
INSTANTON EFFECTS IN TWO-DIMENSIONAL SCALAR ELECTRODYNAMICS 

A. N. Korotkov and V. F. Tokarev 

An effective Lagrangian of two-dimensional scalar electrodynamics that 
takes into account the effects of the complicated vacuum structure in 
the model is found. 

i. Introduction 

It is traditionally assumed that spontaneous symmetry breaking plays a decisive role 
in the acquisition of mass by the vector bosons. However, the idea of unbroken gauge 
symmetry also has its adherence, and their number has been increasing recently (see [i-4]). 
It should be noted that there are many different approaches to this problem. 

In the present paper, for the example of scalar electrodynamics it will be shown that 
allowance for nonperturbative effects associated with the existence of instantons makes 
it possible to go over to an effective Lagrangian containing only neutral fields. It is 
shown that in the physical space there are particles present which correspond to just such 
fields. Thus, a definite mechanism leading to uncharged physical states is demonstrated. 
However, if tunneling is weak, the complicated vacuum structure has hardly any influence 
on the mass spectrum of the particles, which is the same as in the Higgs phase. 

The paper is arranged'as follows. In Sec. 2, we construct many-instanton configura- 
tions and calculate their interaction energy. In Sec. 3, we construct the approximation 
of a rarefied instanton gas [5,6] and on its basis find an effective low-energy Lagrangian 
which contains neutral scalar and pseudoscalar fields. In Sec. 4, the effective 
Lagrangian is used to calculate the Green's functions for the gauge-invariant operators 
that interpolate the scalar and pseudoscalar fields. 

2. The Model 

We consider the Lagrangian 

+ -y, ( i )  

of scalar electrodyn~ics in two-dimensional Euclidean space x = (x1~ x2). Here, 
F~v=O~Av-O~J~, D~=~-~eA~, A~ is a real vector field, ~ is a complex scalar field. 

The Lagrangian (i) has gauge invariance. If it is assumed that spontaneous symmetry 
breaking has concentrated the field ~ near the value c/r and perturbation theory is used, 
then the vector field A~ acquires the mass m9 = ec; the mass of the scalar field is m s = 

(the constants e, c, and X are positive). 

However, the existence in the model of instantons, which was proved in [7], leads to 
nonperturbative effects and shows that it is incorrect to use only perturbation theory. 

The basic configuration of instanton type (instanton) has the form 

A,(x)=2ne~,O,O,(x), ~(x)=--~e-'~ (2) 
e ~2 

where e~2=--e2t=t, e00=e~=0, tg0(x)=xJx2, x=(x~, x2). Note t h a t  ~vr = 0, ~ i (0 )  = 1. The 
e x p l i c i t  form of  the  f u n c t i o n s  r  and ~ i (x )  i s  unknown, but the  a sympto t i c  behav iors  
fo l low from the  equa t ions  of motion:  

r ~(x)  --+/.A'(z). (3) 

Here, fv and fs are certain real constants, D(x)=--(InxZ)/(4n),AV(x)=-~lKo(m~..]zl)~ where K 0 
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is the Macdonald function of zeroth order. 

It is clear from the asymptotic behaviors that in the model the sizes of the instanton 
are fixed (in contrast to QCD) and are measured by i/m v for the field A~ and i/m s for the 
field % 

We note that the functions @~, ~F~, A ", A ~, D have axial symmetry, i.e., depend only on Ixl. 
We also note the relations 

(-a +mo,,)A (x)=~(x). (4) - a 2 D ( x ) =  6(x), ~ ' ~ 

The t r a n s l a t i o n a l  i n v a r i a n c e  o f  t h e  t h e o r y  makes i t  p o s s i b l e  t o  p l a c e  t h e  c e n t e r  o f  
t h e  i n s t a n t o n  (2 )  a t  an a r b i t r a r y  p o i n t  z ,  f o r  which  i t  i s  s u f f i c i e n t  in  (2 )  t o  r e p i a c e  
(I)i(x), T i ( x ) ,  O(x) by (~i(x--z), ~FI(x--z), O(x--z), r e s p e c t i v e l y .  

