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Charge sensitivity of single-electron transistor with superconducting
electrodes
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The noise-limited charge sensitivity of a single-electron transistor with superconducting
electrodes operating near the threshold of quasiparticle tunneling, can be considerably
higher than that of a similar transistor made of normal metals or semiconductors. The
reason is that the superconducting energy gap, in contrast to the Coulomb blockade, is not
smeared by the finite temperature. The same reason leads to the increase of the maximum
operation temperature due to superconductivity.

c© 1996 Academic Press Limited
Key words: single-electron transistor, superconductivity, noise properties.

The simplest and most thoroughly studied single-electron [1] circuit is the Single Electron Transistor [2]
(SET) which consists of two tunnel junctions connected in series. At low temperatures (T � e2/C6 ,
C6 = C1 + C2 whereC1 andC2 are the junction capacitances) the current through this structure depends on
the background chargeQ0 of the central electrode (the dependence is periodical with a period equal to the
electron chargee). Hence, by controllingQ0 (for example, by a capacitive gate) it is possible to control the
currentI through the circuit. The possibility for use of the SET as a highly-sensitive electrometer has been
confirmed in numerous experiments. It has been noticed [3–5] that the superconductivity of electrodes im-
proves the performance of the SET (operating near the threshold of quasiparticle tunneling) as an electrometer
in comparison with the normal-state operation. This issue will be a subject of the quantitative analysis in the
present paper (see also Ref. [6]).

There are two major characteristics of the SET operation as an electrometer. The first one is the amplitude
of the output signal modulation forQ0 variations larger thane. It was found experimentally [4] that the use
of superconducting electrodes increases the modulation amplitude of currentI (for fixed bias voltageV),
especially at temperatures comparable toe2/C6 , thus increasing the maximum temperature. The theoretical
results of the present paper confirm this statement for bothN I SI N andSI SI Sstructures.

The other, even more important characteristic of the SET operation is the noise-limited sensitivity (ability
to detect variations ofQ0 much smaller thane). In the present-day technology the sensitivity is typically
limited by 1/f noise which is most likely caused by random trapping-escape processes in nearby impurities.
However, with technological improvement one can expect the reduction of the noise due to impurities. Then
the charge sensitivity of the SET would achieve the limit determined by the intrinsic noise [7, 8] of the
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Fig. 1. I –V curves for (A)N I N I N, (B) N I SI N (or SI N I S), and (C) and (D)SI SI SSETs for three values ofQ0 (0, e/4, ande/2)
and several temperaturesT . The curves for differentT are offset vertically for clarity. Notice that the modulation byQ0 survives up to
higherT in the superconducting transistors.

device caused by random electron jumps through tunnel junctions (this ‘white’ noise has been recently
measured in experiment [9]). Though the theory of the ‘classical’ thermal/shot intrinsic noise of the SET is
applicable to the general case of one-particle tunneling (normal metals, semiconductors, quasiparticle current
in superconductors, etc.), most numerical results in Refs [7] and [8] as well as in a number of subsequent
papers on this subject (see, e.g. Refs [10–13]) were obtained only for SETs made of normal metals. (Recently
some generalization was done [14] to include the possibility of two-particle tunneling which can be important
in the superconducting case. Let us also mention Ref. [5] in which the noise inN I SI N SET was briefly
considered.)

In the present paper we apply the theory of Refs [7] and [8] to the cases of capacitively coupled super-
conductingSI SI Sand N I SI N SETs (the analysis of a resistively coupled SET can be done in a similar
way—see Ref. [7]). We show that the noise-limited sensitivity of a SET-electrometer can be considerably
improved by the use of superconducting electrodes.

We consider only the quasiparticle tunneling, neglecting the Josephson current, resonant tunneling of
Cooper pairs, Andreev reflection, and cotunneling. This assumption is appropriate when the Josephson cou-
pling is negligible and the normal state resistancesR1 andR2 of tunnel junctions are well above the resistance
quantumRQ = π h̄/2e2. We use the ‘orthodox’ theory [1, 2] of the SET and the BCS theory [15] for the
calculation of the tunneling rates.

