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Behind-the-Meter 
Resources

Data-driven modeling, monitoring, and control.

By Nanpeng Yu , Wenyu Wang , and Raymond Johnson 

EHIND-THE-METER 
(BTM) resources are 
distributed energy 
resources (DERs), 
such as rooftop solar 

photovoltaics (PVs), electric vehi-
cles, and battery storage systems, 
located on the customer side of 
smart meters. Driven by monetary 
incentives, declining costs, and 
increasing electricity service inter-
ruptions, the penetration of BTM 
resources has been increasing 
exponentially in the past few 
years. For example, the small-
scale BTM solar PV capacity in 
the United States has quickly 
increased from 7,642 MWac in 
September 2015 to 34,029 MWac 
in February 2022.

On the one hand, in addition to 
the energy they produce, BTM 
resources provide a wide variety of grid services, such as 
peak capacity reduction, frequency regulation, voltage 
support, and three-phase load balancing. On the other 
hand, the rising penetration of BTM resources in power 
distribution systems causes increased voltage fluctua-
tions, extra wear and tear on the power equipment, the 
degradation of power quality, escalated cybersecurity risk, 
and the need for more complex protection systems. The 
lack of visibility and high uncertainties associated with 
BTM resources make it challenging for electric utilities to 
properly model, monitor, and control these DERs. To make 

matters worse, many electric utilities do not have the data 
required to develop accurate secondary distribution net-
work models, which include the phase connectivity of the 
service transformers, transformer-to-meter mapping, and 
distribution system line parameters.

Most of the existing tools for system modeling, moni-
toring, and control are based on physical models of distri-
bution systems. These tools rely heavily on accurate 
models of distribution systems and BTM resources, which 
could be difficult for electric utilities to develop and main-
tain. Moreover, model-based tools often depend on opti-
mization and control algorithms that do not scale 
efficiently with the number of BTM resources and the dis-
tribution grid size. Recent advances in machine learning 
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(ML) technologies, which are capable of dealing with 
uncertainties associated with BTM resources and 
unknown distribution system models, make them suit-
able tools for managing distribution systems with high 
penetrations of BTM resources. To improve the modeling, 
monitoring, and control of power distribution systems 
with BTM resources, this article introduces state-of-the-
art data-driven algorithms that complement model-
based approaches.

Data-Driven Modeling for Distribution  
Systems With BTM Resources
Accurate modeling of distribution systems is crucial to the 
management and control of distribution systems with 
BTM resources. To fully take advantage of BTM resources, 
utilities need advanced tools, such as three-phase power 
flow, distribution system state estimation, three-phase 
optimal power flow, network reconfiguration, and volt-var 

control (VVC). These tools 
depend on accurate mod-
eling of the distribution 
system. Inaccurate mod-
eling will cause issues, 
such as inaccurate power 
flow analysis, the failure 
of power system protec-
tion, inaccurate hosting 
capacity analysis, and 
feeder load unbalance. 
The modeling informa-
tion of distribution net-
works is usually recorded 
in systems, such as enter-
prise resource planning 
systems, distribution 
management systems, 
and geographic informa-
tion systems (GISs). How-
ever, for most utilities, 
these records are either 
incomplete or inaccurate. 
During the long history of 

maintenance and upgrades, GIS records have accumulat-
ed errors and missing records due to undocumented net-
work modifications. Thus, how to model the distribution 
system accurately becomes a significant challenge.

Figure 1 is an example of a distribution system. The 
distribution system starts from a substation, which is con-
nected to multiple feeders. Each feeder sends electric 
power through primary distribution lines in three phases 
of A, B, and C. Different distribution transformers have dif-
ferent phase connections—they can be single phase, two 
phase, or three phase. The distribution transformers step 
down the voltage and send electricity to customers, some 
of whom have installed BTM resources, such as solar PVs. 
This example shows the three aspects of a distribution 

system model: first, the phase connection and topology, 
i.e., how the lines and components are connected; second, 
the mapping between transformers and customers, i.e., 
which transformer serves which customers; and third, the 
parameters of circuit components, such as the impedance 
of wires. These three aspects are elaborated in the follow-
ing sections.