The d i s c r e t e  symmet ry  o f  t h e  L a g r a n g i a n  (1 )  w i t h  r e s p e c t  t o  t h e  o p e r a t i o n  <p-~T+, A , ~ - A ,  
makes i t  p o s s i b l e  t o  i n t r o d u c e  t h e  a n t i - i n s t a n t o n ,  which  i s  o b t a i n e d  f rom (2)  by t h e  g i v e n  
t r a n s f o r m a t i o n s .  

I t  i s  o b v i o u s  t h a t  t h e  i n s t a n t o n  a c t i o n  ( S i n s t )  i s  e q u a l  t o  t h e  a n t i - i n s t a n t o n  a c t i o n .  
I n  what  f o l l o w s ,  we s h a l l  need  t h e  a s s u m p t i o n  e x p ( ' S i n s t )  << 1 (we can  a c h i e v e  t h i s ,  s i n c e  
t h e  p a r a m e t e r s  e ,  X, and c a r e  a r b i t r a r y ) .  

The t o p o l o g i c a l  c h a r g e  o f  t h e  c o n f i g u r a t i o n ,  which  becomes a p u r e  gauge  a s  x § ~,  i s  
d e t e r m i n e d  by t h e  e q u a t i o n  

e ~ A . d ~ . ,  q = ~ .  

where the integral is around a circle of infinite radius, dE is the element of arc, and the 
integral is taken counterclockwise. Note that q is also the number of "turns" of the 
phase of ~ on the passage around the infinite contour. 

Transforming the contour integral to a double integral, we obtain 

q Iq (x) d~x, 6 
= q (x) = -s (5) 

The pseudoscalar quantity q(x) is called the density of the topological charge. 

It is easy to show that for the instanton (2) q = 1 holds, for the anti-instanton 
q = --I. 

We now consider a set of N equally spaced instantons and anti-instantons (the distances 
between the centers are much greater than i/mv,s): 

x 

A~(x)=~vovr  r ~ q,~(x-~,), 
i = l  

N ~ (6 )  

II 
Here, qi = _+i are the topological charges, which distinguish the instanton and anti- 
instanton, and z i is the position of the center of the i-th instanton or anti-instanton. 

The configuration (6) is only an approximate solution of the Euclidean equations of 
motion. This corresponds to the fact that the instantons interact. 

We find the interaction of two widely separated instantons (having the same or 
different signs of the topological charge). We use the singular gauge for which the 
configurations (6) correspond to 

N N 

e e i=! ]/2Tq= 

Here N : 2. The interaction energy is the excess of the action for (7) over twice the 
instanton action. In calculating the corresponding double integral, we divide the (xl, x 2) 
into three parts (see Fig. i). We call the disk of radius R, where I/m~.~<<R<<Iz,.-z~I, concen- 
tric with the first instanton region I. Region II is a similar disk concentric with the 
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Fig. i 

second instanton, and region III is the remaining part of the plane. 

We denote by AS~, AS~, ASm the parts of the interaction energy accumulated in the 
regions I, II, III, respectively. We calculate AS I. In region I, the influence of the 
second instanton reduces to small corrections to the fields A~, q produced by the first 
instanton. For the integration of the corresponding increment of the Lagrangian (i), we 
can use integration by parts. Then there remain only integrals over the boundary of 
region I, since the double integrals are equal to each other by virtue of the fact that 
the fields of the first instanton satisfy the equations of motion. Therefore, we write 

AS~= f OL 6~doh+~-z-z--.OL 
~, O~;h o, aA.;h 6A~d~ 

Here, do corresponds to the outer normal of the boundary of region I. The increment of the 
fields (the influence of the second instanton) can be readily found from (7) with 
allowance for (3): 

2n �9 c 
6A~=q~--e,~O~(--/~h'(x-zi)  6~=-~ ]'As(x-z~)" 

Here ,  we have  n o t e d  t h a t  ~ i ( x  -- z 1) ~ 1 on t h e  b o u n d a r y  o f  r e g i o n  I .  Us ing  (3)  and (4)  
for the fields of the first instanton (since R ~ I/mv,s), we have 

OL 20~=-Y2cJ .O~A ~(x-zO,  OL =fk~=--q~ 2~ ~ 2~ = - -  -- 0 @=q~--]~mo A~ 
0~;~ OA~;~ e e 

We can therefore write 

ASi=c2] 21d + 2 2 qlq~f~ m~ i2 , 

where we have used the notation 

]['" = ~ (o~a ~,~ (~-z,) ) a TM (x-z~) &', 
f$1 

lV,~ ~ r 

Oi 
(8) 

From symmetry considerations, ASII = AS I. 

