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Abstract—With the increasing urgency to decarbonize power
systems, while mitigating extreme weather events, capacity ex-
pansion models can play a vital role in reliably planning the
expansion of power systems and facilitating the integration of
renewable energy (RE) sources. Optimizing capacity expansion
generally involves selecting surrogate representative days from
forecasts of load and the generation profiles of variable RE
resources. To properly select those representative days, we
propose a novel input-based approach in combination with the k-
means clustering algorithm that utilize three unique operational
characteristics: load shedding, renewable curtailment, and trans-
mission congestion. The proposed method allows for more robust
and cost-effective capacity planning. The method is validated
using a capacity expansion model and a production cost model
aligned with California Independent System Operator (CAISO)’s
decarbonization goals, and results in significant cost reduction
and substantial decreases in load shedding.

Index Terms—Capacity expansion planning, time series clus-
tering, representative period selection, production cost modeling.

I. INTRODUCTION

A. Background & Problem Statement

As both climate change and humanity’s response have
accelerated in recent years, decarbonization of power grids
has emerged as a critical topic within an industry often
characterized as slow-moving and cautious. Meeting this chal-
lenge requires substantial investments, especially in energy
storage and RE generation [1]. As a result, the significance of
capacity expansion models (CEMs), which play a pivotal role
in ensuring the successful transition toward a cleaner power
grid, continues to grow.

CEMs aim to identify optimal generation and transmission
investment strategies for future years. These models usually
involve two-time scales: one for annual investment decisions
and another for hourly generation dispatch simulations. Yet,
the complexity of solving the optimization problem increases
significantly when attempting to model all 8760 hours in a
year, potentially leading to slow or intractable computations.

To mitigate this challenge, one solution is to use repre-
sentative periods, which can significantly alleviate the com-
putational load. For instance, rather than modeling all 8760
hours annually, one can concentrate on solving for 37 carefully
chosen representative days, resulting in a remarkable reduction
of almost 90% in the modeled hours. The main goal in
selecting these representative days is to capture the essential

aspects of the entire yearly system behavior while substantially
reducing the computational intricacies involved.

B. Related Work & Paper Contribution

Many studies utilize load, solar generation, and wind gener-
ation profiles for clustering. A variety of clustering approaches
have been proposed. The performance of several clustering
algorithms, including k-means, k-medoids, and dynamic time
warping, are compared in [2]. In [3], several questions around
this clustering principle are investigated. In [4], fuel use and
renewable generation profiles are used for clustering. In [5], a
clustering approach that selects extreme days as initial cluster
centers is proposed. In [6], the authors propose a clustering
approach that requires clusters to consist of a chronologically
adjacent set of days. Various methods for reducing the time
dimension, including clustering and downsampling, are com-
pared in [7]. In [8], a novel combination of clustering methods
is applied to load and generation profiles.

Some works seek to model a year continuously to bet-
ter model long-term storage [9], [10]. In these works, the
temporal reduction is achieved by holding an operating state
for multiple hours. However, within the CEM, this approach
severely affects ramping modeling. The ramping requirements,
particularly those originating from the so-called ’duck curve’
due to high solar penetration, are a critical aspect that needs to
be modeled. Representative hour approaches have also been
proposed [11], [12], but suffer the same loss of chronology
and thus the ability to track energy storage and ramping.

There are limited studies that utilize other features for
clustering. In [13], clustering based on investment cost is
proposed, along with a technique for extreme period selection.
The authors in [14] examine the trade-off between temporal
and technical modeling detail and propose period selection
based on RE variability. A histogram-based approach is used
in [15] to ensure the sampled periods accurately represent the
loading levels of a full year but misses out on chronology.

While a considerable amount of research effort has been
devoted to the representative period selection problem, the
majority of it has focused on clustering algorithm design or
selection. In contrast, there is not much work dedicated to
the selection of power grid features to be used within the
clustering algorithm. Indeed, the majority of representative
period selection methods use a greenfield approach, assuming



no existing capacity, which is an impractical assumption for
real power systems. Furthermore, these approaches overlook
features highly relevant to capacity expansion planning, such
as transmission congestion, renewable curtailment, and load
shedding. This work aims to address this research gap by
integrating additional operational features into a general time
series clustering framework to select representative periods in
a manner more suitable for capacity expansion in the presence
of high RE penetration and extreme events.

