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A B S T R A C T

The combination of wireless charging roads and energy storage systems is a promising option for electric
vehicle charging because of their capabilities in mitigating range anxiety of electric vehicle drivers. Wireless
charging road operators can purchase electric energy by submitting price-sensitive demand bids in real-time
electricity markets. Efficient bidding strategies are crucial to minimizing the energy costs for providing wireless
charging services. In this study, we first propose a composite statistical model based on graph signal processing
and linear regression to forecast the future locational marginal prices (LMPs) in a power network. Then an
estimate of future electric load on each wireless charging road is derived by simulating its traffic flow using a
point queue-based traffic flow model. An efficient price-sensitive bidding strategy for each individual wireless
charging road is developed based on its LMP forecast, wireless charging load estimate, and a model predictive
control framework. Our numerical example shows that the proposed price-sensitive demand bidding strategy

∗ Corresponding author.
E-mail address: hg55@cornell.edu (H.O. Gao).
vailable online 5 October 2022
306-2619/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.apenergy.2022.120035
Received 23 January 2022; Received in revised form 18 September 2022; Accepted 21 September 2022

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:hg55@cornell.edu
https://doi.org/10.1016/j.apenergy.2022.120035
https://doi.org/10.1016/j.apenergy.2022.120035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2022.120035&domain=pdf


Applied Energy 327 (2022) 120035J. Shi et al.
reduces the electric energy cost for operating a wireless charging road with an energy storage system by 6%
compared to a baseline bidding strategy.
1. Introduction

Range anxiety, according to Voelcker [1], is one of the main reasons
hindering a broader adoption of electric vehicles (EVs). Though efforts
are constantly being made to increase both battery capacity and energy
efficiency, EVs on the market today still face a significantly lower range
than their internal combustion engine (ICE) counterparts. Moreover,
recharging an EV in a charging station still consumes much more time
than refueling an ICE vehicle in a gas station [2]. A typical L2 charger,
which is the most popular charging facility for daily EV usage, has a
charging speed of only around 25 miles per charging hour [3].

A potential solution to EV range anxiety would be the widespread
adoption of wireless charging roads, allowing EVs to travel and rech-
arge simultaneously, notably extending their effective ranges. Recent
research and pilot projects have demonstrated the practicality of wire-
less charging roads. See [4] for a couple of real-world projects carried
out by an Israeli company called Electreon. For example, its Smartroad
Gotland project [5] builds a wireless electric inter-city road system
designed for charging electric buses and heavy trucks. Electreon also
works with Stellantis [6], which is the world’s fifth-largest automaker,
to build and test a loop of road in Italy with wireless charging coils
embedded under the surface, so that EVs can charge as they drive [7].

The electric loads of busy wireless charging roads can reach tens of
megawatts, making them eligible to participate in real-time electricity
markets. To reduce energy cost as well as improve system reliability,
an energy storage system (ESS) is highly recommended to be used in
conjunction with a wireless charging road. The adoption of ESSs pro-
vides wireless charging road operators with flexibility in the quantity
of power drawn from power grids, allowing them to submit price-
sensitive demand bids in real-time electricity markets. Given electricity
prices vary drastically with time, an efficient bidding strategy is crucial
in minimizing the energy cost associated with operating a wireless
charging road. The goal of this study is to design a competitive price-
sensitive demand bidding strategy for wireless charging roads with
energy storage to save electricity cost within the context of real-time
electricity markets.

As will be shown later, the proposed demand bidding strategy
for wireless charging roads not only yields lower energy costs but
also imposes less pressure on the existing power grid infrastructure.
These two primary merits can bring broad benefits to our society.
For example, cost reduction in operating wireless charging roads is
likely to attract more investments in construction as well as lowering
the corresponding charging prices, thereby promoting the overall EV
adoption. Meanwhile, the alleviation of required pressure on power
grid is a great news to the power industry, which already suffers
significant strains on the existing infrastructure.

Wireless charging roads couple two primary infrastructure sectors
together: power and transportation. Previous research has investigated
potential issues raised by this emerging coupled transportation–power
system characterized by electrified road networks. For instance, opti-
mal strategies for wireless charging road placement are discussed in [8–
10], and [11] given various scenarios and assumptions. A novel routing
policy is proposed in [12] to provide EV drivers the optimal charging
schedule composed of both plug-in chargers and wireless charging
roads. Some studies also investigate the impacts of wireless charging
roads on existing power infrastructure as well as coordination between
power systems and electrified road networks. For example, Manshadi
et al. [13] shows that efficiently-coordinated operation of wireless
charging roads and power system can reduce congestion within power
network, leading to lower electricity prices. Ou et al. [14] studies the
2

impact of wireless charging roads on locational marginal prices (LMPs)
in the context of wholesale electricity markets. Xia et al. [15] develops
a distributed approach based on mixed integer linear programming to
optimally deploy wireless charging roads in a coupled transportation–
power system with the objective of revenue maximization. However,
none of the above studies address bidding strategy design for wire-
less charging roads with energy storage (WCRES) to participate in
wholesale electricity markets.

Bidding strategies for traditional stakeholders in wholesale electric-
ity markets have received widespread interest in academia. Various
efforts have been made to either improve energy producers’ profitabil-
ity or reduce demand-side electricity cost. For instance, Conejo et al.
[16] develops a framework to obtain the optimal bidding strategy
for a price-taker electricity producer to maximize its expected profit.
However, this strategy is only for electricity generator in a pool-based
energy market. By contrast, Fleten and Pettersen [17] designs optimal
piecewise-linear bidding curves for electricity retailers to minimize
their cost to purchase power from wholesale electricity markets. How-
ever, independent large-scale load consumers like wireless charging
roads are not discussed. Jiang and Powell [18] develops an approx-
imate dynamic programming-based bidding strategy for owners of
battery energy storage systems to gain revenues by participating in real-
time electricity markets. Their proposed approach requires significant
amount of trials and exploration before convergence, which might not
be desirable for practical application. Liu et al. [19] and Wei et al. [20]
propose model predictive control (MPC) based algorithms to construct
efficient block bidding curves for residential building clusters, which
reduce their energy costs in the context of electricity markets. However,
neither of them consider the participation of energy storage systems.
With the increasing popularity of EVs, many researchers support the
idea of EV aggregators that collect battery resources from individual
EVs as a distributed energy storage system. Various bidding policies
are proposed for these EV aggregators to participate in electricity
markets [21–26]. However, none of these studies cover strategies for
WCRES to bid in wholesale electricity markets. Simple adaption of
previous bidding methods does not suffice our problem, which cou-
ples transportation systems with power systems. This study aims at
designing a competitive price-sensitive demand bidding strategy for
wireless charging roads with energy storage, which interacts with both
transportation sector and power sector. A proper design of bidding
strategies for wireless charging roads needs to take into consideration
factors from both the power system and the transportation system,
such as LMP forecasts, traffic flow prediction, and driver preference
variation caused by lane congestion.

To the best of the authors’ knowledge, this is the first study that
investigates a bidding strategy for WCRES to participate in real-time
wholesale electricity markets. We aim at developing an efficient price-
sensitive bidding strategy that helps reduce energy costs accrued by
owners of wireless charging road in providing charging services to EVs.
The proposed bidding strategy is based on an MPC framework that
takes LMP forecasts and wireless charging load estimates as inputs and
outputs an optimal bid-quantity price pair. Different bid-quantity price
pairs can be derived by running MPC framework with adjusted LMP
forecasts. A block bidding curve is then constructed with these bid-
quantity price pairs. To this end, we design a spatio-temporal LMP
forecasting algorithm and a wireless charging load estimator based on a
dynamic traffic assignment model to obtain reliable prediction of future
LMPs and electric loads on wireless charging roads,

The main contributions of this study are summarized as follows:

• We propose a composite statistical model based on graph signal
processing and linear regression to spatio-temporally forecast
locational marginal prices at different nodes in a given power
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Fig. 1. Transportation–power system with five load centers and three wireless charging roads.
network. The proposed model, though with fewer parameters,
achieves higher forecast accuracy than the vector autoregressive-
based models in our numerical example.