In calculating ASII I, we take into account only the principal crossed terms, since 
the fields of both the first and the second instanton are here small. Using the asymptotic 
behaviors (3), we obtain 

( 2~ ) ~, im 4A ~A ~+ci, ~,O h ~, (GAd)+  e2c2( 2-~e ) ~ A L = q ~ q 2 . e "  ,. ~ , 2 ,. , , , ,  ]~2q,q,(O,h,') (O,Ai~)+ Zc'/.iAdAd. 

For  b r e v i t y ,  we h e r e  u se  t h e  n o t a t i o n  A~ . . . .  A',~(x-zO. I t  i s  r e a d i l y  seen  t h a t  when AL i s  
i n t e g r a t e d  by p a r t s  t h e  d o u b l e  i n t e g r a l s  a r e  e q u a l  t o  z e r o  by v i r t u e  o f  ( 4 ) ,  and t h e r e  
t h e r e f o r e  remain  o n l y  t h e  i n t e g r a l s  o v e r  t h e  b o u n d a r i e s  o f  r e g i o n s  I and IX. The i n t e g r a l  
ove r  t h e  b o u n d a r y  o f  r e g i o n  I I  can be r e a d i l y  r e d u c e d  t o  one ove r  t h e  bounda ry  o f  r e g i o n  ! 
by symmetry c o n s i d e r a t i o n s ,  

The minus sign takes into account the direction of the outer normal, 

q_(2~)  2 - 2m2 ~ AS~+AS,I+ASm=ciI ,~( Id- ld)  .--~- 1~ ~ q~qi(12 - A  ). 

To calculate I~'~ "', we consider the following integral over region I: 
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{ (O ,A " ~ (x 2z~ )  ) (O~A*,~(x-z2) ) +  m ~ ~,~ A ~ , ~ l x _  z , ~j~A ~ , , ( x - z 2 )  }d~x. 
"t 

We shall integrate by parts in two ways, transferring the derivatives differently. 
of (4), we readily obtain 

I~'" -- 1~'" = -- ~ 6 (x--z~) A ~,~ ( x - z 2 )  d ~ x = - A  ~'~ (z,-z2). 
I 

By means 

Thus, we have calculated the interaction energy of two widely spaced instantons with 
centers at the points z I and z 2 and topological charges ql and q2: 

Uq,q, (z,, z2) = qiq2 m~/~2A~ ( z l - z~ )  - c2].~A'~ ( z i - z 2 ) .  (9) 

3. Effective Lagran~ian 

In this part, we find an effective low-energy Lagrangian of the model (i) that takes 
into account nonperturbative effects and contains fields that are not transformed by the 
gauge group. 

For this, we calculate the amplitude of a vacuum-vacuum transition during infinite 
time. Using the path integral technique, we write 

Z = lim <0[ e-HEucl'~ [ 0>=W ' .~A, .~%~+exp(  -- ~ L ( A , ,  ~ ) d ~ x ) .  (10) 

Here, ~ is the normalization, the integration is over configurations that become a pure 
gauge as x 2 + • and the double integral under the exponential sign is taken over the 
complete two-dimensional Euclidean space. 

Because of the gauge freedom, the integral over ~A~Oq + contains classes of equiva- 
lent configurations, from which it is necessary in each case to select one representative. 
We shall not consider this question, but assume that it has already been done. 

Using the method of steepest descent, we shall take into account the contribution to 
(i0) from only the neighborhoods of the configuration ~c/?~ A~0 and configurations of 
the type (6). 

