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Abstract—This paper develops a machine learning framework
for algorithmic trading with virtual bids in electricity markets.
In the proposed algorithmic trading strategy, a budget and
risk constrained portfolio optimization problem is solved, which
selects the virtual transactions to be executed. In order to
maximize the expected net earnings of the virtual bid portfolio,
a mixture density network model is developed to provide robust
and accurate forecasts for electricity price spread between day-
ahead and real-time market. By leveraging a coherent risk mea-
sure and historical price samples, the risk-constrained portfolio
optimization problem is solved efficiently. Backcasting results
based on market data from ISO New England show that our
proposed mixture density network based trading strategy consis-
tently outperforms the benchmark online learning approach.

Index Terms—Algorithmic trading, electricity market, machine
learning, portfolio optimization, virtual transaction

I. INTRODUCTION

The regional wholesale electricity markets in the United
States all adopt the two-settlement system, which includes the
day-ahead (DA) market and the real-time (RT) market. The
DA market is a forward market that determines the hourly
DA locational marginal prices (LMPs), the unit commitment
plans, and the DA dispatch schedules for generations and dis-
patchable loads. The decisions are based on the supply offers
and the demand bids submitted by load serving entities (LSEs),
independent power producers (IPPs), and proprietary trading
firms. In the RT market, the RT LMPs and the unit/resource
dispatch schedules are calculated based on the updated supply
offers and the actual operating conditions described by the
state estimator.

Market participants can buy or sell energy in the DA market
with an explicit requirement to sell or buy it back in the RT
market using virtual bids. Note that there is no requirement for
such virtual bids to be backed by physical assets. There are two
types of virtual bids, increment offer (INC) and decrement bid
(DEC) [1]. INC (DEC) is a financial instrument that enables
virtual bidders to sell (buy) energy in the DA market and buy
(sell) the same amount of energy back in the RT market at the
same pricing node [2].

Virtual transactions were introduced into the two-settlement
electricity market to improve market efficiency, promote price
convergence [3], provide hedging instruments [4], and enhance
market liquidity. IPPs and LSEs could leverage DECs to

hedge risks associated with generator forced outage, higher RT
electric load and volatile RT LMPs. Proprietary trading firms
use virtual bids to arbitrage in the electricity market when the
expected RT LMPs differ from the expected DA LMPs.

To further drive price convergence in the electricity mar-
ket, improve market efficiency and increase profitability, it
is imperative for proprietary trading firms to design virtual
bids portfolio trading strategies that maximize the expected
earnings and minimize risks. Virtual traders in proprietary
trading firms regularly place speculative virtual bids to arbi-
trage the differences between DA and RT LMPs based on their
knowledge of the electricity market and the forecasts for the
key factors that influence electricity prices. In fact, the cleared
virtual transactions in the five major electricity markets in the
U.S. was 13% [1] of the total load. In this paper, we aim to
develop a machine learning framework for algorithmic trading
with virtual bids. We are interested in exploring if the machine
learning based approach could find profitable virtual trading
strategies in electricity markets.

Only a few researchers have studied portfolio trading
strategies with virtual transactions from the perspective of
proprietary trading firms. In [5], the portfolio optimization
problem with virtual bids is formulated as a multi-armed
bandit problem and solved by the algorithm referred to as dy-
namic programming on discrete set (DPDS). It was shown that
DPDS consistently outperforms benchmark heuristic methods
[6] when only the historical LMPs are considered. A risk-
constrained virtual bids portfolio trading strategy is devel-
oped to empirically test for the efficiency of the California
Independent System Operator market [2]. The existence of a
profitable trading strategy with virtual transactions is explored
via hypothesis testing in [3].

This paper pushes the research frontier of algorithmic trad-
ing with virtual bids in the following ways. First, instead of
relying only on historical LMPs to model and estimate the
DA and RT price spreads and payoff of virtual bids, this
paper develops a mixture density network (MDN) to infer
the conditional distribution of nodal price spreads given the
fundamental inputs such as electric load, generation outage,
and transmission outage. Second, a risk-constrained portfo-
lio optimization problem for virtual bids is formulated and
efficiently solved with a finite number of scenarios. Third,



a machine learning framework for algorithmic trading with
virtual bids is established by synergistically combining the
risk-constrained portfolio optimization framework and the
MDN model. The profitability of our proposed trading strategy
outperforms the state-of-the-art online learning (OL) approach
to virtual trading [5], [6].