The remainder of this paper is organized as follows. Section
II develops the proposed feature selection and clustering
approach. Section III presents the numerical study and results
while Section IV provides study conclusions.

II. TECHNICAL METHOD

A. Feature Selection

In practice, CEMs do what the name suggests: determine
optimal strategies for adding energy resource capacity. The
current resource fleet within a system might be sub-optimal or
insufficient for future years, as a result of a variety of drivers
including the following examples. Environmental regulations
may limit the use of gas-fired generators. Increasing loads
could necessitate additional capacity. High fuel costs for
gas-fired generators may also make it more economically
viable to invest in additional energy storage or renewable
resources. Therefore, it is crucial to consider the characteristics
of the existing capacity when selecting representative days.
While existing methods for representative period selection
have disregarded this aspect, our objective is to incorporate the
attributes of the existing capacity into the process of choosing
representative days.

To this end, we propose including features that encode
the existing capacity, but are typically not considered during
clustering. This section identifies these features and justifies
their inclusion. These features are referred to as operational
features, as they are outputs of system operation, in contrast
with demand and generation, which are inputs to operation.
Namely, these features are load shedding, transmission con-
gestion, and renewable curtailment.

Load shedding, sometimes known as rolling blackouts,
refers to interrupting some portion of loads, generally as a last
resort for load balancing. Load shedding events are increas-
ingly associated with extreme weather events, like heat waves
or cold snaps. Load shedding is associated with considerable
economic cost, as well as potential loss of life, as evidenced
by the 2021 Texas power crisis [16]. Load shedding is a
key metric for resource adequacy and can be avoided with
proper planning. Inclusion of this feature in representative
day selection could help select periods that stress the existing
resource fleet, thus leading to more robust capacity sizing.

Curtailment refers to disconnecting RE generation to pre-
vent overgeneration. Curtailment occurs when renewable gen-
eration exceeds demand, and this excess cannot be exported or
used to charge energy storage systems. By including curtail-
ment, the selected representative days will better account for
days where renewable capacity is already sufficient, as well

as select periods which demonstrate the value in expanding
storage capacity.

Congestion refers to a $/MWh transmission cost. Conges-
tion exists when there is more demand for transmission capac-
ity than there is physical capacity. Including this feature should
help select periods which would be relevant to expanding
transmission capacity by identifying periods with excess RE
generation which could be exported to other areas.

Each of these operational features can be readily obtained
from the output of a production cost model (PCM). Because
these features can be obtained by running a PCM in discontin-
uous days, the computational complexity associated with long
timescales that necessitates the use of representative days in
the CEM is irrelevant.

B. Dimensionality Reduction
Often, capacity expansion models consider wide geographic

areas. Thus, there are load forecasts at many nodes, as well as
renewable generation profiles at different locations. Each time
step further inflates the dimensionality of each sample. At-
tempting to cluster without reducing the spatial dimensionality
of these features could produce sub-optimal results. For load,
renewable generation profiles, and congestion, this is done in
the straightforward method of averaging the time series over
the spatial dimension. Some operational features should be
highly sparse. In particular, curtailment should be zero in most
hours, and load shedding should be even less common. For this
reason, the spatial dimension of these features is reduced by
taking the maximum. Each feature is normalized to zero mean,
unit variance before it is clustered.

C. Extreme Events
The goal of representative day selection is to find a subset

of days that best capture the annual behavior of load and
generation. However, this goal conflicts with the need to
simulate extreme periods. Extreme weather events may only
occur for a small fraction of days each year, and thus is
unlikely to be selected during typical representative period
selection. Within power system planning, extreme events are
an extremely important consideration. If enough generation ca-
pacity is not held, the reliability of the system during extreme
weather patterns could be compromised. Similarly, if there are
periods of abnormally low renewable generation, the system
could struggle to cope with demand. With climate change
and an increasing push for decarbonization, these extreme
events will become even more important. Several works have
proposed methods for selecting extreme events based on peak
load, peak ramping, or other features [5], [13]. Through the
numerical study, we will show that inclusion of operational
features in clustering implicitly selects these representative
periods. In particular, the inclusion of load shedding as a
feature in representative period selection effectively captures
the inadequacy of existing capacity.