We shall_ denote by ZpT the contribution to (I0) from the neighborhood of the configura- 
tion ~c/Y2, A~O. Let the contribution to (i0) from the neighborhood of the one-instanton 
configuration be ZpT'a, where a = c exp(--Sinst), the constant c taking into account the 
ratios of the corresponding determinants and the presence of the zero mode (here, there is 
no integration with respect to the degree of freedom associated with the zero mode; we 
do that integration separately). The contribution from the neighborhood of the N-instanton 
configuration (6) (without integration with respect to the degrees of freedom associated 
with displacements of the centers of the instantons) is ZpTaN exp(--UN), where U N is the 
interaction energy of the instantons, this, when allowance is made for only binary inter- 
actions (see (9)), being 

N 

Ux = Z U q ~ % ( z , z ~ ) .  (ii) 

In what follows, we shall use the letter x instead of z in the notation for the centers of 
the instantons. 

Summing (integrating) the contributions from all possible instanton configurations and 
the configurations A,~O,~c/?-2, we obtain 

~ s  ' +  aN++N- U - 
Z ~-- Z PT d 2 x /  d x~+ d~xl - . . d~x~-  - -  e- x++~- ( 1 2 )  

�9 " " " " N + !  N - !  " 
N+=0 N - = 0  

Here,  t he  summation i s  s e p a r a t e l y  over  the  number of  i n s t a n t o n s  (N +) and a n t i - i n s t a n t o n s  
N-) ,  x~ i s  t he  c e n t e r  of  i n s t a n t o n  i ,  and x j  i s  t he  c e n t e r  of  a n t i - i n s t a n t o n  j .  The com- 
b i n a t o r i a l  f a c t o r  1 / (N+!N-!)  e l i m i n a t e s  t he  a d d i t i o n a l  summation of  e q u i v a l e n t  c o n f i g u r a -  
t i o n s  o b t a i n e d  by pe rmu ta t i on  of  the  i n s t a n t o n s .  
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In what follows, we require the generating functional, which we determine by the 
formula 

Z[~+(x).tr(x)] =ZPT s 2 ! d~xl+'"cl2x~ + :1. 
N+:0 N-==O 

N+ N- 
a~++x- e ~'+(xi+) ~I e u-(x-r) d~xC 2 - _ _  e-V~++N- H (13)  � 9  d x:~-  N +  ! N - !  

i =i j =i 

Here, the arbitrary functions ~+(x) and #-(x) (chemical potentials) play the role of the 
current in the generating functional of ordinary field theory. 

The validity of taking into account in (12) and (13) configurations with closely 
spaced instantons may be questioned. However, we may note, first, that for all fixed N + 
and N- the relative volume of such configurations in the (N + + N-)-dimensional space is 
infinitesimally small and, second, that in Sec. 4 it will be shown that the mean density 
of the instantons is of order exp(--Sinst) << i, i.e., they rarely approach close to each 
other, and, third, that we are interested in only the properties of the theory at large 
distances. 

Below, we write down a Lagrangian for which the amplitude of the vacuum-vacuum 
transition during infinite time is equal to (12) apart from a constant, so that we are 
justified in regarding it as an effective Lagrangian of the model (i). 

We consider in two-dimensional Euclidean space the Lagrangian 

(V~,)%m.~E2 F (Vo)~+m2a 2 ( Y, ) o 
. . . . . . . . . .  2a c o s ~  e x p - - ,  (14)  L e f f :  2 2 F~ F, 

where  F~=(2nc]v) -1, F~=(]~c)-t 
S u b s e q u e n t l y ,  we s h a l l  s ee  t h a t  t h e  f i e l d  o i s  a t r u e  s c a l a r  and t h e  f i e l d  Z a p s e u d o -  