• We develop a wireless charging load estimator by simulating EV
traffic flow dynamics based on a point queue model for each
wireless charging road. The proposed approach is able to predict
the electric load on a wireless charging road network within the
near future.

• We design an efficient price-sensitive bidding strategy based on a
model predictive control framework for a wireless charging road
to participate in the real-time electricity market. The proposed
bidding strategy not only reduces the energy cost for operating
a wireless charging road but also helps alleviate electric load
pressure on a power network.

The rest of this paper is organized as follows: Section 2 illustrates
the problem setting and the overall framework of the proposed price-
sensitive bidding strategy. Section 3 elaborates on the technical details,
including the GSP-based LMP forecasting, the wireless charging load
estimation, and the MPC-based demand bid curve generation. Section 4
demonstrates the effectiveness of the proposed price-sensitive bidding
strategy by carrying out a numerical example. The conclusions are
stated in Section 5.

2. Problem setting and overall framework

Below we present the problem setting and describe the goal of this
study, which is followed by a discussion of the overall framework of
the proposed price-sensitive bidding strategy for WCRES systems.

2.1. Problem setting

In this study, we consider a coupled transportation–power sys-
tem that includes one or more wireless charging roads. Each wireless
charging road is equipped with an ESS that enables energy arbitrage.
Fig. 1(a) shows an example of a coupled transportation–power system
comprised of five load centers. Throughout this paper, a load center
denotes a region with intensive human activities, for example, a town
or a city. The load centers are connected by a road network and a power
network. As displayed in Fig. 1(a), the black and green lines represent
normal roads and wireless charging roads, respectively. Note that a
wireless charging road can consist of both normal lanes and wireless
charging lanes, but only EVs that require charging service are allowed
to travel on the wireless charging lanes. Meanwhile, the load centers are
also interconnected by transmission lines (the blue curves in Fig. 1(a))
in the power network.

Throughout this study, we treat each wireless charging road as an
individual bus in the power network, which is linked to the two load
centers it connects. Fig. 1(b) illustrates the complete power network
extracted from the original coupled transportation–power system. Bus
3

Fig. 2. Overall framework of the proposed bid generation process and market clearing.

6, 7, and 8 (green circles) represent the wireless charging roads,
which are connected to their adjacent buses through additional power
lines (green dashed lines). As discussed in the introduction, wireless
charging roads consume a large amount of electric power, making them
eligible to participate in real-time wholesale electricity markets. The
objective of this study is to design an efficient bidding strategy for
individual wireless charging roads to reduce energy costs for providing
EV charging services.

2.2. Overall framework

Fig. 2 depicts the overall framework of the proposed bid generation
process and electricity market clearing. The proposed bidding strategy
for a wireless charging road comprises three primary modules: LMP
forecasting, wireless charging load estimation, and demand bid gen-
eration. The outputs of the first two modules serve as the inputs of the
last module. We only present a high-level description of each module
below and present their technical details in the next section.
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A locational marginal price is basically the price of electric en-
ergy being sold at a particular location. It usually consists of three
components: marginal energy price, marginal congestion price, and
marginal loss price. The energy price component is primarily dependent
on the bids submitted by the power generation companies. It could be
affected by multiple factors such as the costs of fuel and supply–demand
imbalance. The congestion price is caused by the capacity constraints
of the power infrastructure. This component can get quite large during
peak hours. Loss price captures the electric energy loss cost during the
power transmission. In a word, LMP is a quite sensitive variable that
depends on various factors, which can change frequently even within
a day.

The goal of the LMP forecasting module is to provide accurate
prediction of electricity prices at a wireless charging road in the near
future. In this study, a composite statistical model based on graph
signal processing (GSP) and linear regression is developed to forecast
future electricity prices. The proposed regression model takes LMP at
previous hour, temperature forecast, and time indices as inputs and
outputs an estimate of the LMP for the next hour. LMP forecasts at
subsequent hours can be obtained by applying the proposed regression
model iteratively. Note that the prediction horizon starts at ℎ+2 which
is two hours into the future from current hour as shown in Fig. 2.
The reason is that many real-time wholesale electricity operators in the
United States, for example, the California Independent System Operator
(CAISO) and the New York Independent System Operator (NYISO),
require participants to submit their energy bids 75 min before the start
of the trading hour.

The wireless charging load estimation module is designed to pro-
duce accurate estimates of electric loads within the near future. In this
study, we assume estimates of future inflows of EVs and traditional
vehicles are available to wireless charging roads. Note that EVs have
different probabilities in selecting wireless charging lanes under dif-
ferent traffic conditions. A point queue-based model is developed to
model the dynamics of traffic flow on a wireless charging road. The
accumulated traffic on both normal lanes and wireless charging lanes
in future hours can be simulated based on the inflow estimates and the
proposed traffic flow model. The wireless charging load at a certain
time step is therefore estimated by multiplying the number of EVs and
charging power per vehicle. We will elaborate on the technical details
of the wireless charging load estimation module in Section 3.2.

The objective of the demand bid generation module is to provide
an efficient price-sensitive bidding strategy for a wireless charging road
owner that participates in a real-time wholesale electricity market. This
module takes the LMP forecasts and the wireless charging load esti-
mates as inputs and outputs a block bid that describes the relationship
between electricity price and bid quantity. The knots (price–quantity
pairs) in the block bid are derived from an optimization process based
on model predictive control. Note that there can be a minimum bid
quantity that is greater than zero when the maximum output of the
corresponding ESS does not match the wireless charging load. In this
case, the minimum bid quantity can be considered as a fixed bid,
regardless of the electricity price. The detailed methodology regarding
demand bid generation will be discussed in Section 3.3.

The lower part of Fig. 2 illustrates the key components of the
clearing process of demand bids and supply offers in a typical whole-
sale electricity market. Most independent system operators (ISOs) and
regional transmission organizations (RTOs) adopt algorithms based on
optimal power flow (OPF) to settle transactions and calculate clearing
prices, which are exactly LMPs in the power grid. As shown in Fig. 2,
the inputs of DC OPF (DCOPF) in our case are supply offers from
generation resources and demand bids from wireless charging roads
and other load centers. The outputs of DCOPF are market clearing
results and LMPs at different nodes in the power grid.

Remark. Note the primary goal of this paper is to provide a potential
4

algorithmic bidding solution for future integration of wireless charging 𝐺
roads into the existing electricity markets. The real-world system could
be much more complicated than what we present in this study. The per-
formance of the proposed bidding algorithm, when applied in practice,
will be affected by traffic condition, infrastructure quality, weather,
scale of wireless charging roads and load centers, etc.

3. Methodologies

In this section, we present the technical details of the modules
introduced in the overall framework. We start with a full discussion of
the GSP-based regression model for LMP forecasting, which is followed
by an illustration of a point queue-based traffic flow model for wire-
less charging load estimation. Next, we elaborate on the MPC-based
demand bid generation for individual wireless charging roads. This
section ends with brief coverage of DCOPF.

