BM), which is described by (1).

f(t)

1− F (t)
= p+ qF (t) (1)

Here F (t) is the cumulative adoption function. F (t) → 1 as
t → ∞. f(t) = dF (t)

dt is the adoption rate. The left-hand

side of the function describes the conditional adoption rate
at time t, and it is controlled by two factors: p and q. p is
the innovation factor, describing innovative adopters who are
willing to adopt the product themselves, and q is the imitation
factor, describing the adopters who follow other adopters’ use
of the product. Both p and q are positive [29]. In this model,
EV adoption is modeled as a function of time t and F (t) has
a closed form solution as in (2):

F (t) =
1− e−(p+q)t

1 + q
pe

−(p+q)t
(2)

The model of GBM can be described by (3)

f(t)

1− F (t)
= [p+ qF (t)]x(t) (3)

Here, x(t) is a variable at time t to represent the market
influential factors. F (t) has a closed form solution as in (4),
in which X(t) =

∫ t

0
x(τ)dτ .

F (t) =
1− e−(p+q)X(t)

1 + q
pe

−(p+q)X(t)
(4)

In the proposed approach, we introduce two influential
factors ϕavail and ϕcost. ϕavail represents the influential factor of
EV availability and ϕcost represents the cost of purchasing an
EV. Let βavail and βcost be the corresponding coefficients. Then
the aggregated market influential factor x(t) is defined by (5).
In this proposed model, EV adoption is not only determined
by time but also the EV availability and cost.

x(t) = 1 + βavailϕavail(t) + βcostϕcost(t) (5)

ϕavail(t) is calculated by (6). Here Sl(t) is the number of
available EVs in the U.S. market at time t, which is estimated
following the approach described in Section II-B2.

ϕavail(t) = ln
Sl(t)

Sl(0)
(6)

Similarly, ϕcost(t) is calculated by (7). Here Cstotal(t) =
Csprice(t) − Incfed(t) − Incstate(t) is the average net cost of
purchasing an EV at time t. Csprice(t) is the average EV price
described in Section II-B3. Incfed(t) is the federal incentive
calculated in Section II-B4. Incstate(t) is the Maryland State
incentive calculated in Section II-B5.

ϕcost(t) = ln
Cstotal(t)

Cstotal(0)
(7)

Both BM and GBM models are trained by minimizing the
error between the estimated EV adoptions and the actual EV
adoptions in each time interval, as shown in (8). Here m is
the eventual adoption number, S(ti) is the actual EV adoption
number at time ti. In BM, the parameters of p and q will
be estimated; in our proposed GBM model, p, q, βavail, and
βcost will be estimated. We use the number of existing light-
duty vehicles in the corresponding area as the value for m.



The parameters are estimated using the nonlinear least squares
(NLS) method.

min

N∑
i=1

{m[F (ti)− F (ti−1)]− [S(ti)− S(ti−1)]}2 (8)

The proposed approach is designed to perform EV adop-
tion predictions in four levels: Maryland State, county, zip
code, and feeder levels. To perform Maryland State-level and
county-level predictions, we used the historical EV adoption
data by the state and its counties as described in Section
II-B1. To perform zip code-level predictions, we first predict
the adoptions of the county that a zip code belongs to, then
we estimate the zip code’s adoption through multiplying the
county adoption by the ratio of the zip code’s population to the
county’s population. The feeder-level prediction is calculated
in a similar approach as zip code-level prediction.

B. Methodology for EV Impacts Analysis (Module 2)

In module 2, we analyze the impacts of charging load of the
predicted future EV adoptions by using power flow analysis.
This is performed in three steps.

1) Step 1: Determine the number of EVs to Analyze: The
number of EVs to analyze depends on the predicted number
of EV adoptions for a distribution feeder using the approach
in Module 1. For example, to analyze the circuit for the next
5 years or 10 years, we use the corresponding predicted EV
adoptions in the next 5 or 10 years.