Phase Identification
The goal of phase identification is to determine the phase 
connectivity of each component, such as customer and 
distribution transformers, in the circuit. As shown in Fig-
ure 1, a customer or transformer can be connected to a 
single phase (A, B, or C), two phases (AB, BC, and CA), or 
all three phases (ABC). In primary feeders, the topology 
and phase connectivity recorded by GISs are mostly cor-
rect. However, in secondary distribution networks, the 
GIS records of the phase connectivity of distribution 
transformers are usually inaccurate. Thus, the phase 
connections of distribution transformers need to be cor-
rectly identified.

Knowing the phase connectivity of distribution sys-
tems is crucial to accommodate the growing number of 
BTM resources. Unlike transmission systems, which can 
be treated as balanced systems and analyzed by single-
phase power flow, distribution systems are usually unbal-
anced. In distribution systems, the lines are usually not 
transposed, and the electric loads in the three phases are 
usually unbalanced. Thus, three-phase power flow analy-
sis is essential for the accurate management of BTM 
resources. If the phase connectivity is unknown or inaccu-
rate, then system control will depend on erroneous three-
phase power flow analysis, which can further cause severe 
unbalance and unstable voltage. In traditional practice, to 
identify phase connectivity, utilities send field crews to 
measure phase angles and determine the phase connec-
tion by using phase meters. Such practice is labor-inten-
sive, time-consuming, and expensive. To identify phase 
connections more efficiently, data-driven technologies 
have been developed.

Current data-driven phase identification technologies 
can be grouped into three ML categories: unsupervised 
ML, supervised ML, and physics-informed ML, as follows:

xx Unsupervised ML: Unsupervised ML discovers pat-
terns from data without labels (i.e., correct phase con-
nection samples). There are three typical approaches. 
In the first approach, customers are assigned to dif-
ferent phases so that, in each phase, the aggregated 
power consumption measured by smart meters 
matches the power supply measured at the feeder 
head. In the second approach, customers’ smart 
meter data are compared with the supervisory con-
trol and data acquisition (SCADA) data of each phase 
at the feeder head. The phase that has the highest 
correlation is determined to be the customers’ phase. 
In the third approach, the customers whose smart 
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meter data are similar to one another are grouped 
into one cluster, and they are determined to have the 
same phase connection.
xx Supervised ML: In this approach, a small number 
of customers’ phase connections is known (i.e., 
“labels”). Using the labels, supervised ML algo-
rithms can discover the relationship between smart 
meter data and phase connections. Based on the 
discovered relationship, functions are derived to 
determine the phase connection of unlabeled 
smart meters.

xx Physics-informed ML: In this technology, based on the 
physical model of three-phase power flow, a precise 
model is developed. In this model, given the phase 
connections and power measurement data, smart 
meter voltage data can be calculated. The phase con-
nections are then determined by minimizing the error 
between the calculated voltages and true values.

Table 1 summarizes the three groups of data-driven 
phase identification technologies. Utilities can select 
which technology to use based on their data availability 
and requirement for accuracy.

TABLE 1. A summary of data-driven phase identification technologies.

Unsupervised ML Supervised ML Physics-Informed ML

Needed data and 
information

�xxSmart meter (voltage magnitude 
and power)

�xSCADA data

�xxSmart meter (voltage 
 magnitude)

�xSCADA data
�xxSamples of correct phase 

labels for transformers/ 
meters

�xxSmart meter (voltage magni-
tude and power)

�xSCADA data
�xxPhysical primary feeder 

model and locations of smart 
meters

Advantages �xxAccurate phase identification 
results

�xMinimum data requirement

�xxHigher accuracy than unsuper-
vised ML

�xxDoes not require physical 
 primary feeder model

�xxHighest phase identification 
accuracy

�xExcellent interpretability

Disadvantages �xxAccuracy is not as high as the other 
two methods

�xxRequires physical primary feeder 
model

�xxLess accurate than physics-
informed ML

�xxRequires samples of correct 
phase labels

�xxRequires more network  
information than the other  
two methods
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Figure 1. A distribution system model with BTM resources.
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Transformer-to-Customer Mapping
Transformer-to-customer mapping is an important com-
ponent of the physical modeling of secondary distribu-
tion networks. It maps each distribution transformer to 
the customers being served. Accurate transformer–cus-
tomer mapping can help analyze and coordinate the 
increasing BTM resources on secondary feeders. However, 
in current utility systems, this mapping usually contains 
errors and missing records. Inaccurate transformer–cus-
tomer mapping hinders optimal feeder and asset capacity 
planning. If utilities upgrade distribution feeders on the 
basis of inaccurate transformer–customer mapping, then 
some transformers will be overloaded or underutilized. 
Inaccurate mapping can also impact outage management; 
locating outages and restoring power can be delayed.