The remainder of the paper is organized as follows. Section
II lays out the overall framework for portfolio optimization
with virtual bids. The technical methods for estimating the
price spreads and expected earnings of virtual transactions is
presented in Section III. The solution methodology for risk-
constrained optimization is described in Section IV. Section V
shows the results of numerical study with the data set from
ISO New England (ISO-NE). Section IV concludes the paper.

II. PORTFOLIO OPTIMIZATION WITH VIRTUAL BIDS

A. Modeling of Virtual Bids

In this subsection, we will model two types of virtual
transactions, incremental offers (INCs) and decremental bids
(DECs) in detail.

Let λDAi,h and λRTi,h denote the DA LMP and the RT LMP
for node i and hour h. Define λdifi,h = λRTi,h −λDAi,h as the price
spread between the DA LMP and the RT LMP. Let λbid,Ii,h and
λbid,Di,h represent the bid price ($/MWh) for INCs and DECs
for node i and hour h.

INCs are also called virtual supply offers, which sell energy
in the DA market and must buy back the same amount of
energy in the RT market [7]. A virtual supply offer will
be cleared if the bid price is lower than the DA LMP. The
expected earning of an INC E[rIi,h] is

E[rIi,h] = E
[
− λdifi,h 1(λbid,Ii,h ≤ λDAi,h )] (1)

DECs are also called virtual demand bids, which buy energy
in the DA market and must sell the same amount of energy
in the RT market as a price-taker. A virtual demand bid will
be cleared if the bid price is higher than the DA LMP. The
expected earning of a DEC E[rDi,h] is

E[rDi,h] = E
[
λdifi,h 1(λbid,Di,h ≥ λDAi,h )] (2)

B. Budget and Risk Constrained Portfolio Optimization

Before the DA market closes, each day a trader determines
a portfolio of virtual bids to be submitted to the DA market
which maximizes the expected portfolio earnings subject to
budget and risk constraints as follows:

max
z

N∑
i=1

24∑
h=1

E[rIi,hz
I
i,h + rDi,hz

D
i,h] (3)

s.t.
N∑
i=1

24∑
h=1

[ProxI(i,h)z
I
i,h + ProxD(i,h)z

D
i,h] ≤ B (4)

24∑
h=1

CV aRα(fh(zh,λ
dif
h )) ≤ C (5)

fh(zh,λ
dif
h ) = −

N∑
i=1

[rIi,hz
I
i,h + rDi,hz

D
i,h] (6)

zIi,h, z
D
i,h ∈ {0, 1} (7)

zIi,h and zDi,h are the binary variables indicating whether or
not the corresponding virtual bids with a quantity of 1MWh
are selected for submission. The portfolio loss function fh
can be calculated as the summation of the loss of individual
virtual bids (6), where zh is the binary decision vector for the
submission of virtual bids for all nodes at hour h and λdifh
is the vector of random price spreads for all nodes at hour
h. Equation (4) is the budget constraint, where ProxI(i,h) and
ProxD(i,h) denotes the DA virtual bid financial assurance proxy
for INC and DEC at node i and hour h respectively, and B is
the total portfolio budget limit. The virtual proxy is utilized
by ISO for calculating the financial assurance requirements for
virtual transactions [8]. Equation (5) enforces the portfolio risk
constraint, where the risk metric is selected as the conditional
value-at-risk (CVaR) with confidence level α [9]. The details
about estimating the expected earnings of virtual transactions
and risk-constrained optimization are described in Section III
and IV respectively.

III. ESTIMATION OF EXPECTED EARNINGS OF VIRTUAL
TRANSACTIONS

A. Benchmark Algorithm: An Online Learning Approach

The Online Learning (OL) approach proposed in [5] and
[6] is used as the benchmark algorithm in this paper. The OL
approach assumes that traders only have access to historical
DA LMPs, RT LMPs, and bid prices when determining the
optimal virtual bids. In addition, the payoff of a virtual bid
with a given bidding price has the same distribution as that
of the historical bids. To make the OL approach consistent
with the portfolio optimization framework presented in (3)-(7),
we add the portfolio risk constraint and modify the portfolio
budget constraint. Note that most of the ISOs in the U.S. use
the virtual proxy for the budget constraint as in equation (4)
rather than the bid price as shown in [5].

In this subsection, we follow the convention of notations
in [5] and [6] to make the payoff function for INCs and
DECs consistent. The DA, RT, and bid prices of INCs are
transformed as λ−λDAi,h , λ−λRTi,h , and λ−λbid,Ii,h respectively,
where λ is the upper bound of DA LMP. Similarly, the DA,
RT and bid prices for DECs are transformed as λDAi,h − λ,
λRTi,h − λ, and λbid,Di,h − λ respectively, where λ is the lower
bound of DA LMP. This way, the functional form of payoffs
for the INCs is the same as that for the DECs.