3.1. LMP forecasting

The LMP forecasting plays a critical role in determining the price-
sensitive demand bid. An accurate prediction of future LMPs is a
prerequisite for successful energy cost saving. To this end, we develop
a spatio-temporal regression model based on the GSP to forecast hourly
LMPs at different nodes in a given power network.

3.1.1. Regression model
Let 𝑦𝑖(ℎ) be the 𝑖th node’s LMP at hour ℎ. Let 𝑇𝑖(ℎ) denote the

emperature of the 𝑖th node at hour ℎ. Let 𝐼(ℎ) = sin 𝜋ℎ
12 be the time

index of hour ℎ. The sine function is adopted to normalize time and
smooth the transition between 23:00 and 0:00. Then our regression
model for LMP forecasting is formulated by:

𝑦𝑖(ℎ) = 𝛽𝑖,1𝑦𝑖(ℎ − 1) + 𝛽𝑖,2𝑦𝑖(ℎ − 24)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Historic LMP

+ 𝛽𝑖,3𝑇𝑖(ℎ) + 𝛽𝑖,4𝑇
2
𝑖 (ℎ) + 𝛽𝑖,5𝑇

3
𝑖 (ℎ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Temperature

+ 𝛽𝑖,6𝐼(ℎ) + 𝛽𝑖,7𝐼
2(ℎ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Time index

+ 𝜖𝑖(ℎ)
⏟⏟⏟

Error

, (1)

here 𝜖𝑖(ℎ) denotes the error term. {𝛽𝑖,1,… , 𝛽𝑖,7} are the coefficients
o be estimated. The covariates on the right hand side are categorized
nto three groups, which contain the information of historic LMP,
emperature, and time, respectively. These features are considered to
e highly correlated with 𝑦𝑖(ℎ). For example, an LMP at one time step
s usually close to its predecessor. We adopt 𝑦𝑖(ℎ − 24) into our model
ecause there is a strong daily pattern of seasonality. Note that 𝑇 2

𝑖 (ℎ),
3
𝑖 (ℎ), and 𝐼2(ℎ) are introduced to account for a potential nonlinear
elationship between LMP, temperature, and the time index.

LMPs at different nodes in a power network can be considered as
multivariate time series 𝒚(ℎ) = [𝑦1(ℎ),… , 𝑦𝑁 (ℎ)]⊤, where 𝑁 denotes

he number of nodes. Eq. (1) captures the temporal correlation within
ndividual LMP time series by adopting autoregressive terms 𝛽𝑖,1𝑦𝑖(ℎ−1)
nd 𝛽𝑖,2𝑦𝑖(ℎ − 24). However, the spatial correlation between different
odes is not explicitly modeled, leaving the information of spatial
ependence within the error terms from individual regression models.
o improve the prediction accuracy, we propose a GSP-based approach
hat exploits the spatial correlation between error terms.

.1.2. Model error terms as graph signal
In this subsection, we model the error terms of individual regression

odels as a graph signal. Let 𝝐(ℎ) = [𝜖1(ℎ),… , 𝜖𝑁 (ℎ)]⊤ denote the
ector of error terms at hour ℎ. An undirected spatial graph 𝐺𝑆 =
VS,ES) corresponding to 𝝐(ℎ) can be constructed based on the power
etwork topology. In addition, an undirected line graph 𝐺𝐿 = (VL,EL)
s built to model 𝝐(ℎ)’s dependence on 𝝐(ℎ − 1) and 𝝐(ℎ − 24). By
erforming a Cartesian product of 𝐺𝑆 and 𝐺𝐿, we obatain a product
raph 𝐺𝑃 = (VP,EP) that models the spatio-temporal dependence
etween individual error terms:

= 𝐺 □𝐺 (2)
𝑃 𝑆 𝐿
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Fig. 3. Cartesian product of a spatial graph representing the eight-node power network
and a line graph representing temporal dependence.

Fig. 3 illustrates a product graph derived from the Cartesian product
of a spatial graph representing the eight-node power network shown in
Fig. 1(b) and a line graph representing temporal dependence between
𝝐(ℎ − 1), 𝝐(ℎ), and 𝝐(ℎ − 24).

Let 𝐴, 𝐴𝑆 , and 𝐴𝐿 denote the adjacency matrices of graphs 𝐺𝑃 ,
𝐺𝑆 , and 𝐺𝐿. 𝐴𝑖𝑗 equals 1 if nodes 𝑖 and 𝑗 are connected by an edge,
0 otherwise. Given 𝐴𝑆 and 𝐴𝐿, we can calculate 𝐴 using the following
equation:

𝐴 = 𝐼𝐿 ⊗𝐴𝑆 + 𝐴𝐿 ⊗ 𝐼𝑆 , (3)

where 𝐼𝐿 and 𝐼𝑆 are identity matrices with sizes equal to the num-
bers of vertices in 𝐺𝐿 and 𝐺𝑆 , respectively. The corresponding graph
Laplacian of adjacency matrix 𝐴 can be derived by:

𝐿 = 𝐷 − 𝐴, (4)

where 𝐷 is a diagonal matrix with 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖𝑗 . As will be shown soon,
graph Laplacian 𝐿 is a fundamental term for error term estimation.

3.1.3. Estimation of the error terms
Given a graph signal of error terms, our goal is to estimate 𝝐(ℎ)

based on known values of 𝝐(ℎ − 1) and 𝝐(ℎ − 24). Let 𝒔 = [𝝐(ℎ −
1)⊤, 𝝐(ℎ)⊤, 𝝐(ℎ − 24)⊤]⊤ denote the entire graph signal. We can convert
𝒔 into its Laplacian spectral domain by performing the graph Fourier
transform (GFT) [27]:

𝑺 = 𝑈−1𝒔, (5)

where 𝑺 =
[

𝑆(1),… , 𝑆(𝑁𝐺)
]

is a vector consisting of Laplacian spectral
components. 𝑁𝐺 = 3𝑁 denotes the number of vertices in 𝐺𝑃 . 𝑈 is a ma-
trix comprised of eigenvectors of graph Laplacian 𝐿. These eigenvectors
in 𝑈 are sorted in an ascending order according to their corresponding
eigenvalues. Note that 𝐿 is positive semi-definite by definition with its
eigenvalues being non-negative. The spectral components in 𝑺 that cor-
respond to smaller/larger eigenvalues of 𝐿 are lower/higher frequency
components. The inverse graph Fourier transform (IGFT) is defined by:

𝒔 = 𝑈𝑺. (6)

Our graph signal 𝒔 is expected to be of low-pass type because of the
spatio-temporal dependence between the error terms. We assume the
first 𝑁𝑃 spectral components capture the majority of the information
in 𝒔, where 𝑁𝑃 ≤ 2𝑁 . Based on the IGFT, we can solve 𝑺𝑃 =
[

𝑆(1),… , 𝑆(𝑁𝑃 )
]

by:

𝑺𝑃 = 𝑈∗
𝑀 (𝑈𝑀𝑈∗

𝑀 )−1 ⋅ 𝒔𝐾 , (7)

where 𝒔𝐾 denotes the 2𝑁 known values (historic error terms) in 𝒔.
𝑈𝑀 collects the first 𝑁𝑃 columns in 𝑈 with only the 2𝑁 rows that
correspond to 𝒔𝐾 being left. Therefore, the dimension of 𝑈𝑀 is 2𝑁 by
𝑁𝑃 . Then, the entire graph signal can be reconstructed as:

�̂� = 𝑈𝑃𝑺𝑃 , (8)

where 𝑈𝑃 is a matrix of the eigenvectors of 𝐿 that correspond to the
first 𝑁𝑃 spectral components. An estimate of 𝝐(ℎ) is therefore obtained
by extracting the corresponding elements from �̂�.
5

Fig. 4. Overall framework of the proposed point queue-based traffic flow model.