s c a l a r .  T h e r e  i s  some d i f f i c u l t y  a s s o c i a t e d  w i t h  t h e  p s e u d o s c a l a r  n a t u r e  o f  Z. The p o i n t  
i s  t h a t  on t h e  t r a n s i t i o n  t o  Minkowski s p a c e  we must  m u l t i p l y  t h e  p s e u d o s c a l a r  f i e l d s  by 
t h e  i m a g i n a r y  u n i t ,  as  a r e s u l t  o f  which  t h e  m e t r i c  o f  t h e  f i e l d  E becomes n e g a t i v e .  But  
i f  we wish  t o  have  p o s i t i v i t y  o f  t h e  m e t r i c  in  t h e  Minkowski s p a c e ,  t h e n  we w i l l  have  a 
n e g a t i v e  m e t r i c  in  t h e  E u c l i d e a n  s p a c e .  We p r o c e e d  as  f o l l o w s .  In  t h e  E u c l i d e a n  s p a c e ,  
we w i l l  work w i t h  t h e  L a g r a n g i a n  (14)  b u t  b e a r  in  mind t h a t  t h e  p h y s i c a l  f i e l d  i s  t h e  
f i e l d  Z' : iT.. In  Minkowski s p a c e  t h e  L a g r a n g i a n  (14)  w i l l  c o r r e s p o n d  t o  

L e f f ' M i n k : 2  - [ (VZ')2-m~2(Z')2]  2 [(V~ c o s ~  e x p , .  

We c a l c u l a t e  t h e  a m p l i t u d e  o f  vacuum-vacuum t r a n s i t i o n  in  t h e  E u c l i d e a n  s p a c e  d u r i n g  
i n f i n i t e  t i m e  f o r  ( 1 4 ) :  

Z e f f = J t ~ e f f  ~ ~5(i~)Eexp(-ILe:~fd~x). 

D e n o t i n g  by S0(Z) and S 0 ( z )  t h e  a c t i o n s  c o r r e s p o n d i n g  t o  t h e  f r e e  f i e l d s  E and o,  and 
expanding in a series the exponential of the integrated final term of (14), we obtain 

N /V 

We d e n o t e  t h e  e x p r e s s i o n s  in  t h e  s q u a r e  b r a c k e t s  by I ( o )  and I ( Z ) ,  r e s p e c t i v e l y .  We can 
r e ~ a r d  I ( a )  as  t h e  vacuum e x p e c t a t i o n  v a l u e  o f  exp (~ Jo(x)o(x)d2x), where  J.(x)----- 

lZ (x-x,)llF.. Then t h e  s t a n d a r d  t e c h n i q u e  g i v e s  

N N 

' Zg . 

Here, the function A s is identical to the one used in Sec. 2. It can be seen that the 
As(0) will be encountered in the sum. These unphysical infinities disappear if we insert 
in the Lagrangian (14) the symbol of normal ordering. Therefore, in the double sum we can 
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set i ~ j. 

The calculation of I(E) is a little bit more difficult. Expanding the cosine as a sum 
of exponentials, we find that the product of the cosines decomposes into a sum of N + i 
classes in accordance with the number of minuses under the exponential symbol. In each 
class, the terms differ only by a permutation of the order of i, 2 ..... N, which is 
unimportant for the subsequent integration over dx i. Therefore, we replace the product of 
the cosines by 

N 

~-=o N - ! ( N - ~ - ) !  exp ~ ( - ~ ( ~ , ) - . . . - ~ ( z ~ - ) + ~ ( z , - + , ) + . . .  + ~ ( x ~ ) )  . 

Here, N- characterizes the class, and the combinatorial factor is equal to the number of 
terms in the class. Denoting N + = N -- N- and making the obvious transformations for x i, 
we write 

N /q- •+ 

N+!N-I F~ 

The tilde above I recalls the permutation made of the points xi, but in (15) we can use 
I(Z) instead of I(E). 

Repeating the calculations with the field o, we find 
N 

where 
N + N- 

When the integral over d2xd2y is replaced by a sum, it is again necessary to eliminate the 
unphysical AV(0). 

Substituting I(o) and I(E) in (15) and replacing the double summation over N and N- 
by summation over N + and N-, we obtain 

where 

Zef f ~ Z'pT 

aN++N-  
�9 | e-UN++N-~ 

N+~O N-~O 

Z~T =Wef~ j [ ~V~O ~xp ( -So  (z)  - So (o)) ,  

and the function U~++N is equal to the one introduced in (ii). 
Zef f and (12), we obtain the important equation 

l 
Z/ZpT=Zeff/ZpT, 

which gives us grounds for regarding Lef f as the effective Lagrangian of the model (i). 