In the OL approach, the expected payoff of a virtual bid
with a given bid price is calculated as the average empirical
payoff based on the historical DA and RT LMPs. The expected
payoff is calculated sequentially and adaptively based on the
new market information. The virtual transaction at each node
and each hour is treated as a single product. Let λ(k)

t denote
the bidding price vector for the kth product from day 1 to day
t with the bidding prices sorted in ascending order. Let r(k)t



denote the vector of expected payoff for a virtual transaction
corresponding to the bid price in λ(k)

t .
After receiving the new information about bidding price on

day t for product k, λ(k)
t can be updated based on λ(k)

t−1 as:

λ
(k)
t = [λ

(k)
t−1(1 : ik), λt,k,λ

(k)
t−1(ik + 1 : t− 1)] (8)

where λt,k, is inserted at the ik + 1th index with ik =

maxi λ
(k)
t−1(i) < λt,k. The symbol (·) denotes the operation

of fetching elements by indexes.
The vector for corresponding expected payoff r(k)t can be

updated based on r(k)t−1 as:

r
(k)
t =[

t− 1

t
r
(k)
t−1(1 : ik),

t− 1

t
rt−1(ik : t− 1) +

1

t
(λRTt,k − λDAt,k )] (9)

where λRTt,k and λDAt,k are the DA LMP and the RT LMP for
product k at day t respectively.

For a trader following the OL approach, the bid price needs
to be selected for each product k. Obviously, the bid price with
the highest expected payoff will be selected. The expected
payoff of bidding product k can then be updated as:

E[rk] = max(r
(k)
t ) (10)

B. A Machine Learning Framework

Instead of relying only on historical DA LMPs, RT LMPs,
and bid prices to estimate the expected price spreads and the
payoffs of virtual transactions, the key features that influence
the formation of DA and RT prices should also be included in
the prediction model. For example, load forecast, generation
capacity, transmission outages, fuel prices, and meteorological
forecast are all crucial in determining the distribution of price
spreads and payoffs of virtual transactions. A machine learning
framework based on MDN is proposed in this subsection to
infer the distribution of the price spreads and the expected
payoffs for virtual bids based on these key features.

Note that under our proposed machine learning framework
for algorithmic trading, the virtual bids are treated as self-
schedules, i.e., the bidding price is not a decision variable. In
other words, the bid prices of INCs are selected to be the price
floor of the DA LMP and the bid prices for DECs are selected
to be the price cap of the DA LMP.

1) Input Features: The DA and RT LMPs are determined
through the market clearing processes which involve solving
security-constrained unit commitment problems and security-
constrained economic dispatch problems in the DA and RT
markets. The key features that influence the price spreads
between DA and RT LMPs can be categorized into three
groups. The first group includes all the meteorological vari-
ables such as system-wide/zonal temperature, dew point, cloud
cover, and wind speed. The second group includes all the
relevant fuel prices for natural gas, coal, and diesel. The third
group includes the system variables such as the forecast for
system/zonal demand, the available generation capacity by fuel
type, and transmission outages. Note that only the forecast for

these variables will be used for choosing the virtual bids to be
submitted to the DA market. All of these data are accessible
from the Independent System Operator (ISO)’s website and
other online repositories.

Fig. 1. Histogram of price spreads of a sample node in year 2015

2) Modeling Price Spread with Mixture Density Networks:
The price spreads between DA and RT LMPs have extremely
high volatility and spikiness [10]. For illustrative purposes,
the histogram of the price spreads on a sample node in ISO
New England (ISO-NE) is shown in Fig. 1. The frequency of
occurrence for price spikes is not visible on the histogram. The
price spikes are labeled by the red circles. The two zoomed-in
subplots for price ranges (10, 30) and (−15,−5) show that
the price spread has a multimodal distribution. The typical
neural network model assumes that the output variable has
a Gaussian distribution with a mean dependent on the input
variables. This Gaussian assumption can lead to very poor
price spread predictions.