Most of the transformer–customer mapping technolo-
gies rely on topology estimations of the secondary distri-
bution networks. Once the secondary topology is 
discovered, the transformer–customer mapping can be 
easily determined. Some of the representative technolo-
gies are summarized as follows:

xx Voltage correlation-based approach: In this approach, 
smart meters with highly correlated voltages are 
deemed close to one another. The correlation, the volt-
age level, and the known locations of customers are 
combined to determine the topology of secondary dis-
tribution feeders.
xx Bottom-up regression approach: In this approach, smart 
meter measurements of voltage and power are used 
to fit regression models based on power flow. The 
topology of the secondary distribution feeder is built 
by adding customers one by one from the bottom 
(downstream) to the top (upstream) so that the mod-
el’s error is minimized.
xx Graphical model approach based on power flow: In this 
approach, graphical probability distribution models of 
nodal power injection and voltage are constructed 
based on power flow equations. By examining the 
conditional dependence of voltage measurements in 
the graphical model, the topology of the secondary 
distribution feeder is determined.
xx Chow–Liu tree-based approach: This approach first finds 
the mutual information (which represents the mutual 
dependence) between each pair of customers’ smart 
meter voltage. Then, an acyclic tree connecting all cus-
tomers is built such that the mutual information 
among neighbors is maximized. In this way, the topol-
ogy of the secondary network is discovered. The trans-
former–customer mapping can be determined by 
combining the topology, the locations of transformers 
and customers, and existing GIS mapping information.

In summary, the voltage correlation-based approach 
and the bottom-up regression approach rely on complete 
data records, such as customer voltage, power, and loca-
tions. These approaches may have more errors when the 
data are incomplete and missing. The graphical model 

approach based on power flow and the Chow–Liu tree-
based approach require less data and are more robust in 
the presence of incorrect and missing meter data.

Parameter Estimation
The task of parameter estimation is to estimate the 
parameters, such as line impedances, of components in 
distribution systems. Without accurate parameters, utili-
ties cannot perform accurate power flow analysis, which 
will further cause errors in the management and coordi-
nation of BTM resources. Parameter estimation in distri-
bution systems is more challenging than in transmission 
systems. In transmission systems, single-phase models 
are widely used because the load is very balanced, and the 
three-phase lines are usually fully transposed. In distribu-
tion systems, however, single-phase models are not suffi-
cient for accurate modeling because the load is less 
balanced, and the lines are rarely transposed. This leads to 
unequal diagonal and off-diagonal elements in line 
impedance matrices. Therefore, a three-phase model is 
required for the distribution system. Thus, instead of esti-
mating one impedance, a 3 × 3 impedance matrix needs 
to be estimated for each line section.

Various technologies have been developed for parame-
ter estimation. They can be classified into three groups 
based on the type of sensor data that they use. The three 
groups are based on SCADA data, phasor measurement 
unit (PMU) data, and smart meter data, which are summa-
rized as follows:

xx Technologies based on SCADA data: These approaches 
utilize SCADA data, such as power and current injec-
tions, to estimate line parameters in a single-phase 
model. One representative technology is joint state 
estimation and parameter estimation, in which sus-
picious parameter values are discovered by analyz-
ing abnormal residuals in the state estimation. The 
correct parameters are then estimated by expanding 
the state vectors with suspicious parameters in a 
reformulated state estimation problem. The draw-
back is that the method is designed for single-phase 
transmission systems, and it is not applicable to the 
three-phase parameter estimation required for distri-
bution systems.
xx Technologies based on PMU data: These approaches uti-
lize PMU data, such as those from three-phase voltage 
and current phasors, to build more accurate three-
phase power flow models, which are critical for distri-
bution feeders. However, this approach requires 
widespread installations of PMUs, which is quite 
expensive for utilities at the distribution level.
xx Technologies based on smart meter data : These 
approaches utilize smart meter data, such as the 
voltage and power consumption of customers. One 
representative technique is a physics-informed 
graphical learning method. In this method, a graph-
ical learning model is constructed based on 
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three-phase power flow. This model links three-
phase line parameters and the corresponding smart 
meter voltage values. The correct parameters values 
are obtained by tuning these parameters so that the 
corresponding voltage approximates the actual 
smart meter voltage. The advantage of this approach 
is that the needed sensor data are readily available 
and applicable to three-phase parameter estimation.