Figure 1 shows theI –V curves at different temperatures for (A) the normal metalN I N I N case, (B)N I SI N
case (which is equivalent toSI N I Scase), and (C) and (D)SI SI Scase. SETs withC1 = C2 andR1 = R2 =
R6/2 are chosen, and we neglect the gate capacitanceCg because it can always be formally distributed
betweenC1 andC2 (see, e.g. Ref. [16]). Three curves in each set representQ0 = 0,e/4, ande/2, respectively.
Temperature increase decreases the superconducting energy gap1(T) (which is assumed to be equal in all
S-electrodes) leading to the noticeable shift to the left of the positions of the current jumps in Fig. 1C and D.
The pure BCS theory would lead to the abrupt jumps of the current inSI SI Scase. To take into account the
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unavoidable smoothing of the jumps in reality, we assume additionally the inhomogeneous broadening of1(0)

with Gaussian distribution characterized by the dispersionw0. This phenomenological parameter is chosen as
w0 = 0.051(0) in Fig. 1C and D (for finite temperaturesw(T) = w0[1(T)/1(0)− (T/1(0))(d1(T)/dT)]
was used).

One can see that in the normal metal case the currentI can be considerably modulated (Imax/Imin & 2)
by Q0 (V is fixed) only atT . 0.15e2/C6 , while at T = 0.3e2/C6 the modulation is already negligible,
(Imax − Imin)/Imax ' 5%. Notice that the maximum relative modulation is achieved at small voltages and
does not depend on ratiosC1/C2 andR1/R2.

N I SI N transistor with1(0) = 0.5e2/C6 shows considerable modulation crudely up toT ≈ 0.2e2/C6 ,
while SI SI Stransistors with1(0) = 0.5e2/C6 and1(0) = 2.0e2/C6 operate well almost up to the critical
temperatureTc (Tc/(e2/C6) = 0.28 and 1.14, respectively). The case1(0) = 0.5e2/C6 corresponds to the
typical present-day experimental situation with aluminum junctions andC6 ≈ 0.4 fF (see, e.g. Ref. [4]).
Comparison of Fig. 1C and D shows that the increase of1(0) provides further improvement of the transistor
performance at high temperatures. Using Fig. 1D one can predict the operation of the niobium-based SET
with C6 ≈ 0.2 fF (current state-of-the-art for aluminum junctions) at temperatures up to 7 K.

Superconductivity improves the SET performance at relatively high temperatures because, in contrast to the
Coulomb blockade, the superconducting energy gap is not smeared by the finite temperature. In the normal
metal case theI –V curve has a cusp at the Coulomb blockade threshold

Vt = min
i,n

{Vi,n | Vi,n > 0}, whereVi,n = e

Ci

(
1

2
+ (−1)i

(
n + Q0

e

))
, (1)

and this cusp is rounded within the voltage interval proportional to the temperature. InSI SI Scase the jump
of the I –V curve atVt , which is shifted due to the energy gap,

Vt = min
i,n

{Vi,n + 21(T)C6/eCi | Vt > 41(T)}, (2)

remains sharp even atT ∼ 1(T), and the subthreshold current increase is only proportional to exp(−T/1(T)).
This explains whySI SI Stransistor shows considerable dependence onQ0 for the temperatures almost up to
Tc even ifT & e2/C6 . In N I SI N case theI –V curve in the vicinity of

Vt = min
i,n

{Vi,n + 1(T)C6/eCi | Vt > 21(T)} (3)

is rounded by the finite temperature, that makesN I SI N transistor worse thanSI SI Stransistor, however, it
is still better than usualN I N I N transistor.

Now let us consider the noise-limited sensitivity of the SET. The minimum detectable charge for the given
bandwidth1 f is

δQ0 = (SI 1 f )1/2/(∂ I /∂Q0) (4)

where the spectral densitySI of the current noise is taken in the low frequency limit. The ultimate low-
temperature (T � e2/C6) sensitivity in theN I N I N case is [7, 8]

minδQ0 ' 2.7C6(RminT1 f )1/2, Rmin = min{R1, R2}. (5)

This result can be somewhat improved in theN I SI N SET (with the same resistances) operating near the
thresholdVt of quasiparticle tunneling. At low temperatures,T � min{e2/C6, 1(T)}, and forV close to
nondegenerateVt , we can use approximation