2) Step 2: Determine the Load Profile: The load profile
contains two components: the existing historical load profile
of a feeder in year x, and the added EV charging load profile.
The historical load profile is constructed by aggregating the
actual load profiles of each user in a feeder as recorded by
smart meters, and it represents the baseline load in the year
x. To model the EV charging profile, we first calculate the
number of added EVs Fadd compared with year x. This is
calculated by Fadd = Fpred − Fyear x, in which Fpred is the
predicted future EV adoptions of the feeder determined in
Step 1 and Fyear x is the actual historical EV adoptions of the
feeder in year x. Second, we assign each added EV randomly
to a distribution transformer in the distribution feeder. Third,
we assign each EV a real-world charging profile, which is
randomly selected from the pool of actual representative EV
charging profiles (see Section II-B7), ensuring that the selected
profile corresponds to the transformer type that the EV belongs
to.

3) Step 3: Power Flow Analysis and Result Collection: In
this step, we perform power flow analysis using the feeder’s
circuit model and the load profiles prepared in Step 2. The
voltage level of the circuit and the load level of each distribu-
tion transformer are collected for the EV impacts analysis.

IV. CASE STUDY

In this section, we will demonstrate the case study results
using the proposed two-module approach and the real-world
data and circuit models for the State of Maryland.

A. Case Study of Module 1: Prediction of EV Adoptions

In this case study, we tested four different EV prediction
models: BM as a baseline, GBM with EV availability only,
GBM with EV cost only, and the proposed GBM with both
EV availability and cost. In GBM with EV availability only,
we assume x(t) = 1 + βavailϕavail(t). In GBM with EV cost
only, we assume x(t) = 1 + βcostϕcost(t).

In both BM and GBM models, we define t as the number
of months since the year 2012. Thus, t = 0, 1, 12, and 120
correspond to December 2011, January 2012, December 2012,
and December 2021 respectively. Since there were only yearly
EV adoption data from 2011 to 2020 and monthly adoption
data is available from July 2020 to April 2023 (see Section
II-B1), when fitting the NLS problem in (8), we only use the
ti that has the corresponding data. Thus, ti corresponds to
the December of the year 2011 to 2019 for i = 0, ..., 8, and
ti corresponds to each month from July 2020 to April 2023
for i = 9, ..., 42. We use the data from 2012 to April 2022
to train the prediction models, and evaluate their performance
by calculating the mean squared error (MSE) when predicting
the adoptions from May 2022 to April 2023. The monthly
historical EV adoption data from July 2020 to April 2023 were
smoothed using the moving average method with a window
of 3 months, which can mitigate the spikes that interfere with
the model estimation.

The prediction MSE of the Maryland State-level EV adop-
tions by each model is compared in Table II. Here we show
both the fitting MSE (Train MSE) in the training data and
the prediction MSE (Test MSE) in the testing data. It is not
surprising that by introducing more explanatory variables, the
GBM models have lower train MSE. The important thing
is that the GBM models have significantly lower Test MSE
than BM, which shows their higher accuracy when predicting
unseen data. We can see that using either EV availability or
EV cost can improve the prediction accuracy, and the proposed
GBM that includes both availability and cost has the lowest
prediction errors.

TABLE II: EV Adoption Prediction MSE of the Models

Model Train MSE Test MSE
BM (baseline) 2.07E+05 1.53E+05
GBM (with EV availability only) 1.90E+05 1.24E+05
GBM (with EV cost only) 1.99E+05 9.21E+04
GBM (with both EV availability and cost) 1.85E+05 7.35E+04

Figure 2 shows the EV adoption prediction of Maryland by
the BM and proposed GBM. From these two figures, we can
see that BM can only predict a smooth adoption curve, while
the proposed GBM can predict adoption better by considering
the changing market conditions.

We also performed long-term adoption prediction extending
up to the year 2040. Figure 3 shows the prediction of two zip
code areas’ EV adoptions by the proposed GBM with both
EV availability and cost. The two zip code areas correspond
to the zip codes of 20723 in Howard County and 21901 in
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Fig. 2: The monthly EV adoption prediction of Maryland by
BM and GBM compared with the actual values.

Cecil County. The EV availability data from 2024 to 2040
was estimated by [30]. The EV cost from 2024 to 2040 is
estimated by assuming the incentives will end in 2032; the
prices between 2024 and 2028 are predicted by [31] and we
assume the price will gradually drop to $40,000 in 2040. From
Figure 3 we can see the trend and level difference of different
zip code areas, which shows the importance of more granular
segmentation in EV adoption prediction.
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Fig. 3: The prediction of cumulative EV adoptions by year in
two zip code areas.