To summarize, for SCADA data-based technologies, the 
data requirement is easy to fulfill, but it is not applicable 
to three-phase distribution feeders. PMU data-based tech-
nologies can work with three-phase distribution feeders, 
but the required data are usually unavailable. Smart 
meter-based technologies have advantages in both three-
phase applicability and data accessibility.

Monitoring BTM Resources
The operation, control, and planning of modern distribu-
tion systems rely on the accurate monitoring of BTM 
resources. The monitoring of BTM resources can be clas-
sified into two domains based on the time horizon: the 
short term and the long term. In the short-term domain, 
the power generation of BTM resources needs to be 
monitored in real time or near real time, which is crucial 
for real-time control of distribution networks. Without 
accurate data of BTM resource generation, smart grid 
technologies, such as three-phase optimal power flow, 
network reconfiguration, and VVC, cannot be correctly 
applied, leading to system instability, lower efficiency, 
and system failures. However, BTM resources are not 
directly measured by smart meters. Utilities have only 
the net load measurement, and thus, the power genera-
tion of BTM resources needs to be estimated based on 
the available data.

In the long-term domain, accurate forecasts of the 
capacity of BTM resources in future years are crucial to 
the planning of grids. To accommodate the increasing 
number of BTM resources, distribution systems need to 
be upgraded and expanded accordingly. System plan-
ners need to make sure that the hosting capacity of dis-
tribution networks can meet the growth of BTM 
resources. Details of the two monitoring types are elabo-
rated in the following.

Short-Term Estimation of BTM Resources
Residential solar PV systems are growing rapidly around 
the world. Increasing solar PV generation brings problems, 
such as feeder overvoltage, voltage fluctuations, reverse 
power flow, and protection system malfunction. However, 
new BTM resources with smart inverters also provide the 
distribution operator the capability to control the distribu-
tion system more effectively. To avoid the problems and 
take advantage of the new capabilities, utilities need to 
monitor solar PV generation accurately and then operate 
the distribution system accordingly.

However, direct monitoring of solar PV generation is 
difficult. Most residential solar PV systems are connected 
behind smart meters. Figure 2 presents an example of a 
house’s net load, which is its actual load minus the solar 
PV generation. From the utility side, only the net load 
is monitored, and the actual solar PV generation is 
unknown. The BTM solar generation estimation is also 
called net load disaggregation because it tries to disaggre-
gate the net load into the electric load and solar PV gener-
ation. Current net load disaggregation technologies can be 
classified into two groups: model-based methods and 
data-driven methods.

The model-based methods are based on the well-stud-
ied physical models of solar PV systems. Such models can 
calculate solar PV generation, given the needed parame-
ters and inputs, including solar irradiation, solar PV size, 
inverter efficiency, module type, and solar PV geometry 
data. However, model parameters are often unreliable due 
to inaccurate records and PV array degradation, making 
pure model-based methods inapplicable to most residen-
tial solar PV systems. In comparison, data-driven methods 
are more applicable. These methods rely on smart meter 
data, SCADA data, and weather-related data, which are 
readily available. Data-driven methods can be further clas-
sified into two groups: supervised learning methods and 
unsupervised learning methods.

The supervised learning for net load disaggregation is 
similar to the supervised ML for phase identification, i.e., 
deriving prediction functions based on labeled data. Here, 
the labeled data are the historical solar PV generation and 
net load data of customers. Using the labeled data, super-
vised ML algorithms derive functions that map net load 
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Figure 2. The net load disaggregation of a house. The (a) net load equals the (b) load minus (c) solar PV generation.
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data to solar PV generation. These functions are then used 
to perform net load disaggregation for houses with no 
labels. Supervised learning methods rely on solar PV gen-
eration data, which are typically unavailable for BTM 
resources. Thus, their applicability is very limited.