We now determine the generating functional 

z~f[ ~+ (~), ~- (~) l = w~ff~ ~o~z{ ~xp[-So (~) - So (o) ]x 

§176 )1}. 
Proceeding as in the calculation of Zeff, we can readily show that 

Z[ ~+ (x), ~- (x) ]/ZpT =Zeff[ ~+ (x), ~- (x) ]/Z~pT. 

Note that the imaginary unit in the argument of the cosine in (16) is due to the pseudo- 
scalar nature of the field Z. 

Comparing the expression for 

(16) 

(17) 
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Thus, we have obtained the effective low-energy Lagrangian (14) for the model (I). 
In the following part we shall show how the Lagrangian (14) can be used to calculate 
different vacuum expectation values in the theory (i). 

We note that E and o are real fields and that they are not transformed by the gauge 
group (they are neutral with respect to it). This suggests that in the theory with the: 
Lagrangian (i) spontaneous symmetry breaking does not occur. 

We consider more closely the effective Lagrangian. It can be seen that <E> = 0 but 
<c> = o0 ~ 0. Bearing in mind that a ~ exp(-Sinst) ~ i, we obtain in the first approxi- 
mation o0 = 2a/(Fsm~). The masses of the particles Z and a satisfy the relations 

2 2a .~ 2a ~/~ 
m~ m~ -- - ~  , "' m ~ =  m~ + - - ~  e ~ ". (18) 

We see that in the theory there have appeared particle masses shifted somewhat com- 
pared with m s and m v. In the following part, we shall show that in the physical subspace 
particles with precisely these masses are present. 

4. Green's Functions 

In this part, we develop a technique for calculating Green's functions of gauge, 
invariant operators in two-dimensional scalar electrodynamics, calculate explicitly the 
Fourier transforms of <Tf,~(x)F~(y)>,<T~2(x)~(y)>, and find approximating operators for the 
fields o and Z. 

We calculate<TF~v(x)F ~ (y)> Representing this quantity as a functional integral p 
and taking into account only the two leading terms, we write 

<TF,,~(x)F~(y) >=<TF.~(x)F~.(y) > PT +< TF.~(x)F~.(y)  >inst 

Here, the first term is the result of calculations in accordance with perturbation theory 
(without allowance for the instantons), and the second term gives the mean value over the 
instanton configurations in the approximation of a rarefied instanton gas. 

We determine the transition to the momentum space for arbitrary operators B and C 
by the formula 

1 
d2x d~y e-'P~-~h~<TB (x)C (y) >. (19) <B (p)C(k) >= ~2~)--- T 

The s t a n d a r d  t e c h n i q u e  f o r  t he  f r e e  v e c t o r  f i e l d  A~ w i t h  mass my l eads  to  the  formula  
�9 k 2 

<F,~(k)F.~(p) > PT = a,~.o~ (p+k) ~+mo~ . (20) 

To calculate the mean values over the instanton configurations, we introduce statistical 
operators that have the meaning of instanton densities: 

i=i i= t  

Here, x~ and xi are certain fixed points (the centers of the instantons and anti-instantons). 

The mean values of the statistical operators can be calculated by means of the 
generating functional (13), using (16) and (17): 

1 ~ Z  [~+, ~-1 .+---0 <n• (x)>inst ~ Z ~ q -  (x) = 

I~----0 

a<(c E(x) T i s i n -~  x) ) F .  

Zeffl ~Z ef f [~t + , ~ - ]  .§ = 

(X) \E'~ 
exp T /  

Here, < >E,o denotes the vacuum expectation value for the theory with the Lagrangian (14). 
Taking into account the first terms in the expansion of the cosine and the exponential, 
we find 

2a <n• where oo=F~m~, n=(n(x)>inst=2aexp~. 
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The mean density n of the instantons (with allowance for the anti-instantons) is a 
small quantity, since a ~ exp(--Sinst) << I, and therefore the instanton gas can indeed be 
assumed to be rarefied. 

