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Abstract

We consider the continuous quantum measurement of a two-level system, for example, a single-Cooper-pair box
measured by a single-electron transistor or a double-quantum dot measured by a quantum point contact. While the
approach most commonly used describes the gradual decoherence of the system due to the measurement, we show that
when taking into account the detector output, we get the opposite e!ect: gradual puri"cation of the density matrix. The
competition between puri"cation due to measurement and decoherence due to interaction with the environment can be
described by a simple Langevin equation which couples the random evolution of the system density matrix and the
stochastic detector output. The gradual density matrix puri"cation due to continuous measurement may be veri"ed
experimentally using present-day technology. The e!ect can be useful for quantum computing. ( 2000 Elsevier Science
B.V. All rights reserved.
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The active research on quantum computing as well as
the progress in experimental techniques have motivated
renewed interest in the problems of quantum measure-
ment, including the long-standing `philosophicala ques-
tions. In contrast to the usual case of averaging over
a large ensemble of similar quantum systems, it is becom-
ing possible to study experimentally the evolution of an
individual quantum system. In this paper we consider the
continuous measurement of a two-level system by
a `weakly respondinga [1] detector which can be treated
as a classical device.

While after averaging over the ensemble the continu-
ous measurement leads to the gradual decoherence of
the system density matrix, the situation is completely
di!erent in the case of an individual quantum system. In
particular, the system evolution becomes dependent
(`conditioneda) on the particular detector output. The
theory of conditioned evolution of a pure wave function
was developed relatively long ago, mainly for the pur-
poses of quantum optics (see, e.g. Ref. [2] and references
therein). However, for solid state structures the problem

of continuous quantum measurement with an account of
the measurement result has only been addressed recently
[1], with the main emphasis on the mixed quantum states
and the detector nonideality.

The evolution of the density matrix p of a double-dot
with the tunneling matrix element H and energy asym-
metry e can be described by nonlinear equations
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where I(t) is the particular detector output (we assume
electric current), I
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age currents corresponding to two localized states of the
double-dot, *I"I
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is the low-frequency spec-

tral density of the detector shot noise, and the detector
nonideality is described by the extra dephasing due to
interaction with an `untrackablea environment
c"C!(*I)2/4S

I
, where C is the dephasing rate in the

conventional approach (after ensemble averaging). In
particular, the quantum point contact (QPC) can be an
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Fig. 1. Gradual puri"cation of the two-level system density
matrix p(t) in a course of continuous measurement.

ideal detector, c"0 (see, e.g. Ref. [3]), while the single-
electron transistor (SET) in a typical operation point is
a signi"cantly nonideal detector, c&C [4].

Eqs. (1) and (2) allow us to calculate the evolution of
the system density matrix if the detector output I(t) is
known from the experiment. They can be also used for
the simulation, then the term [I(t)!I

0
] should be re-

placed with [*I(p
22

!p
11

)/2#m(t)] where the random
process m(t) has zero average and Sm"S

I
. (We use the

Stratonovich formalism for stochastic equations.)
Fig. 1 shows the result of such a simulation for a slight-

ly nonideal detector, c"0.1C, in the case when the
evolution starts from the maximally mixed state,
p
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"0.5, p
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"0. One can see that p
12

gradually
appears during the measurement, eventually leading to
well-pronounced quantum oscillations. In the case c"0
the density matrix becomes almost pure after a su$-
ciently long time. This gradual puri"cation can be inter-
preted as being due to the gradual acquiring of
information about the system. The detector nonideality,
cO0, causes decoherence and competes with the puri"-
cation due to measurement.

In contrast to QPC, the SET as a detector directly
a!ects the two-level system asymmetry e because of
the #uctuating potential /(t) of SETs central island.
Since there is typically a correlation between #uctuations
of I(t) and /(t) [5], we should add into Eq. (2) the term
ip
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/4. The average

asymmetry e should be also renormalized to account for
the backaction of /M shift.

To observe the density matrix puri"cation experi-
mentally, it is necessary to record the detector output
with su$ciently wide bandwidth, *f<C (possibly,
*f&109 Hz), and plug it into Eqs. (1) and (2). Calcu-

lations will show the development of quantum oscilla-
tions with precisely known phase. Stopping the evolution
by rapidly raising the barrier (HP0) when p

11
K1 and

checking that the system is really localized in the "rst
state, it is possible to verify the presented results.

The potential application in quantum computing is the
fast initialization of the qubit state (not requiring relax-
ation to the ground state) after the intermediate measure-
ments.
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