To deal with multimodality, we adopt mixture density net-
work (MDN) to model the conditional probability distributions
of the price spreads. In MDN, a Gaussian mixture distribution
is assumed for the conditional distribution of the price spread
as follows:

p(λdif |X) =

Nc∑
c=1

πc(X)N (λdif |µc(X), σ2
c (X)) (11)

where X and λdif denote the input features and the price
spread. Nc is the total number of components. πc(X), µc(X),
and σc(X) are the feature dependent weight, mean value
and standard deviation for component c respectively. The loss
function of MDN is the negative logarithm of the likelihood
function:

L(W ) =−
Ns∑
n=1

ln

Nc∑
c=1

[
πc(xn,W )

N (λdifn |µc(xn,W ), σ2
c (xn,W ))

]
(12)

where Ns is the total number of data samples. xn and λdifn
are the features and the price spread target of sample n,
while W denotes the network parameters. In order to make
the summation of weights equal to 1, the softmax activation



function is applied to the output layers for πc. To make
the estimate for standard deviation positive, the exponential
activation function is adopted for the output layer of σc.

3) Data Preprocessing: Data preprocessing is crucial to
minimize noise, capture nonlinear relationships, and flatten
the distribution of variables which makes the learning process
of neural networks more efficient and robust. Given that the
spreads between the DA and RT LMPs are extremely volatile
and spiky, the sigmoid function f(x) = 1/(1 + exp(−x/θ))
is leveraged to scale the output price spread data and flatten
the price spread distribution. The sigmoidal normalization is
especially appropriate to preprocess price spread data, which
has many large spikes. The normalization reduces the number
of components needed in MDN to avoid over-fitting. Batch
normalization is applied to the inputs.

IV. RISK-CONSTRAINED PORTFOLIO OPTIMIZATION

The risk-constrained portfolio optimization problem (3)-(7)
formulated in Section II is a mixed integer convex optimization
problem. This is because the our chosen coherent risk measure
[11], CVaR of the portfolio, is a convex function with respect
to the positions in virtual bids. In this section, we will convert
the mixed integer convex optimization problem into a mixed
integer linear programming (MILP) problem.

First, we briefly review the definition of two risk metrics.
The probability of the portfolio loss fh(zh,λ

dif
h ) at hour h

not exceeding ζh is defined as

Ψ(zh, ζh) =

∫
fh(zh,λ

dif
h )≤ζh

p(λdifh )dλdifh (13)

The value at risk (VaR), i.e., the probability of loss not
exceeding ζh with confidence level α is defined as

V aRα(zh) = min{ζh : Ψ(zh, ζh) ≥ α} (14)

The CV aRα of the portfolio loss can then be defined as

CV aRα(fh(zh,λ
dif
h )) =

1

1− α∫
fh(zh,λ

dif
h )≥V aRα(zh)

fh(zh,λ
dif
h )p(λdifh )dλdifh (15)

It has been proven that function Fα(zh, ζh) is an upper
bound of CV aRα [12].

Fα(zh, ζh) =

1

1− α

∫
λh

[fh(zh,λ
dif
h )− ζh]+p(λdifh )dλdifh (16)

By using the historical LMP samples, Fα(zh, ζh) can be
further simplified [13] as

Fα(zh, ζh) = ζh+
1

(1− α)Ns

Ns∑
j=1

[fh(zh,λ
dif
h,j )−ζh]+ (17)

where Ns is the total number of samples. By introducing
dummy variable ujh for sample j at hour h, equation (17)
can be transformed as:

Fα(uh, ζh) = ζh +
1

(1− α)Ns

Ns∑
j=1

ujh (18)

ujh ≥ fh(zh,λ
dif
h,j )− ζh (19)

ujh ≥ 0 (20)

Hence, it can be shown [12] that CVaR of the portfolio loss
can be determined from the formula below:

CV aRα(fh(zh,λ
dif
h )) = min

ζh
Fα(zh, ζh) (21)

Therefore, the original risk-constrained virtual transactions
portfolio optimization problem can be reformulated as

max
z,ζ,u

N∑
i=1

24∑
h=1

E[rIi,hz
I
i,h + rDi,hz

D
i,h] (22)

s.t.
24∑
h=1

Fα(uh, ζh) ≤ C (23)

(4), (6), (7), (18)− (20)

The optimization problem is now a MILP which can be tackled
by commercial solvers such as Gurobi and CPLEX.