To calculate <TF~(x)F~o(y)> inst, we write in accordance with (6) 

~ # A .  
The mean value of the product of the statistical operators can be calculated with 
allowance for (13), (16), and (17): 

I (.~ZeffI~ +,~-1 <T (~+ (z) -- ~- (z)) (~+ (~) --  ~-(u))>~n=t= Zef---~ ~ 8~ § (z) a~ + (u) + 

~ Z e f f  [~+, ~I-] __ ~ Z e f f  [[11 +, Ill-] __ ~ Z e f  f [~11 +, [l-] "~ I 
8~- (z) 8~- (u) 8~ § (z) a~- (u) 8 K (z) 8~ § (u)) [.§ = 

ItX-~-o 

,~(z) O(U) . ~ f  Z ( U ) \  z'" 
n~ (= - -  u) -- 4a 2 (~ exp exp ~ sin sin \ r  ~ & & / 

Deve lop ing  p e r t u r b a t i o n  t h e o r y  n e a r  t h e  vacuum <E> = O, <o> = o0,  we o b t a i n  

<rF,~(x)F~o(y) >inst = . ' ~  -.  e,~e~o~ 0 = ~ ( x - z ) 0 ~ ( y - u ) •  

[ n S ( z - ~ ) -  ~ ~  ~~ [2o0 ~ A=(z_u)]d=z d=~. 

Here ,  t h e  f u n c t i o n  i f  s a t i s f i e s  Eq. (4) w i t h  mass m E . Going over  t o  t h e  momentum space  
and t a k i n g  i n t o  a c c o u n t  ( 1 9 ) ,  ( 4 ) ,  and (18 ) ,  we o b t a i n  

<F.,(p)e.,(k) >inst= e , , e J  2=) = (2=)=8(p+k)nl (0=r (p)I = / + m S  
" e . / + m d "  

Here ,  ( ~ 2 r  i s  t h e  F o u r i e r  t r a n s f o r m  of  t h e  f u n c t i o n  ~2r  and in  a c c o r d a n c e  w i t h  
t h e  a s y m p t o t i c  b e h a v i o r  (3)  i t  has  a t  s m a l l  p t h e  form m~]$[2a~(p%m$)] -~ 

Adding t h e  o b t a i n e d  r e s u l t  t o  t h e  r e s u l t  (20) of  p e r t u r b a t i o n  t h e o r y ,  we o b t a i n  

<F.~(p)F~, (k) >=e.~e~6 (p+k) Pz+m~--m$ 
p~+ m~ a 

Note that for the density of the topological charge (see (5)) we have 

<q(p)q(k)>= ~- a@+k) / +rod-m,' 

Note t h a t  in  (21)  and (22)  t h e  p e r t u r b a t i o n - t h e o r y  p o l e  1 / (p  2 + m~) i s  i ndeed  r e p l a c e d  by 
the pole I/(p 2 + m~). 

Postponing for a moment the discussion of the obtained relations, we give the results 
of the calculation of <~(p)~p~(k)>, which is done like the above calculation. 

For this Green's function, the principle of correlation weakening holds: 

lira < T~ = (x) ~ (y) > = (<qd (x) > ) a, 
lz-l/l~z* 

where <~2> is found to be 

C 2 

4 =  = [ ]' § =.<x.>=,x =,,] 
The f u n c t i o n  A ~ s a t i s f i e s  (4)  w i t h  mass m o, For  s m a l l  momenta (p << I /mv.  s )  

<%= (k)~= (p) >inst= (2u)=8 (p+k) 8 (k) (<~= (x) >)=+ ~ (2a)=8 (p+k) n [ 412 i 
(~)= (a=+m, 2) (k=+mo =) 

4I. ~==(k). + ~==(k) V,  =(k) k=+m'-----~=.] 
2• k~+rn$ k2+md " 

(21) 