Unsupervised learning is more applicable than super-
vised learning because it does not require historical solar 
PV generation data. Various techniques have been utilized 
in this approach, and, here, we describe a few representa-
tive methods:

xx Reference to historical load data: In this method, a cus-
tomer’s historical load data before solar PV installa-
tion are used to estimate the disaggregated load data 
after solar PV installation. This assumes that the elec-
tric load patterns before and after solar PV installation 
are similar. This assumption may not always be true 
because the customer’s energy consumption habits 
may change after solar PV installation.
xx Customer mixture model: In this method, a customer’s 
load is modeled as a combination of the consumption 
patterns of neighboring households that have no solar 
PVs. The solar PV generation is modeled as a function 
of solar irradiance. The mixture model’s parameters 
are estimated by approximating the model’s net load 
to the actual net load.
xx Joint estimation of the physical model and solar generation 
for individual customers: In this method, the solar PV 
generation and the customer load are estimated itera-
tively. In each iteration, the solar PV generation is 
updated based on its physical model, the customer 
load is updated by fitting a hidden Markov model, and 
then, the solar PV physical model is updated according-
ly. The method not only improves the net load disaggre-
gation accuracy but also provides accurate estimates of 
the solar PV physical model’s parameters, which are 
essential for solar PV hosting capacity analysis.
xx Joint estimation of the physical model and solar genera-
tion for a community of customers: This method is an 
extension of the previous method. The main differ-
ence is that, instead of one customer, a community of 
customers’ loads are updated while considering both 
the individual and population-level customer con-
sumption behavior. This method shows more accurate 
net load disaggregation results.

In summary, the method based on the use of historical 
load data may face difficulties if there is not enough histor-
ical load data before solar PV installations and if the cus-
tomer’s load behavior changes significantly over time. In 
comparison, the customer mixture model is more applica-
ble by using readily available data. The methods of joint 
estimation of the physical model and solar generation are 
among the state-of-art methods, which not only provide 
more accurate results but also estimate the parameters in 
the solar PV physical model, which are essential for solar 
PV hosting capacity analysis. Some recent research work 
on net load disaggregation also considered energy storage 

systems, electric vehicles, and demand response resources. 
If more granular energy consumption data become avail-
able, various nonintrusive load monitoring algorithms can 
be applied to separate entire electricity usage into appli-
ance-specific individual components.

Long-Term Estimation of BTM Resources
Facing the challenges brought by BTM resources, such as 
feeder overvoltage, voltage fluctuations, reverse power 
flow, and protection malfunction, distribution systems 
need modernization accordingly. This modernization 
includes infrastructure upgrades and the application of 
smart grid technologies. The long-term estimation of BTM 
resources is crucial to feeder planning/upgrades. Utilities 
need to make sure that the hosting capacity of distribu-
tion networks meets the requirements of the fast-growing 
BTM resources. Overestimating the BTM resources will 
lead to overinvestment in infrastructures. Underestimat-
ing may lead to distribution system malfunction due to an 
inability to handle the BTM resources. In some cases, BTM 
resources can also be used to defer some feeder upgrades 
if the distribution system operator can control those 
resources appropriately.

The goal of the long-term estimation of BTM resources 
is to forecast the BTM resource installations in the future. 
The installation depends on many influential factors, list-
ed as follows:

xx Time: Adoption rates of BTM resources vary across dif-
ferent years. In recent years, we have seen an ever-
increasing number of BTM resources. Typically, the 
adoption speed will increase in the early-to-middle 
stage, due to increasing popularity, and then gradually 
slow down when the market saturates.
xx Location and climate: These are very influential. For 
example, places that have a larger number of sunny 
days have higher potential in solar power generation 
and solar PV adoptions.
xx Cost and benefit: The dropping price of solar PV has 
made solar power more affordable. The net metering 
programs enable customers to reduce electricity bills 
and sell excess power to utilities, which further encour-
ages adoption of solar PVs. In addition, government 
incentives have boosted solar PV adoption. Similar 
approaches are being used to promote the adoption of 
other types of BTM resources, such as energy storage.
xx Social and economic conditions: These conditions 
include population, education, income, age, and so on. 
For example, customers with higher income may be 
more capable of purchasing BTM resources, such as 
solar PVs and electric vehicles. Education may influ-
ence people’s recognition of new technologies and 
awareness of environmental protection.