The LMPs at different nodes in the near future can be predicted by
iteratively applying the regression model and error term estimation.
Note that the temperature forecasts at different nodes are assumed to
be available throughout this study.

3.2. Wireless charging load estimation

Wireless charging load in the near future on a wireless charging
road needs to be estimated for building the price-sensitive demand bid
curve. We assume the charging power of each EV is fixed and remains
the same across operating hours. Therefore, the wireless charging load
is proportional to the number of EVs on the wireless charging lanes. In
this subsection, we develop a point queue-based traffic flow model to
simulate the dynamics of a given wireless charging road. The numbers
of EVs on the wireless charging lanes in upcoming hours can therefore
be estimated from the simulated traffic flow.

Fig. 4 illustrates the overall framework of the proposed point queue-
based traffic flow model. We consider a wireless charging road consist-
ing of both wireless charging lanes and normal lanes. EVs can select
either one of them at the entrance of the road. ICE vehicles can only
travel on normal lanes at any time. Let two point queues 𝑄𝑊 (𝑡) and
𝑄𝑁 (𝑡) represent the total number of vehicles on wireless charging lanes
and normal lanes, respectively. 𝑓𝐸𝑉 (𝑡) denotes the inflow of EVs to the
entire wireless charging road. 𝑓𝐸𝑉

𝑊 (𝑡) and 𝑓𝐸𝑉
𝑁 (𝑡) represent the upstream

influxes of EVs to wireless charging lanes and normal lanes at time step
𝑡, respectively. Clearly the following relationship holds at each time
step:

𝑓𝐸𝑉 (𝑡) = 𝑓𝐸𝑉
𝑊 (𝑡) + 𝑓𝐸𝑉

𝑁 (𝑡) (9)

Let 𝑓 𝐼
𝑁 (𝑡) denote the inflow of ICE vehicles to normal lanes at time step

𝑡. 𝑔𝑊 (𝑡) and 𝑔𝑁 (𝑡) denote the downstream out-fluxes of vehicles from
wireless charging lanes and normal lanes at time step 𝑡, respectively. In
our proposed model, 𝑔𝑊 (𝑡) and 𝑔𝑁 (𝑡) are defined as:

𝑔𝑊 (𝑡) = min
(

𝑄𝑊 (𝑡)
𝑇𝐹

, 𝐶𝑊

)

(10)

𝑔𝑁 (𝑡) = min
(

𝑄𝑁 (𝑡)
𝑇𝐹

, 𝐶𝑁

)

, (11)

where 𝑇𝐹 denotes the free-flow time. The wireless charging lanes and
the normal lanes are assumed to have the same free-flow time. 𝐶𝑊
and 𝐶𝑁 are the total capacities of the wireless charging lanes and the
normal lanes, respectively.

The dynamics of 𝑄𝑊 (𝑡) and 𝑄𝑁 (𝑡) are expressed by the following
difference equations:

𝑄𝑊 (𝑡 + 1) =𝑄𝑊 (𝑡) +
(

𝑓𝐸𝑉
𝑊 (𝑡) − 𝑔𝑊 (𝑡)

)

⋅ 𝛥𝑇 (12)

𝑄𝑁 (𝑡 + 1) =𝑄𝑁 (𝑡) +
(

𝑓𝐸𝑉
𝑁 (𝑡) + 𝑓 𝐼

𝑁 (𝑡) − 𝑔𝑁 (𝑡)
)

⋅ 𝛥𝑇 , (13)

where 𝛥𝑇 ≪ 𝑇𝐹 is the time interval between two adjacent time steps.
Note that both 𝑄𝑊 (𝑡) and 𝑄𝑁 (𝑡) are always non-negative. Let 𝑇𝑊 (𝑡)
and 𝑇𝑁 (𝑡) be the queueing time [28] for 𝑄𝑊 (𝑡) and 𝑄𝑁 (𝑡), respectively.
Queueing time measures the additional travel time caused by traffic
congestion. 𝑇𝑊 (𝑡) and 𝑇𝑁 (𝑡) are calculated by:

𝑇𝑊 (𝑡) = max
(

𝑄𝑊 (𝑡)
− 𝑇𝐹 , 0

)

(14)

𝐶𝑊



Applied Energy 327 (2022) 120035J. Shi et al.

E
t
c
d
h
E
t
b
t
t
E
l
c
C
o

s
[
s
d
m
l
i
d

𝑇𝑁 (𝑡) = max
(

𝑄𝑁 (𝑡)
𝐶𝑁

− 𝑇𝐹 , 0
)

. (15)

The time length of a vehicle traveling through a given wireless charging
road equals the sum of the free-flow time and the corresponding
queueing time.

EVs can select either wireless charging lanes or normal lanes at
the road entrance. The following logit model is adopted to derive the
proportion of EVs that select wireless charging lanes at time step 𝑡:

𝑃𝑆𝑊 𝐿(𝑡) =
1

1 + exp
(

𝛼(𝑐𝑊 (𝑡) − 𝑐𝑁 (𝑡))
) , (16)

where 𝑐𝑊 (𝑡) and 𝑐𝑁 (𝑡) denote the costs of EVs traveling through wire-
less charging lanes and normal lanes, respectively, when entering the
wireless charging road at time step 𝑡. 𝛼 is a hyperparameter. Not
surprisingly, if 𝑐𝑊 (𝑡) and 𝑐𝑁 (𝑡) are equal, then half of the EVs will select
the wireless charging lanes in our model. In this study, 𝑐𝑊 (𝑡) and 𝑐𝑁 (𝑡)
are defined as follows:

𝑐𝑊 (𝑡) =
(

𝑝𝑊 (𝑡) + 𝑝𝑇 − 𝑝𝐵
) 𝑇𝑊 (𝑡) + 𝑇𝐹

𝑇𝐹
(17)

𝑐𝑁 (𝑡) =
𝑝𝑇

(

𝑇𝑁 (𝑡) + 𝑇𝐹
)

𝑇𝐹
, (18)

where 𝑝𝑇 is the value of time (VOT). 𝑝𝑊 (𝑡) denotes the price of
wireless charging at time step 𝑡. 𝑝𝐵 is the bonus value of selecting
wireless charging for an EV. Both 𝑐𝑊 (𝑡) and 𝑐𝑁 (𝑡) are proportional to
their corresponding total travel time. Note that the total travel time is
normalized by dividing the free-flow time.

Given inflow of EVs to the wireless charging road 𝑓𝐸𝑉 (𝑡) and the
corresponding 𝑃𝑆𝑊 𝐿(𝑡), we can estimate 𝑓𝐸𝑉

𝑊 (𝑡) based on the following
equation:

𝑓𝐸𝑉
𝑊 (𝑡) = 𝑃𝑆𝑊 𝐿(𝑡) ⋅ 𝑓𝐸𝑉 (𝑡). (19)

The number of EVs on the wireless charging lanes within the near
future can be simulated by iteratively running the dynamic equation
of 𝑄𝑊 (𝑡) (Eq. (12)). Therefore, the wireless charging load at hour ℎ
can be estimated by:

𝐸𝑊 (ℎ) =
(ℎ+1)⋅𝑁ℎ
∑

𝑡=ℎ⋅𝑁ℎ+1
𝑃𝐶 ⋅𝑄𝑊 (𝑡) ⋅ 𝛥𝑇 , (20)

where 𝑃𝐶 is the wireless charging power for each EV. 𝛥𝑇 is the length
of time interval for traffic flow simulation. 𝑁ℎ denotes the number of
time intervals within one hour.