(22)  
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Here, ~(k) is the Fourier transform of ~(x); the singularities of the function ~2~l(K.~h 
begin with the square of twice the mass of the scalar particle. The result of perturba- 
tion theory is <~2(p)~2(k)>PT=6(p+k)c2/(p~+m~ 2) (to avoid double counting, we have here 
omitted the part containing c46(k)). As a result, we obtain 

<~' (k) @2 (p) >= (2~) 26 (p+k) 6 (k) (<~ (x) >)2+ 

] c25 (p+k) p~+mo----- l-2nf.nc~W~ ' (p) + (2n) ~n -~ (q~  (p) )~ (p~+m~ ~) 

We now discuss the obtained results (21) and (23). It follows from them that in the 
model (i) there are particles with masses m E and mo, and these can be identified with the 
particles Z and ~ in the Lagrangian (14) (note that in the present paper we do not con- 
sider questions associated with renormalizations). The instanton effects have had the 
consequence that in the physical subspace there are no particles with masses m v and ms; 
they have been replaced by neutral particles with masses m E and mo, and the shift of the 
masses has the order exp(-Sinst) (see (18)). 

The fields E and o can be approximated by the operators q(x) (see (5)) and ~2(x). 
Taking the residues at the poles in the relations (21) and (23), we find 

e 
l < O l q ( O ) I Z > l = - ~ - m , ,  l <O l m* (O) l o> l ---- c ( l  - -  ~ A n c * ~  (k) l~,=-~i), n<<l. 

We note that the residue in (21) is negative. In the Minkowski space, the residue will be 
positive because of the additional imaginary units in the definition of the pseudoscalar 
q(x). 

Thus, at large distances we have the approximate equations 

q(x)~l<Olq(O)12>l~(x), ~(x)~l<OIm~(O)lo>lo(~). 
It is clear from this that the field o is a true scalar and E a pseudoscalar~ 

(23) 

5. Conclusions 

Considering the approximation of a rarefied instanton gas, we have calculated the 
nonperturbative contribution to the vacuum-vacuum transition amplitude in the Euclidean 
variant of two-dimensional scalar electrodynamics. We have found that it is possible to go 
over to an effective low-energy Lagrangian containing one scalar and one pseudoscalar 
field that are not transformed by the gauge group. The masses of these fields are shifted 
with respect to the masses of the fields A~ and ~ calculated in accordance with the Higgs 
mechanism by an amount of order exp(-Sinst), where Sinst is the instanton action. 

In Sec. 4 we have shown how the effective Lagrangian can be used to calculate the 
various vacuum expectation values of the model with allowance for the nonperturbative 
effects associated with the instantons. 

The Fourier transforms of the propagators <TF~(x)F,~(g)>, <T~E(x)~2(y)> contain poles 
with masses equal to the bare masses of the particles contained in the effective 
Lagrangian. Therefore, it can be asserted that at large distances the interaction is 
transmitted by particles neutral with respect to the gauge group. 

We thank V. A. Matveev, A. N. Tavkhelidze, and M. E. Shaposhnikov for their interest 
in the work and valuable comments. 

LITERATURE CITED 

I. J. FrShlich, G. Morchio, and F. Strocchi, Phys. Lett. B, 97, 249 (1980); Nucl~ Phys~ 
B, 190, 553 (1981). 

2. V.A. Matveev, A. N. Tavkhelidze, and M. E. Shaposhnikov, Teor. Mat. Fiz., 59, 323 
(1984). 

3. V.V. Vlasov, V. A. Matveev, A. N. Tavkhelidze, S. Yu. Khlebnikov, and M. E. Shaposh- 
nikov, "Canonical quantization of gauge theories with scalar condensate~" Preprint 
P-0418 [in Russian], Institute of Nuclear Research, Moscow (1985). 

4. J. Sucher and C. H. Woo, Phys. Rev. D, 8, 2721 (1973). 
5. A.M. Polyakov, Nucl. Phys. B, 120, 429 (1977). 
6. C.G. Callan, R. F. Dashen, and D. J. Gross, Phys. Lett. B, 63, 334 (1976). 
7. H.B. Nielsen and P. Olesen, Nucl. Phys. B, 61_, 45 (1973). 

1068 