V. NUMERICAL STUDY

The performances of the proposed virtual transaction bid-
ding strategy based on MDN and the benchmark OL approach
are evaluated with the electricity market managed by ISO-
NE. The historical LMPs and input variables such as oil
and gas prices forecasts, total system demand forecast, wind
generation forecast, and weather forecasts, are taken from
online data repositories [14], [15]. The DA and RT LMPs from
the 994 pricing nodes in ISO-NE are collected. Three years of
historical data from year 2015 to 2017 are gathered. The first
year’s data is used for training and validation purpose. The rest
of the data are used for out-of-sample testing. In the testing
process, the proposed MDN model is updated on a weekly
basis. The costs associated with virtual bids in ISO-NE include
transaction fee and net commitment period compensation
(NCPC). NCPC is a payment to generators, dispatchable-asset-
related demands, demand response resources or the external
transactions that did not recover their effective offer costs
from the energy market. The transaction fee for virtual bids
is $0.065/MWh. The NCPCs are $1.25/MWh in 2016 and
$0.77/MWh in 2017 for ISO-NE.

A. Profitability of Algorithmic Trading Strategies

Both the OL approach and the proposed MDN based trading
strategy are used to select portfolios of virtual transactions
in ISO-NE on a daily basis between January 1, 2016 and
December 31, 2017. Two sets of daily portfolio budget and risk
constraints of $50k and $100k are tested. The confidence level
α of CVaR is set as 0.95. The gain, the trading costs, and the
net gains are reported in Table I. It can be seen from the table
that our proposed MDN based trading strategy consistently
outperforms the OL approach in both years and under both
sets of budget and risk constraints. When transaction costs
and NCPC are taken into consideration, the net gains of our
proposed trading strategy are $1.17 million and $2.38 million



in 2016 and 2017 with a $100k risk and budget limit. The
trading performance results suggest that the MDN provides
more accurate prediction for price spreads than historical
averages calculated by the OL approach. Finally, note that
when the daily budget and risk limit increase, the net gains of
the proposed MDN based trading strategy also increase.

TABLE I
PERFORMANCE COMPARISON OF ALGORITHMIC TRADING STRATEGIES

Strategy Year Budget Gain Fees & Net Gain
/ Risk ($) (million $) Uplift (million $) (million $)

OA
2016 50k / 50k 1.3375 1.2211 0.1164

100k / 100k 1.8406 2.2876 −0.4469

2017 50k / 50k 1.0506 0.7149 0.3356
100k / 100k 1.6967 1.3496 0.3472

MDN
2016 50k / 50k 2.2359 1.4087 0.8271

100k / 100k 3.9504 2.7804 1.1701

2017 50k / 50k 2.4221 0.8806 1.5415
100k / 100k 4.1088 1.7319 2.3770

B. Influence of Rare Events and Changes in Market Rules

The cumulative net gains of our proposed and benchmark
virtual bids trading strategies with $100k daily budget and
risk limit for year 2016 and 2017 are depicted in Figure 2.
As shown in the figure, the performance of the proposed
and benchmark trading strategy can be underwhelming during
certain events/periods. It indicates that rare market events and
changes in market operation rules not captured by the machine
learning model have a significant impact on the performance
of the trading algorithms.
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Fig. 2. Cumulative net gains of the proposed and the benchmark trading
strategies from 2016 to 2017 with $100k daily budget and risk limit

The first slump of MDN algorithm in trading performance is
due to the implementation of Do-Not-Exceed (DNE) dispatch
rules by ISO-NE on May 25, 2016 (labeled by the purple
dash line). Before the change in market rules, the practice
of manual curtailment for renewable generation resource was
adopted by system operators. Under the DNE dispatch rules,
renewable generation units must submit supply offers into the
DA market. These offers are allowed to settle the DA LMPs

on the corresponding pricing nodes when congestion happens.
It can be seen that the cumulative net gain of the proposed
trading strategy takes a dip right after DNE’s implementation.
The sharp dip in net gain of the benchmark algorithm on May
18, 2017 (labeled by the orange dash line) and the big drops
of MDN algorithm between September 24 and September 27,
2017 (labeled by the green dash lines) are caused by price
spikes in RT. These price spikes result from forced outages in
RT, which are difficult to predict on a DA basis.

VI. CONCLUSION

This paper develops a data-driven algorithmic trading strat-
egy for virtual transactions in electricity markets. A budget and
risk constrained portfolio optimization problem is formulated
to select the virtual bids to be submitted. A mixture density
network model is developed to forecast the price spreads
between DA and RT LMPs. Backcasting results with ISO-NE’s
market data show that the proposed MDN based algorithmic
trading strategy is much more profitable than the benchmark
OL approach. In the future, we will consider the price sensi-
tivity in the portfolio optimization framework and develop a
machine learning framework to jointly model the price spreads
of all pricing nodes.
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