B. Case Study of Module 2: Analyzing Impacts of EV Charg-
ing on Power Distribution Systems

We applied the EV adoption prediction to a real-world distri-
bution circuit in Maryland to analyze their impacts. The circuit
has 294 distribution transformers and serves 1,411 customers;
about 88% of them are residential customers, 7% are mixed-
use customers, 2.5% are commercial users, and 2.5% are
unknown-type users. The real-world EV charging profiles were
collected from three types of chargers: residential, multifamily,
and public. Based on the customer type distribution of the
circuit, we assumed that 80% of the EVs use residential
chargers (assigned randomly to residential transformers), 15%
use multifamily chargers (assigned randomly to mixed-use and

residential transformers), and 5% use public chargers (assigned
to commercial, mixed-use, and unknown-type transformers).
The historical customer load profiles are derived from hourly
smart meter data in 2022.

TABLE III: Results of EV Impacts Analysis

Year 2022 2025 2030 2035 2040
Predicted/estimated
EV adoptions 65 173 706 1703 2346

Max volt (p.u.) 1.079 1.081 1.0794 1.083 1.083
Min volt (p.u.) 0.889 0.887 0.882 0.850 0.817
Over-voltage count 1223 1362 1098 1636 988
Under-voltage count 10234 10793 13854 20836 27206
Overloading count 217 225 444 1031 1490

Fig. 4: The predicted heat map of voltage in the summer
evening hour of 2030.

Fig. 5: The predicted location of overloaded distribution trans-
formers in the summer evening hour of 2030.

We performed power flow analysis with OpenDSS using
the customer load profile from Aug 1st, 2022, to Aug 14th,
2022. These two weeks represent the summer peak periods
when electricity usage was higher. We estimated the impacts
of EV charging load to the circuit using module 2 between



the years 2022 and 2040. The results are shown in Table III.
Using module 1, we estimated that from the year 2022 to 2040,
the EV adoptions in this circuit will grow from 65 to 2346.
We collected the maximum and minimum voltage among
all distribution transformers in these two weeks’ simulation.
We also counted how many over/under voltage incidents
will happen. When a distribution transformer is over-voltage
(> 1.05 p.u.) or under-voltage (< 0.95 p.u.) in an hour,
then it is an over/under voltage incident. In two weeks’ time
range, there are 24 × 14 = 336 hours and 294 transformers,
so there are at most 336 × 294 = 98784 possible incidents.
Similarly, we counted how many overloading incidents happen
for distribution transformers, in which when a distribution
transformer is overloaded in an hour, it is counted as one
incident. We can see that under the current circuit design, the
minimum voltage keeps dropping, and the circuit will have
more and more severe under-voltage issues and transformer
overloading in the next few years. These results show an urgent
need for circuit upgrading and we can see that the proposed
method can be a useful tool for system planners to develop
system upgrade strategies.

In addition to quantitatively analyzing the impacts of EV
charging loads, we also use module 2 to show where these
incidents in Table III might happen. Figure 4 shows the pre-
dicted voltage levels in the circuit at 17:00 on August 9, 2030.
Figure 5 shows the location of the overloaded distribution
transformers in the same hour. This analysis can help system
planners to design specific upgrades on the circuit.

V. CONCLUSION

In this paper, we developed a two-module solution to predict
EV penetration and analyze its impacts on the distribution
system through a case study in Maryland. In module 1, we
proposed a GBM approach with both the EV availability
and cost data. This approach enables us to consider more
complicated market factors in EV adoption, which yields a
more accurate EV adoption prediction. In module 2, we used
the predicted EV adoption and actual EV charging profiles
to analyze the voltage levels and equipment overloading.
This was performed on a real-world distribution circuit in
Maryland using power flow analysis. The results showed that
the proposed method can reveal when, where, and how severe
the under-voltage and overloading issues might be with the
growing EV penetration. The proposed approach can be a
helpful tool for system planners to develop circuit upgrade
plans.
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