SI ' 2eI, I ' I0,i ((V − Vt )C1C2/Ci C6), (6)

where

I0,i (v) = (1/eRi )[T1(T)/2]1/2
∫ ∞

0
dy/

√
y/[1 + exp(y + (1 − ev)/T))]−1 (7)
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Fig. 2. The minimum detectable chargeδQ0, the currentI , and the ratioSI /2eI as functions of the bias voltageV for SI SI SSET.
Dashed lines showδQ0 for N I N I N andN I SI N SETs. The best sensitivity is achieved inSI SI Scase.

is the ‘seed’I –V curve ofi th junction. Then the ultimate sensitivity is given by equation

minδQ0 = C6(2e1 f )1/2 min
v

{
√

I0(v)/(d I0/dv)}, (8)

and finally we get the result

minδQ0 ' 2.6C6(RminT1 f )1/2[T/1(T)]1/4 (9)

which is better thanN I N I N sensitivity whenT < 1(T). The main reason for the improvement is the
increase [3–5] of the transfer coefficient∂ I /∂Q0 ' V(1/Ci )(∂ I /∂V), because the differential resistanceRd

of the ‘seed’I –V curve near the onset of quasiparticle tunneling is less thanRi . Notice that the ‘orthodox’
theory used here is valid only ifRd & RQ because the cotunneling processes [17, 5] impose the lower bound
for (∂ I /∂V)−1 on the order ofRQ [18]. For relatively high temperatures the ratio of minimumδQ0 in N I SI N
andN I N I N cases is larger than [1(T)/T ]1/4 (e.g., compare the dashed lines in Fig. 2) becauseN I N I N
sensitivity starts to deviate up from the low-temperature approximation at smallerT thanN I SI N sensitivity.

The improvement of the ultimate sensitivity is more significant inSI SI SSET. For pure BCS model the
‘orthodox’ theory gives infinite derivative∂ I /∂Q0 atV = Vt even for finite temperature leading toδQ0 → 0.
Hence, the ‘orthodox’ ultimate sensitivity depends on the imperfection of the current jump which is described
in our model by the energy gap spreadw0 (w0 � min{1(T), e2/C6}).

Figure 2 showsδQ0 together with currentI and ratioSI /2eI, as functions of the voltage for the symmetric
SI SI SSET with parameters1(0) = 0.5e2/C6 ,w0 = 0.051(0), T = 0.1e2/C6 , andQ0 = 0.25e(numerical
calculations are done using the method described in Refs [7] and [8]). Dashed lines showδQ0 for similar
N I N I N andN I SI N SETs. One can see that the sensitivity ofSI SI SSET is much better than forN I N I N
andN I SI N cases within a relatively narrow voltage range which corresponds to the jump of current.

In contrast toN I N I N andN I SI N cases, the approximationSI ' 2eI is not accurate in the vicinity of
Vt for SI SI SSET even at low temperatures (see Fig. 2) because the relatively large tunneling rate in the
junction determiningVt , is comparable to the tunneling rate in the other junction. This approximation is valid
only if T � 1(T) � e2/C6 , and would lead to inaccuracy typically about 10% for the analytical calculation
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of minδQ0 if T � 1(T) ∼ e2/C6 . Nevertheless, it can be used as a crude estimate. Using eqn (8) and
smoothed byw0 low-temperature (T � 1(T)) ‘seed’ I –V curve for SIS junction [15] we get

minδQ0 ' 1.8C6

(
Rmin1 f w2

0/1(T)
)1/2

. (10)

Notice that the numerical factor depends on the particular model describing the shape of the current jump.
Comparing eqn (10) with the result forN I N I N SET, we see that the temperatureT is replaced inSI SI S
case byw2

0/1(T). Hence, the ultimate sensitivity is better inSI SI SSET (resistances are the same) with
sufficiently narrow width of the current jump,w0 < (T1(T))1/2.

In the case of very sharp ‘seed’I –V curve,w0.1(T)RQ/Ri , the slope of the jump of the SETI –V curve
is determined by cotunneling [17] and it cannot be sharper than crudelyR−1

Q [18]. Then minδQ0 is on the
order ofC6(1 f 1(T)R2

Q/R)1/2 (we assume1(T)& e2/C6 , R1 = R2), and the ultimate sensitivity is better
than forN I N I N SET if T &1(T)(RQ/R)2.

In conclusion, the superconductivity of electrodes can considerably improve the performance of the single
electron transistor as an electrometer at relatively large temperatures, if the superconducting energy gap is
comparable or larger thane2/C6 .
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