Existing techniques for long-term BTM resource esti-
mation can be classified into two groups: aggregate diffu-
sion modeling (ADM) and agent-based modeling (ABM). 
They are explained as follows:
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xx ADM: This approach uses aggregate models to esti-
mate BTM resource adoption under influential fac-
tors. It focuses on the behavior of the whole group of 
customers. These models are estimated by fitting 
them to the historical adoption data through regres-
sion techniques. For example, in the famous Bass dif-
fusion model, the adoption rate is determined by two 
factors: the innovation factor (representing innova-
tive customers actively buying new products) and 
the imitation factor (representing customers imitat-
ing others). Other influential factors, such as costs, 
benefits, and incentives, can also be integrated into 
the model.
xx ABM: This approach describes customers as unique, 
autonomous, and adaptive agents. These agent mod-
els are assumed to have different characteristics, act 
independently, and interact with their neighbors. The 
agents’ behaviors are simulated in Monte Carlo exper-
iments, and the model parameters are estimated 
by minimizing the error between the simulated adop-
tion and the actual adoption data. The estimated 
models are then used to perform long-term BTM 
resource estimation.

To summarize these two groups of methods, ADM 
describes the social dynamics of customer behaviors in a 
macroscopic view. It has limitations in describing individ-
ual customers’ characteristics, but it has the advantage of 
requiring fewer data. ABM is stronger than ADM in 
describing individual customer’s behaviors, but it requires 
detailed customer data, which are often difficult to collect.

Data-Driven Control of Power Distribution 
Systems With BTM Resources
As the adoption of BTM resources in power distribution 
systems and buildings continues to increase, the need to 
manage the operations of DERs becomes more urgent. 
From the perspective of distribution system operators 
(DSOs), the operation of BTM resources needs to be coor-
dinated to ensure system reliability. From the perspective 
of building operators, the BTM resources should be con-
trolled to lower electricity costs and reduce electricity 
service interruptions. Due to the lack of reliable distribu-
tion network and building models, data-driven control 
solutions are becoming more suitable alternatives to the 
physical model-based control technologies. There has 
been a tremendous amount of research and develop-
ment in the area of data-driven control for power distri-
bution systems with BTM resources, due to the rapid 
advancement in ML. The availability of near-real-time 
data from advanced metering infrastructure systems, 
SCADA, microsynchrophasor measurement units, and 
building control systems is making the data-driven con-
trol technologies feasible for real-world implementation. 
We cover a promising data-driven control solution for 
power distribution systems with BTM resources in the 
following section.

Data-Driven VVC of Power Distribution  
Systems With BTM Resources
VVC determines the operation schedule of voltage regu-
lating and var control devices in the power distribution 
system as well as the real and reactive set points of BTM 
resources, such as solar PV systems and battery storage 
systems, to improve voltage quality, reduce network loss-
es, and lessen wear and tear on power equipment. The 
rapid growth of solar PV systems and electric vehicles 
makes it difficult for DSOs to keep all voltages within 
appropriate limits. VVC is typically executed within a 
two-timescale framework. In the slow timescale, the set 
points of voltage regulators, on-load tap changers, and 
capacitor banks are adjusted on an hourly basis to 
improve the voltage profile and reduce equipment wear 
and tear. In the fast timescale, the active and reactive 
power set points of smart inverters connected to solar PV 
systems and energy storage systems are changed to fine-
tune voltages and further reduce network losses on a 
minute-to-minute basis.