D. Clustering
To select representative days, the periods are clustered using

k-means. Given N samples, the goal of k-means is to generate



K cluster with centers µk and assign a cluster label to each
sample xn.

min

K∑
k=1

N∑
n=1

γn,k||xn − µi||2 (1)

where γn,k is a binary variable that indicates that sample
xn belongs to cluster k and must satisfy (2),

K∑
k=1

γn,k = 1,∀n ∈ N (2)

Although the optimization problem in (1) is NP-hard, com-
putationally efficient heuristics exist, and several are imple-
mented in widely-used Python and Julia packages, such as
scikit-learn [17].

Although k-means is a centroid method, clusters will be
represented by their medoid in the capacity expansion model.
This is necessitated by the dimensionality reduction discussed
in Section II-B, making it impossible to accurately map
backwards from the low-spatial dimension representation used
in clustering to the high-spatial dimension used in the CEM.
The medoid is selected after clustering as the sample with
the smallest Euclidean distance to the centroid. The weight of
each representative period is chosen as the cardinality of the
cluster.

III. EXPERIMENTAL VALIDATION

A. Experimental Setup

The proposed clustering technique is validated using a
CEM and PCM for the Western Interconnection. Only single-
year planning is considered, and the year modeled will be
referred to as the target year. First, the PCM is solved for the
target year using the existing generation capacity. Then, the
features described in Section II are extracted and used within
the proposed clustering technique. Finally, these clusters will
be used to run the CEM for the target year. To evaluate
the performance of the investment decisions made with the
representative periods, the PCM is then run again with updated
investments. Fig. 1 demonstrates the flow of the numerical
study.

The PCM and CEM are based on a MILP adaptation of
the formulation and data of E3’s RESOLVE power system
decarbonization model [18]. Both incorporate a WECC-based
zonal model focused primarily on CAISO. Resources include a
large fleet of gas generators, wind and solar farms, large hydro,
battery and pumped storage, nuclear and small firm resources.
Both models share the principal goal of minimizing the cost
of serving load. The PCM solves for the operating decisions,
primarily scheduling of generation, which minimizes daily
operating costs, subject to operating and reliability constraints.
A simplified formulation of the model is presented in (3).
Operating constraints are resource-specific constraints on the
dispatch of that resource. For gas generators, these are unit
commitment constraints such as ramping, and minimum up-
and down-time. Reliability constraints are those that ensure

Load, Generation Forecasts

Production Cost Model
Feature Extraction

Clustering
Representative Period
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Investment Decisions

Production Cost Model
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Fig. 1. Flow of proposed numerical validation

reliable power supply, including power balance and supply of
reserve products.

min Cgen

s.t. Operating constraints
Reliability constraints

(3)

The CEM essentially introduces an additional layer to the
PCM, solving operational and investment decisions which
minimize the cost of generation Cgen, maintenance Cmaint

and investment Cinv for the year. A simplified formulation
is presented in (4). Investment decisions are the retirement
of existing gas generators and investment in new resources.
Policy constraints include emissions limits and renewable
portfolio standards.

min Cinv + Cmaint + Cgen

s.t. Policy constraints
Operation constraints
Reliability constraints

(4)

Typically, CEMs include a planning reserve margin (PRM)
constraint, requiring that the fleet be able to provide some
margin greater than the maximum projected load. As a result,
regardless of clustering performance, the investment decisions
will produce a fleet that can most likely satisfy all load
requirements. In some cases, if this constraint is particularly
tight, the final resource investment plan may be predominantly
determined by investment costs, thus diminishing the value of
improved representative day selection. In other words, system
operation may determine the optimal fleet up to some MW of
capacity, but any requirement for capacity above that may be



determined only by which resource is cheapest per capacity.
In the numerical study, results will be shown both with PRM
omitted and with a minimal PRM, equal only to the maximum
load and not a margin above, as is typical.

To demonstrate the performance of the proposed technique,
we compare the investment decisions obtained using the
proposed clustering method to those using only traditional
features, namely the load and renewable generation profiles.
The performance of investment decisions is evaluated using
two metrics: cost and reliability. Reliability is evaluated us-
ing both the number of load shedding events and MWh of
load shedding. Cost is the combined cost of maintenance,
investment, and operation. Within the PCM, load shedding is
available at $50,000 per MWh. Investment costs are amortized
to allow for single-year planning.

B. Results

We evaluate the performance of the algorithm through two
lenses: load shedding and total cost. We also look to the
blend of resources to evaluate how representative day selection
affects valuation of one resource group versus another. The
proposed method is compared to a base method, in which the
clustering step only accounts for load, solar, and wind. To
better understand the impacts of the proposed method, results
will be shown under several planning scenarios, with several
target years. K-means heuristics are not deterministic and
are highly dependent on initialization. To address this, most
implementations run the algorithm multiple times and choose
the result with the lowest cost function. Still, the selected days
and weights can vary, so the numerical study is repeated three
times for each scenario and averaged. Unless stated otherwise,
20 representative days are selected.