3.3. Demand bid curve construction

Demand side participants are allowed to submit price-sensitive bids
into real-time wholesale electricity markets in the United States. The
wireless charging roads equipped with energy storage systems have
strong flexibility in drawing power from the grid, making them ideal
entities for submitting price-sensitive demand bids. They can reduce
their overall energy costs by taking advantage of time-varying elec-
tricity price. Specifically, excessive electric energy is expected to be
purchased from the grid and stored into the ESS during nighttime
hours with relatively low electricity prices. The stored energy is then
released to serve part or all of the wireless charging demand from EVs
when the electricity price rises during daytime hours. This scheduling
and operation of energy storage devices for energy cost reduction is
formally called energy arbitrage.

In this subsection, we develop an efficient bidding strategy based on
MPC framework. Our goal is to minimize the energy cost for operating
a wireless charging road through efficient energy arbitrage. Given the
LMP forecasts and wireless charging load estimates derived from the
previous two subsections, we can formulate and solve the following
optimization problem to obtain the optimal power drawn from the grid
at each hour in the prediction horizon:

minimize
𝑃 (𝑡)

𝐻𝑠+𝐻𝑃 −1
∑

𝑃𝐺(ℎ) ⋅ 𝑐𝐺(ℎ) ⋅ 𝛥𝐻 (21)
6

𝐺 ℎ=𝐻𝑠
c

Fig. 5. Demand bid curve generation.

Algorithm 1 Demand bid curve construction for a given wireless
charging road.
1: LMP forecast 𝒄 = [𝑐𝐺(𝐻𝑠),⋯ , 𝑐𝐺(𝐻𝑠 +𝐻𝑃 − 1)]
2: Wireless charging load estimate 𝒆 = [𝐸𝑊 (𝐻𝑠),⋯ , 𝐸𝑊 (𝐻𝑠 +𝐻𝑃 −1)]
3: Initialize an empty list for storing price–demand pairs 𝐿𝑃𝐷 = []
4: for n in [−𝑁𝑐 ,−𝑁𝑐 + 1,⋯ , 𝑁𝑐 ] do
5: Modified LMP forecast 𝒄 = [𝑐𝐺(𝐻𝑠) + 𝑛 ⋅ 𝛥𝑐,⋯ , 𝑐𝐺(𝐻𝑠 +𝐻𝑃 − 1)]
6: 𝑃 𝑛

𝐺(𝐻𝑠) ← MPC(𝒄, 𝒆)
7: 𝐿𝑃𝐷 = [𝐿𝑃𝐷, (𝑐𝐺(𝐻𝑠) + 𝑛 ⋅ 𝛥𝑐

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
price

, 𝑃 𝑛
𝐺(𝐻𝑠))

⏟⏞⏟⏞⏟
demand

]

8: end for
9: Construct a block curve based on 𝐿𝑃𝐷.

subject to 𝐸(ℎ + 1) = 𝐸(ℎ) − 𝛥𝐻 ⋅ 𝑃𝐸 (ℎ) − 𝛥𝐻 ⋅ |𝑃𝐸 (ℎ)| ⋅ (1 −
√

𝜂)
(22)

𝑃𝐺(ℎ) ⋅ 𝛥𝐻 + 𝑃𝐸 (ℎ) ⋅ 𝛥𝐻 = 𝐸𝑊 (ℎ) (23)

𝑃𝐺(ℎ) ≥ 0 (24)

𝐸min ≤ 𝐸(ℎ) ≤ 𝐸max (25)

− 𝑃max
𝐸 ≤ 𝑃𝐸 (ℎ) ≤ 𝑃max

𝐸 (26)

𝛥𝐻 ⋅ 𝑃𝐸 (ℎ) ⋅ (2 −
√

𝜂) ≤ 𝐸(ℎ) − 𝐸min (27)

− 𝛥𝐻 ⋅ 𝑃𝐸 (ℎ) ⋅
√

𝜂 ≤ 𝐸max − 𝐸(ℎ), (28)

where 𝑃𝐺(ℎ) denotes the power drawn from the grid at hour ℎ. 𝐻𝑠 and
𝐻𝑃 denote the starting hour and the prediction horizon, respectively.
𝑐𝐺(ℎ) is the LMP forecast at hour ℎ. 𝐸(ℎ) denotes the remaining energy
of the ESS at hour ℎ. 𝐸min and 𝐸max are the lower bound and the upper
bound of 𝐸(𝑡), respectively. 𝜂 denotes the round-trip efficiency of the
SS. 𝑃𝐸 (ℎ) denotes the output power of the ESS at hour ℎ. 𝑃max

𝐸 is
he maximum output power of the ESS. The objective function (21)
alculates the entire energy cost within the prediction horizon. Eq. (22)
escribes the dynamics of the ESS. Note that the last term on the right
and side represents the energy loss caused by charging/discharging.
q. (23) ensures the conservation of energy. (24) indicates the energy
hat cannot be sold back to the grid. (25) defines the lower and upper
ounds of the remaining energy of the ESS. (26) defines the range of
he ESS output power. (27) ensures the ESS never discharges more
han its available energy. (28) ensures the remaining energy of the
SS never exceeds the upper bound. Note this optimization problem is
inear except for one absolute value in Eq. (22). This kind of problem
an be easily solved through existing commercial solvers, for instance,
PLEX and Gurobi. In this study, we are using Gurobi to solve this
ptimization problem.

By solving the above MPC problem, we obtain an optimal control
equence of power drawn from the grid within the prediction horizon:
𝑃 0
𝐺(𝐻𝑠),… , 𝑃 0

𝐺(𝐻𝑠+𝐻𝑃 −1)]. We only keep the first step of the control
equence 𝑃 0

𝐺(𝐻𝑠) and discard the remaining entries. A pair of price and
emand (𝑐𝐺(𝐻𝑠), 𝑃 0

𝐺(𝐻𝑠)) is therefore acquired. By running MPC with
ultiple modified LMP forecasts at the starting hour 𝐻𝑠, we obtain a

ist of price–demand pairs, forming the demand bid curve as shown
n Fig. 5. Algorithm 1 presents detailed procedures for the proposed
emand bid curve construction. First, the LMP forecast and the wireless
harging load estimate within the prediction horizon are obtained.
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Then we modify the first element in the LMP forecast array by adding
𝑛⋅𝛥𝑐, where 𝑛 loops from −𝑁𝑐 to 𝑁𝑐 with a step size of 1. 𝛥𝑐 denotes the
cost increment that is a constant. The corresponding demand 𝑃 𝑛

𝐺(𝐻𝑠) is
acquired by solving the MPC problem with the modified LMP forecast
array. After looping through all the modified LMP forecast arrays, we
obtain a list of price–demand pairs, based on which the demand bid
curve for the starting hour 𝐻𝑠 is constructed.