The existing model-based VVC methods can be catego-
rized into two schemes: centralized and distributed. In the 
centralized approach, the central controller, which has a 
complete model of the distribution network, collects mea-
surements of the distribution feeder and BTM resources 
and makes control decisions autonomously. Typical meth-
ods used in the centralized VVC scheme include deter-
ministic optimization and robust optimization. In the 
distributed approach, each voltage regulating device can 
sense local grid conditions and communicate with neigh-
boring equipment to make coordinated VVC decisions. It 
is challenging to deploy physical model-based VVC algo-
rithms in distribution circuits, due to the lack of accurate 
distribution network models. To tackle this challenge, 
data-driven methods are developed, which learn to 
choose control actions based on the operational data. In 
practice, many electric utilities, such as Southern Califor-
nia Edison, are either considering or already switching to 
data-driven VVC solutions.

Reinforcement learning (RL) is emerging as one of the 
most promising data-driven approaches to solve the VVC 
problem, which is essentially a sequential decision-mak-
ing task. RL teaches the controller(s) to make a good 
sequence of voltage regulating decisions, which yield 
proper control outcomes by using historical and/or real-
time operational data. RL leverages the framework of the 
Markov decision process (MDP) to define the interactions 
between a learning agent (e.g., the volt-var controller) 
and its environment (e.g., the power distribution grid). 
The volt-var controller and the distribution system envi-
ronment interact at each point in a sequence of discrete 
time steps, as depicted in Figure 3. At each time step, the 
volt-var controller collects the state of the distribution 
system and, on that basis, selects the control set points 
of voltage regulating devices and BTM resources. One 
time step later, in part, as a consequence of the control 
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actions, the volt-var controller receives a numerical 
reward, and the distribution system environment transi-
tions into a new state.

The action of the volt-var controller agent is defined as 
changing the set points of voltage regulating devices and 
BTM resources to new levels. The state of the distribu-
tion system environment could include nodal real and 
reactive power injections, nodal voltage magnitudes, the 
current settings of voltage regulating devices and BTM 
resources, and the global time. The reward function is 
often defined as the negative of the operational cost, 
which includes the cost of power losses, device switch-
ing costs, and voltage constraints violation costs. The 
goal of the volt-var controller agent is to learn the opti-
mal policy, which yields the highest sum of discounted 
rewards within the control horizon. The policy learned 
by the volt-var controller agent maps states to probabili-
ties of selecting each possible control action. There are 
two value functions associated with a policy, called the 
state value function and action value function, which esti-
mate how good it is for the agent to be in a given state 
and to take a given action in a given state and follow the 
policy thereafter.

Once the VVC problem is formulated as an MDP, it can 
be tackled with a wide range of RL algorithms. The RL 
algorithms can be divided into three groups: value-based 
methods, policy-based methods, and actor–critic meth-
ods. In value-based methods, the RL agent tries to learn 
the state and action value functions and use them to 
make control decisions. In policy-based methods, the RL 
agent approximates the optimal policy directly without 
the need to learn the value functions. In actor–critic 
methods, the actor tries to update the learned policy, 
while the critic tries to improve the estimates of the 
value functions.

Although RL has been successfully demonstrated in 
many complex sequential decision-making problems 
(e.g., the game of Go), there are many challenges to 
deploying it to control real-world 
distribution systems with BTM 
resources. Some of these challeng-
es and their proposed solutions 
include the following:

xx Sample efficiency of RL algo-
rithms: It is expensive to allow 
the RL-based volt-var controller 
to interact with the real-world 
power distribution system. An 
RL-based volt-var controller 
requires a large amount of 
training data to learn a good 
policy. To improve the sample 
efficiency of RL-based VVC 
algorithms, off-policy RL 
algorithms are developed in 
favor of on-policy algorithms. 

