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At sufficiently low temperatures, 1D arrays of ultrasmall tunnel junctions with low electron scattering rate 
(for example, semiconductor superlattices) may exhibit a new type of electron transfer. This process can be 
considered as fast "Bitch" oscillations with frequency fB=~/h (where ~ is the electron energy change due to 
tunneling through one tunnel barrier), modulated with lower "SET" frequency fs=I/e (where I is the dc electric 
current through the array). 

1. INTRODUCTION 2. MODEL 

Probably, the most important result of single- 
electronics (see, e.g., Refs. 1, 2) is the concept [3] 
of so-called "Single-Electron-Tunneling" (SET) 
oscillations with frequency fs=I/e, fundamentally 
related to the dc electric current I. Such 
oscillations arise due to particle properties of 
electrons and can take place in systems with purely 
classical dynamics [4]. They can be, however, most 
naturally implemented [5, 6] in 1D arrays of small 
tunnel j unctions. 

But it is well known [7] that such systems may 
allow another type of fundamental oscillations: so- 
called "Bitch" (or "Stark") oscillations with 
frequency fB=~/h, where e is the free energy change 
due to electron tunneling through one junction (in 
the simplest case of negligible self-charging effects, 
&=eEd, where E is the external electric field and d 
is the structure period). The Bloch oscillations are 
evidently a quantum phenomenon and reflect wave 
properties of electrons. 

A very natural question is whether these two 
types of oscillations can exist simultaneously. An 
apparent answer is no, because Heisenberg's 
uncertainty principle forbids the electron to behave 
simultaneously as a wave and as a particle. The 
goal of this work was to show that, surprisingly 
enough, this apparent answer is wrong. 

*Supported in part by AFOSR Grant # 91-0445 

We have considered a model of 1D structure, 
typical for description of semiconductor 
superlattices (see, e.g., Ref. 8). Electron energy in 
i-th quantum well can be presented as 

£ = e 0 + eU i + p2/2m, (1) 

where e 0 is the 1D energy of the lowest miniband, 
U i is the background potential including that due to 
external electric field, and p is the electron 
momentum in the plane of the well (quantization in 
this direction is accepted to be negligible). 
Nonvanishing matrix elements H connect electron 
states with similar p and e in neighboring layers. 
On the other hand, p can be changed as a result of 
elastic scattering on impurities, with the rate F 
within the range H<<F<<£ 0, so that all calculations 
can be carded out using the perturbation theory 
with respect to H. 

In contrast with the standard approach we, 
however, considered the superlattice cross-section 
to be so small and/or temperature T so low that 
capacitances C and conductances G of all its tunnel 
junctions satisfy the conditions [1-3] C<<e2/kBT, 
G<<e2/h. As a result, single-electron charging 
effects become important, so that the potentials U i 
of wells become dependent on the charge 
configuration {nj}, where nj is the number of 
excess electrons in the j-th well. In order to 
simplify this dependence we have assumed that the 
number N+I of the wells is less than (C/Co) I/2, 
where C o is the stray capacitance of the well [5]. 
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Figure 1. Spectral density of the current I(t) through a "slim" superlattice at (a) low frequencies and (b) high 
frequencies for 6 of N=30 successive charge configurations (k=l, 5, 10, 15, 20,25,30). Vo=fiG/e, T=0. 

3. RESULTS 

We were able to calculate spectral density SI(t) 
of current I(t) through the superlattice (biased by a 
dc voltage V), for two overlapping frequency 
ranges: f<<fB and f>>fs. Figure la shows a typical 
result of the calculations for the low-frequency 
range. One can see a narrow spectral peak 
corresponding to narrow-band SET oscillations of 
frequency fs=I/e. These oscillations result from an 
ordered sequence of single-electron tunneling 
events [5], so that during each period of the 
oscillations the system passes through an ordered 
sequence of successive charge configurations {nj} k 
(k=l ..... N) with gradually decreasing energy. 

Because of small tunnel barrier transparency, in 
our model fs<<f B. It means that in each of the 
successive charge configurations {n:}~,, the short- J 
time dynamics of the system can be analyzed under 
the assumption that the configuration is stationary. 
Figure lb shows a typical result of such a 
calculation (with zero-point contribution subtracted, 
so that the plot shows the available power density). 
The peak of the density corresponds to the Bloch 
oscillations of frequency fB=ek/h, where ~k is the 
energy difference between the charge 
configurations {nj} k and {nj}k+ 1. It is important 
that if Si(f) is averaged over the period of the SET 
oscillations, its value at f<<fB (equal to 2eI/N) 
coincides with the low-frequency result in the limit 
f~>fs, thus indicating that the picture as a whole is 
self-consistent. 

Thus in "slim" semiconductor superlattices 
the transport process as a whole can be considered 
as high-frequency quantum Bloch oscillations 
modulated by low-frequency classical SET 
oscillations. The process closely resembles the 
textbook description of an electron by a packet with 
wave-like carder and particle-like envelope. Due to 
two very different frequency scales (in our case, 
fs<<fB), such a coexistence does not violate 
Heisenberg's uncertainty relation. 
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