The two PRM scenarios will be shown with target years
of 2025, 2030, and 2045. We also show the results for 2025
in which economic retirement is not allowed and for 2045
in which economic retirement is required for 50% of all in-
CAISO units. No such constrained retirement will be demon-
strated for 2030. The justification for including these scenarios
is as follows. Without PRM, the effect of representative day
selection on resource adequacy should be more obvious. With
PRM, there should be a smaller effect on resource adequacy
and a greater effect on system costs.

Table I shows the total cost for each target year with the
proposed method and the base method. The base method often
requires considerable load shedding, which greatly increases
the total cost. To give a point of comparison without this
effect, costs are shown both with and without the load shed-
ding penalty component, denoted by ‘pen’. Note that for the
proposed method, the penalty and no penalty values often
are equal as there is no load shedding. In every case with
load shedding penalty, the proposed method leads to lower or
nearly identical costs. Omitting the load shedding costs, the
proposed method generally has comparable costs to the base
case. This indicates that the proposed method produces more
realistic capacity plans, which, in turn, lead to a reduction in
load shedding, with only moderately higher investment costs.

TABLE I
TOTAL COST COMPARISON OF BASE AND PROPOSED METHOD

INVESTMENT DECISIONS (MILLIONS $)

Year Pen Method PRM No PRM Constrained
Retirement

2025

Yes
Base 13,372 13,354 12,468

Proposed 12,412 12,407 12,442
Improvement 7.18 % 7.09 % 0.21 %

No
Base 12,461 12,472 12,466

Proposed 12,412 12,407 12,442
Improvement 0.39 % 0.52 % 0.19 %

2030

Yes
Base 14,507 14,666 -

Proposed 14,503 14,255 -
Improvement 0.03 % 2.80 %

No
Base 14,448 14,141 -

Proposed 14,470 14,239 -
Improvement -0.16 % -0.69 %

2045

Yes
Base 23,713 23,649 23,481

Proposed 23,414 21,323 21,351
Improvement 1.26% 9.84% 9.07%

No
Base 23,545 22,011 21,952

Proposed 23,414 21,323 21,351
Improvement 0.56% 3.13% 2.74 %

Fig. 2 shows the costs for 2030 without PRM, both with
and without load shedding penalty. As expected, the capacity
plan resulting from representative days with the base features
requires more load shedding in the PCM. This load shedding is
a result of lower capacity, which in turn has lower investment
costs. However, the capacity plan resulting from the proposed
method, has only slightly higher investment costs. With load
shedding costs ignored, the total costs are only 0.69% higher
for the proposed method. Investment costs are 2.6% higher,
but are offset by lower operational costs and much lower load
shedding costs. With load shedding costs accounted for, the
total cost is drastically lower. Fig. 3 shows components of

Fig. 2. Operation and capital costs for 2030 without PRM

capacity expansion by resource class for 2030. Intuitively, the
scenarios with PRM have increased investment regardless of



the representative day selection. The proposed method leads
to greater investment in both energy storage and renewable
generation. The methods have roughly equal retirement of gas-
fired generators. Fig. 4 shows the sensitivity of the number

Fig. 3. Capacity expansion decisions in 2030

of representative days for 2030. Regardless of the number
of representative days, the proposed method leads to lower
load shedding, both in the number of events and the average
MWh of shedding per event. As previously suggested, this
indicates that the inclusion of the proposed operational features
implicitly selects extreme conditions more effectively.

Fig. 4. Sensitivity of number of representative days on load shedding

IV. CONCLUSION

In this paper, we proposed a novel method to select repre-
sentative days that can be used in capacity expansion models.
The proposed method better accounts for existing capacity by
considering key novel operational features during the cluster-
ing step. By including these features, the resulting capacity

expansion plan exhibits improved load-serving capability and
cost savings as compared to the base-feature case. The pro-
posed method was validated on a capacity expansion model
based on decarbonization goals in CAISO. Several planning
scenarios and horizons were studied. In all scenarios, the
proposed method resulted in lower load shedding in the full-
space production cost model, as well as lower or comparable
costs even when the cost of load shedding is neglected.
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