3.4. DCOPF

ISOs and RTOs in the United States adopt OPF-based approaches to
settle clearing prices in electricity markets [29]. In this subsection, we
present a DCOPF formulation characterized by price-sensitive demand
bids. The goal of the proposed DCOPF is to find an optimal dispatch
of power generation resources, which maximizes the overall surplus of
the customers and the suppliers with all the demands and the physical
constraints being satisfied.

maximize
𝐺𝑖 ,𝐷𝑖

𝑁
∑

𝑖=1
𝑔𝑖(𝐷𝑖) ⋅𝐷𝑖 −

𝑁
∑

𝑖=1
𝑐𝑖 ⋅ 𝐺𝑖 (29)

subject to
𝑁
∑

𝑖=1
𝐺𝑖 =

𝑁
∑

𝑖=1
𝐷𝑖 (30)

− 𝑃max
𝑙 ≤

𝑁
∑

𝑖
𝑃𝑇𝐷𝐹𝑙,𝑖 ⋅

(

𝐺𝑖 −𝐷𝑖
)

≤ 𝑃max
𝑙 , ∀𝑙 (31)

𝐷𝑖 ≥ 0, ∀𝑖 (32)

𝐺min
𝑖 ≤ 𝐺𝑖 ≤ 𝐺max

𝑖 , ∀𝑖, (33)

here 𝐺𝑖 and 𝐷𝑖 denote the power generation offer and power demand
id at node 𝑖, respectively. 𝑔𝑖(𝐷𝑖) is a block curve describing the
orresponding price-sensitive demand bid. Note that 𝑔𝑖(𝐷𝑖) is a constant
or a fixed demand bid. 𝑐𝑖 denotes the unit cost of generation resource
t node 𝑖. PTDF is an acronym for power transfer distribution factor.
𝑇𝐷𝐹𝑙,𝑖 measures the change in the power flow on line 𝑙 given a unit
f power injection at node 𝑖. 𝑃max

𝑙 is the capacity of power line 𝑙. 𝐺min
𝑖

nd 𝐺max
𝑖 denote the minimum and the maximum output power of the

eneration resource at node 𝑖. The objective function (29) calculates the
verall surplus of the power consumers and power suppliers. Eq. (30)
nsures the conservation of energy. (31) ensures that the power flow at
ach power line is within its capacity. (32) and (33) ensure the demand
ids and the generation offers are within feasible ranges, respectively.

The optimal dispatch of generation resources and the cleared de-
and bids are determined by solving the above DCOPF. The LMP at
ode 𝑖 is calculated by:

𝑀𝑃𝑖 = 𝜆
⏟⏟⏟
Energy

+
𝑁𝐿
∑

𝑙=1
𝑃𝑇𝐷𝐹𝑙,𝑖 ⋅ 𝜇

+
𝑙 +

𝑁𝐿
∑

𝑙=1
−𝑃𝑇𝐷𝐹𝑙,𝑖 ⋅ 𝜇

−
𝑙

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Congestion

, (34)

where 𝑁𝐿 is the number of power lines in the power network. 𝜆 is the
dual variable for the equality constraint (30). 𝜇+

𝑙 and 𝜇−
𝑙 are the dual

variables for the inequality constraints (31). Note that the LMP at a
node can be divided into two components. The first component is the
energy cost that equals 𝜆. The second component is the congestion cost
that depends on PTDF, 𝜇+

𝑙 , and 𝜇−
𝑙 . Although the energy cost is the same

across the power network, LMPs at different nodes can be different due
to different congestion costs. If there is no congestion in the power
network, then LMPs at all the nodes will be the same. Note that the
cost of energy loss during transimission is ignored in this formulation.

4. Numerical example

We validate the performance of the proposed approach based on
a simulation study in this section. We first describe the simulation
7

settings and introduce our data sources. Then, we evaluate our LMP
Table 1
Parameters of the road network connecting five load centers.

Direction Capacity (veh/h) Free-flow time (hr) Wireless charging

1→2 300 3 No
1→4 400 2 Yes
1→5 500 4 Yes
2→1 300 3 No
2→3 300 3 No
2→4 600 2 Yes
3→2 300 3 No
3→5 400 2 No
4→1 400 2 Yes
4→2 600 2 Yes
4→5 500 3 No
5→1 500 4 Yes
5→4 500 3 No
5→3 400 2 No

Table 2
O–D matrix for the road network connecting five load centers.

Load center 1 2 3 4 5

1 0 150 200 380 460
2 150 0 150 420 100
3 200 150 0 200 200
4 350 380 200 0 200
5 280 100 200 200 0

forecasting performance by comparing the proposed GSP-based LMP
forecasting model with two baseline models. Next, we investigate the
performance of wireless charging load estimation using the proposed
dynamic traffic flow model. Finally, we demonstrate that the proposed
bidding strategy outperforms a baseline bidding strategy in terms of
energy costs for operating the wireless charging roads.

Note carrying out a real-world experiment would be extremely
expensive, for example, a pilot project in Gotland is expected to cost
$12 million to deploy coils across 2.5 miles of road [30]. Meanwhile,
real-world test of the integration of wireless charging roads into the ex-
isting power market will be a large scale project that involves multiple
stakeholders as well as their intensive efforts, which is out of our scope
at the current stage.

4.1. Simulation settings and data sources

In this numerical example, we study the coupled transportation–
power system as illustrated in Fig. 11, where five load centers are
connected by a road network that consists of both normal roads and
wireless charging roads. The corresponding power network is com-
prised of eight nodes, three of which represent the wireless charging
roads with energy storage. The minimum and maximum remaining en-
ergy of each ESS (𝐸min and 𝐸max) are 5 MWh and 25 MWh, respectively.
The maximum output power of each ESS (𝑃max

𝐸 ) is 5 MW.
Every road in this study is assumed to be a two-way street. Table 1

presents the parameters of the road network. Each row provides us
information about one direction of a road, which includes its direc-
tion, capacity, free-flow time, and wireless charging lane availability.
Throughout this study, 25% and 75% capacities of each wireless charg-
ing road are assigned to its wireless charging lanes and normal lanes,
respectively, for both directions. The wireless charging power is 20 kW
per EV. Note that traffic flow into a road changes over time in a real-
world road network. To simulate this variation, we set the traffic flow
into a road at any time step as a product of a base flow value and
a scale factor. Table 2 shows an origin–destination (O–D) matrix for
our road network, which provides the base value of traffic flow into
each road by solving a static traffic assignment [31] at each hour. The
scale factors are obtained by normalizing a reference flow curve via
dividing by the mean. We collect ten-week data (from Jun. 7 to Aug.
15, 2016) on Yellow Cab trips in New York City [32] as the reference
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Table 3
Capacities of power lines.

Power line 1–2 1–5 2–3 3–5 4–5 1–6 6–4 2–7 7–4 1–8 8–5

Capacity (MW) 80 200 100 150 60 50 50 50 50 50 50
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Fig. 6. First two week of the scale factors derived from the reference flow curve.

Fig. 7. First two week of the scale factors derived from the five reference cost curves.

flow curve. Fig. 6 displays the first two week of the scale factors derived
from the reference flow curve. Clearly the traffic is always heavier
during daytime hours than at night. The morning and evening rush
hours correspond to the scale factor curve’s peaks during weekdays.

As depicted in Fig. 1(b), the corresponding power network consists
of eight nodes, which are connected by the power lines. Table 3
provides the capacity of each power line, where 𝑖–𝑗 refers to the power
line that connects load centers 𝑖 and 𝑗. Nodes 1–5 represent five load
enters in the power network. Each load center has a power plant with
minimum output power of 10 MW. The maximum output powers of

hese five power plants are 150 MW, 200 MW, 150 MW, 300 MW,
nd 250 MW, respectively. The generation costs of power plants in
he real world can vary with time. To simulate this variation, we set
he unit cost of energy generated by a power plant as a product of a
ase cost value and a scale factor. The base cost values for these five
ower plants at nodes 1–5 are 35 $/MWh, 20 $/MWh, 30 $/MWh,
5 $/MWh, and 40 $/MWh, respectively. The scale factors are derived
y normalizing reference cost curves via dividing by the mean. In this
tudy, we collected ten-week hourly LMP data (from Jun. 7 to Aug.
5, 2021) of five power plants located in the capital region, central
egion, northern region, western region, and New York City region of
ew York State [33] as the reference cost curves. Fig. 7 shows the first

wo week of the scale factors derived from these five reference cost
urves. Clearly, the generation costs can change significantly over time.