Off-policy RL algorithms evaluate and improve the tar-
get policy that is different from the behavior policy, 
which is used for action selection. In on-policy RL 
algorithms, the target policy and the behavior policy 
are the same. Thus, off-policy RL algorithms signifi-
cantly improve the sample efficiency by allowing the 
use of the historical operational data generated from 
any controller, which also include the VVC actions 
taken by the human operators. To further improve 
the sample efficiency of RL-based VVC algorithms, 
one could train surrogate models and environment 
transition functions to emulate the operations of the 
distribution system. Once trained, surrogate models 
can be leveraged to generate additional synthetic 
training samples.
xx Safety of RL algorithms: RL-based volt-var controllers 
must be capable of operating the distribution system 
in a safe manner even during unforeseen operating 
conditions, such as changes in network topology and 
BTM resources. The critical operational limits of the 
distribution system have to be satisfied all the time. To 
improve the safety of RL-based VVC algorithms, many 
safe RL algorithms have been developed. One 
approach to enforce safety constraints is to formulate 
the VVC problem as a constrained MDP by augment-
ing the original MDP with a cost function associated 
with the operating limits. The goal of the volt-var con-
troller is to minimize the total operational cost while 
ensuring that the expected discounted return with 
respect to the cost function is less than a limit. The 
other widely used approach is to add a safety layer to 
the policy neural network to improve operational con-
straint satisfaction.
xx Coordination among multiple agents: When the penetra-
tion level of BTM resources is high, the RL-based volt-
var controller needs to properly coordinate the 
operations of conventional voltage regulating devices in 
the slow timescale, with BTM resources in the fast 
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Figure 3. VVC through RL. OLTC: on-load tap changer.
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timescale. Crucial state, action, and reward information 
should be shared between slow timescale agents and 
fast timescale agents. Two-timescale RL-based VVC 
algorithms have been developed that allow the control 
policies of the fast timescale and slow timescale agents 
to be learned concurrently to maintain the feeder volt-
age profile. To further improve the scalability of the RL-
based VVC algorithm, multiagent RL algorithms have 
been proposed to coordinate the operations of individ-
ual voltage regulating devices. For example, a consen-
sus multiagent RL algorithm has been developed, 
where each agent (e.g., a BTM resource) learns two 
parametric models to approximate the global state 
value function and the local policy.
xx Combining operator intelligence with RL: Although 
deep RL (DRL)-based VVC algorithms have been suc-
cessfully demonstrated in simulation environments, 
they have not been deployed in real-world distribu-
tion systems. One of the bottlenecks of adopting 
DRL-based VVC is that the learned control policies 
are represented by deep neural networks, which are 
difficult for system operators to interpret. To 
improve the acceptance of DRL-based control in 
power distribution systems, we must try to figure 
out a way to synergistically combine operator intelli-
gence with RL algorithms. One promising approach 
to augment operator intelligence with the RL algo-
rithm is batch-constrained RL. In batch-constrained 
RL, the RL agent has access only to a fixed amount 
of VVC experience from the system operator to learn 
from. To mitigate estimation bias, the volt-var con-
troller will first create a generative model to emulate 
the decision-making model of the operator or a heu-
ristic controller. Then, the batch RL algorithm will try 
to learn a VVC policy that not only maximizes the 
control objective but also minimizes the difference 
between the learned policy and the control policy of 
the system operator.

Conclusions
Power grids around the world are transitioning from a 
scheme that is dominated by large-scale centralized power 
plants to a network populated with a large number of 
DERs. Advanced modeling, monitoring, and control tools 
are critically needed to unleash the full potential of BTM 
energy resources and mitigate their impacts on power 
systems. Inaccurate power distribution system models 
and a lack of visibility make it challenging to deploy phys-
ical model-based monitoring and control for BTM energy 
resources. This article summarized some of the latest 
developments in data-driven modeling, monitoring, and 
control techniques for power distribution systems with 
BTM resources. To improve the modeling of distribution 
systems’ secondaries that directly connect to BTM 
resources, promising data-driven techniques have been 
developed to identify phase connections, conduct 

transformer-to-customer mapping, and estimate distribu-
tion network parameters. To better monitor BTM resources, 
such as solar PV systems, physics-informed data-driven 
algorithms were developed to estimate solar PV system 
generation based on net load data. The prediction of the 
adoption of BTM resources has also been extensively 
explored. Data-driven control algorithms, such as RL-based 
VVC, have been shown to be effective in mitigating the 
impacts of BTM energy resources on the power distribu-
tion grid.

Although data-driven algorithms have shown great 
potential in addressing the integration problems for BTM 
resources, further research is needed to develop physics-
based ML algorithms. Specifically, the physical models of 
BTM resources and steady-state and dynamic models of 
the power distribution system may be seamlessly inte-
grated with advanced ML models. The graphical model of 
power distribution systems can also be explicitly consid-
ered in the data-driven solution. The physical models 
could be used to introduce inductive bias in ML models to 
make them generalize better to unforeseen scenarios, 
with a limited amount of training data.
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