Similarly, the electric load of a load center also changes with time.
o simulate this variation, we set the electric load of a load center as
product of a base load value and a scale factor. The base load values

or load centers 1–5 are 100 MW, 150 MW, 100 MW, 120 MW, and
50 MW, respectively. The scale factors at different hours are obtained
y normalizing reference load curves via dividing by the mean. We
ollected ten-week hourly load data (from Jun. 7 to Aug. 15, 2021)
or five zones (Capital, Central, North, West, and New York City) in
ew York State [34] as the reference load curves for load centers 1–
, respectively. Fig. 8 displays the first two week of the scale factors
erived from these five reference load curves. A clear daily pattern is
bserved in each load profile.

We also collected ten-week (from Jun. 7 to Aug. 15, 2021) historic
emperature measurements recorded by five weather stations located
n the capital region, central region, northern region, western region,
8

f

Fig. 8. First two week of the scale factors derived from the five reference load curves.

and New York City region of New York State from weather.com [35].
Note that the temperature data are required in LMP forecasting.

4.2. LMP forecasting performance

In this subsection, we evaluate the performance of the proposed
LMP forecasting model by comparing it with that of two baseline
models. Given there exists a strong daily pattern in the LMP data, the
first baseline model is a seasonal vector autoregressive (VAR) model
with seasonal period 𝑆 = 24. This model includes a non-seasonal
autoregressive (AR) component at lag 1 and a seasonal autoregressive
component at lag 1, which is expressed by the following equation:

(1 −𝛷1𝐵)(1 − 𝛹1𝐵
12)𝒚(ℎ) = 𝝐(ℎ), (35)

where 𝐵 denotes the lag operator. 𝛷1 is the coefficient matrix of the
non-seasonal AR(1) term. 𝛹1 is the coefficient matrix of the seasonal
AR(1) term. Note that an equivalent form of this VAR model can be
written as:

𝒚(ℎ) = 𝛷1𝒚(ℎ − 1) + 𝛹1𝒚(ℎ − 24) + (−𝛷1𝛹1)𝒚(ℎ − 25) + 𝝐(ℎ). (36)

he above equation describes a vector autoregressive model with pre-
ictors at lags 1, 24, and 25. The coefficient matrices can be estimated
hrough maximum likelihood estimation. We name the first baseline
odel S-VAR.

The second baseline model is identical to the proposed regression
odel except for the modeling of the error terms. Instead of the
roposed GSP-based approach, a VAR model is employed to spatio-
emporally model 𝝐(ℎ):

(ℎ) = 𝛤1𝝐(ℎ) + 𝛤2𝝐(ℎ − 24) + 𝝎(ℎ), (37)

here 𝛤1 and 𝛤2 are coefficient matrices consisting of parameters that
an be estimated through maximum likelihood estimation. 𝝎(ℎ) denotes
he residual term. The AR term at lag 24 is introduced to capture the 24-
our periodicity existing in the error terms. We call the second baseline
odel VAR-Error. In this numerical example, the error vector 𝝐(ℎ) has
dimension of 8. Therefore, 𝛤1 and 𝛤2 have 64 parameters in each,

umming up to a total number of 128 parameters in this case. These
arameters need to be fitted with historical data.

Note that we concentrate on evaluating the LMP forecasting perfor-
ance in this subsection. To simplify our study, we assume there is no
SS associated with any wireless charging road. The hourly traffic flow
n each road is obtained through traditional static traffic assignment
31]. The wireless charging roads have to draw an exact amount of
ower from the grid to satisfy the charging demand of EVs. The LMPs
t different nodes in the power network are obtained by solving DCOPF

or each hour within the simulation horizon.
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Table 4
Average RMSEs of LMP forecasting.

Node 1 2 3 4 5 6 7 8 Mean

Proposed ($) 15.42 15.20 16.48 15.44 20.76 15.81 16.54 15.54 16.40
VAR-Error ($) 15.83 15.59 17.24 16.16 21.47 16.25 17.28 16.24 17.01
S-VAR ($) 52.95 64.05 57.00 53.62 53.71 60.77 53.49 52.91 56.06
Table 5
Average MAPEs of LMP forecasting.

Node 1 2 3 4 5 6 7 8 Mean

Proposed (%) 29.33 32.38 33.42 33.14 36.85 31.23 29.73 32.95 32.38
VAR-Error (%) 29.86 33.22 33.42 34.47 36.80 32.29 30.84 34.70 33.20
S-VAR (%) 49.63 63.11 52.64 50.25 50.11 52.19 49.37 53.44 52.59
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Fig. 9. Performance of the proposed dynamic traffic flow model.

We carry out a rolling forecast test to evaluate the forecast accuracy
for each model, a method widely adopted in previous studies [36–
38]. The training window size for both the proposed model and the
baseline models is one week. The testing window size is the same as
the prediction horizon, which is 24 h. The training window slides one
day forward after each iteration in the rolling forecast tests. For each
iteration, one week of LMP data in the current training window are
used to fit the models, the performances of which are evaluated in the
following one-day testing data. It is worth noting that the LMP data are
standardized using a z-score during each training process. We measure
the forecast performance by calculating the corresponding average root
mean square errors (RMSEs) and average mean absolute percentage
errors (MAPEs). Tables 4 and 5 present average RMSEs and average
MAPEs of each model for different nodes in the given power network.
Clearly, the proposed approach outperforms the baseline models in
terms of both RMSE and MAPE. The proposed method achieves a higher
forecast accuracy because it better captures the intrinsic properties of
the error terms. The VAR-Error model is more likely to overfit the error
terms due to its relatively large number of parameters. Nonetheless, the
performance difference between these two methods is small and both of
them achieve significantly higher accuracy than the S-VAR model. The
reason that S-VAR model performs worse than the other two models is
because it is a pure autoregressive model, specifying that the output
vector depends linearly on its own previous values and a stochastic
error vector term. S-VAR model does not require additional covariates
such as temperature or time index, making it more generally applicable.
However, due to the lack of information from independent variables as
well as the neglect of error vector during forecast, S-VAR is likely to
achieve lower accuracy than the other two models.

4.3. Wireless charging load estimation performance

In this subsection, we investigate the performance of wireless charg-
ing load estimation using the proposed dynamic traffic flow model. The
9

simulation time interval 𝛥𝑇 is 0.1 h. Recall that the hourly traffic flows
into a road are obtained through traditional static traffic assignment.
The traffic flows at time steps between any two adjacent hours are then
derived through linear interpolation. The initial values of 𝑄𝑊 and 𝑄𝑁
or each direction of a wireless charging road are:

𝑊 (0) = 0.5 ⋅ 𝑇𝐹 ⋅ 𝐶𝑊 (38)

𝑄𝑁 (0) = 0.5 ⋅ 𝑇𝐹 ⋅ 𝐶𝑁 , (39)

hich indicate an initial traffic condition with half the critical density.
he charging price for each EV 𝑝𝑊 (𝑡) is 15 $/hour at all times. The
ime of value 𝑝𝑇 is 10 $/hour. The bonus value of selecting wireless
harging for an EV is 5 $/hour. The hyperparameter 𝛼 = 0.2.

Fig. 9 displays the performance of a two-week traffic simulation for
ne direction of a wireless charging road using the proposed dynamic
raffic flow model. The upper and middle subplots show the number
f vehicles on wireless charging lanes and normal lanes (𝑄𝑊 (𝑡) and
𝑁 (𝑡)), respectively. A clear daily pattern can be observed in both

urves. The traffic during daytime hours is heavier than nighttime
ours for both wireless charging lanes and normal lanes. Being propor-
ional to the quantity of EVs on the wireless charging lanes, the wireless
harging load is therefore significantly larger during daytime, allowing
pportunity for energy arbitrage through the ESS. The bottom subplot
ecords the proportion of EVs that choose to enter wireless charging
anes at different hours. Not surprisingly, more EVs will select wireless
harging roads if the normal lanes get crowded, thereby increasing
he wireless charging load. We are unable to quantitatively measure
he performance of the proposed wireless charging load estimation
ethod at now because of unavailability of real-world system and
ata. Nevertheless, all these patterns observed from this simulation
omply with our expectation for traffic conditions of real-world wireless
harging roads.

.4. Energy cost comparison

The primary objective of this study is to provide wireless charging
oad owners with an efficient demand bidding strategy, or equivalently,
control strategy of ESS that saves their energy costs for providing

V charging services. To validate its effectiveness in cost reduction,
e compare the performance of the proposed approach with a naive
idding strategy, which serves as the baseline algorithm.

The adopted naive bidding strategy for each wireless charging road
s described as follows:

• Step 1: Calculate the average LMP at each hour in a day based on
the historic LMPs of the last seven days.

• Step 2: Discharge the ESS with a fixed output power (𝐸max −
𝐸min)∕8 during the eight hours with the highest average LMPs.
The corresponding demand bid is a fixed bid that equals the
difference between the wireless charging load estimate and the
ESS output.
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Fig. 10. Grid power drawn by a wireless charging road during the first two weeks of
imulation under the proposed and the baseline bidding strategies.

Table 6
Cost comparison between the proposed price sensitive bidding strategy and the baseline
bidding strategy.

Charging road 1–4 2–4 1–5 Mean

Proposed ($) 85,034 201,337 158,765 148,379
Baseline ($) 94,070 210,615 169,004 157,896
Percentage saving (%) 9.61 4.41 6.06 6.03

• Step 3: Charge the ESS with a fixed input power (𝐸max −𝐸min)∕16
during the remaining 16 h with the lower average LMPs. The
corresponding demand bid is a fixed bid that equals the sum of
the wireless charging load estimate and the ESS input.

The above three steps are repeated for every testing day. The moti-
vation behind this method is to achieve energy arbitrage by storing
electricity during low price period (usually nighttime hours) and re-
lease the stored energy for EV charging during peak hours when the
price rises. This simple yet effective strategy of storing energy during
off-peak hours is popular among electricity cost-saving studies using
ESSs [39].

We simulate the electricity market clearing process for nine weeks
based on the simulation settings and the data sources introduced in
Section 4.1. The first week of data are used for initial training of
the proposed LMP forecasting model. Table 6 compares the entire
energy costs using the proposed price-sensitive bidding strategy and the
baseline bidding strategy for each wireless charging road in our 9-week
simulation study. The proposed approach yields lower energy costs
for all three wireless charging roads. On average, a 6% cost saving is
achieved by replacing the baseline bidding strategy with the proposed
price sensitive bidding strategy.

The left side y-axes of Figs. 10(a) and 10(b) display the grid power
drawn by a wireless charging road in the first two weeks of simulation
under the proposed bidding strategy and the baseline bidding strategy,
respectively. The right side y-axes present the corresponding LMPs.
Clearly, both bidding strategies tend to bid more quantity when the
electricity price is lower. The baseline bidding strategy yields a more
regular daily pattern due to its naive bidding rules. Figs. 11(a) and
11(b) show the remaining energy of a wireless charging road’s ESS
during the first two weeks of simulation under the proposed and the
baseline bidding strategies, respectively. Both approaches charge the
ESS when the LMP is relatively low and discharge the ESS to serve the
wireless charging load when the LMP rises for each day. Similarly, the
baseline bidding strategy gives a more regular daily pattern due to its
10

naive rule-based algorithm. b
Fig. 11. Remaining energy of a wireless charging road’s ESS during the first two weeks
of simulation under the proposed and the baseline bidding strategies.

Table 7
Grid pressure indicator results.

Indicator TAM of LMP TASD of LMP

Proposed ($) 37.200 1.786
Baseline ($) 37.432 1.833

Note that the proposed price-sensitive bidding strategy can help
alleviate the power grid pressure. Recall that a LMP is a sum of an
energy price and a congestion price. The energy price is the same
across the power network. The congestion price varies depending on
the congestion level. If no congestion exists in the power network, then
LMPs at different nodes will be the same. Therefore, we can use time
average of the maximum (TAM) of the LMP and the time average of
the standard deviation (TASD) of the LMP within a power network as
two indicators of grid pressure [40]. Their formulations are as follows:

TAM of LMP = 1
𝑇

𝑇
∑

𝑡=1
max

{

𝐿𝑀𝑃𝑖(𝑡)|𝑖 = 1,… , 𝑁𝑏
}

(40)

TASD of LMP = 1
𝑇

𝑇
∑

𝑡=1

√

√

√

√

√

1
𝑁𝑏

𝑁𝑏
∑

𝑖=1

(

𝐿𝑀𝑃𝑖(𝑡) −
1
𝑁𝑏

𝑁𝑏
∑

𝑘=1
𝐿𝑀𝑃𝑖(𝑡)

)2

(41)

here 𝑁𝑏 denotes the number of buses in a power grid. 𝐿𝑀𝑃𝑖(𝑡) is
he LMP at the 𝑖th bus at time 𝑡. Table 7 presents the results of these
wo grid pressure indicators. The proposed price-sensitive bidding strat-
gy leads to lower grid pressure compared with the baseline bidding
trategy in terms of these two indicators.

. Conclusion

This paper develops an efficient price-sensitive bidding strategy to
educe electric energy cost for operating a wireless charging road with
n energy storage system. The proposed bidding strategy is formulated
pon a model predictive control framework, which requires estimates
f future LMPs and wireless charging load. In this study, we propose
composite statistical model based on graph signal processing and

inear regression to forecast future LMPs. A point queue-based traffic
low model is formulated to simulate the future EV traffic flow, from
hich the wireless charging load is estimated. Our numerical example
emonstrates that the proposed price-sensitive bidding strategy can
ffectively achieve a 6% energy cost saving on average. Meanwhile, the
imulation results indicate the proposed approach not only saves the
nergy cost but also reduces the grid pressure compared to the baseline

idding strategy.
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Given the proposed bidding strategy is based on an MPC framework
that takes LMP forecasts and wireless charging load estimates as inputs
and outputs an optimal bid-quantity price pair, the performance of the
proposed approach is highly dependent on the quality of these two
estimates. More accurate predictions of LMP and wireless charging load
is likely to yield more energy cost savings as well as grid pressure
alleviation. It should be noted all the results shown in this study
are based on simulations. Real-world cases can be significantly more
complex and involve more uncertainties. The performance can vary
case by case depending on the accuracy of charging load estimates and
LMP forecasts.
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