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I. FSIM CONTROL MODEL

A generic representation of a Fermionic Simulation
(fSim) gate corresponding to a two-qubit photon conserv-
ing unitary requires five parameters. We may separate
out the single and two-qubit parameters as follows: a
|01〉 ↔ |10〉 swap angle, θ, a |11〉 state conditional phase,
φ, and three single qubit phases, ∆+,∆−, and ∆−,off
yielding a generic fSim parameterization,

fSim(θ, φ,∆+,∆−,∆−,off ) =
1 0 0 0

0 ei(∆++∆−) cos θ −iei(∆+−∆−,off ) sin θ 0

0 −iei(∆++∆−,off ) sin θ ei(∆+−∆−) cos θ 0

0 0 0 ei(2∆++φ)


(1)

We are interested in performing a two-qubit gate,
which is independent of the single-qubit rotations.
Therefore, we can focus on the matrix where ∆+,∆−,
and ∆−,offare all zero, leading to the notation,

fSim(θ, φ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iφ

 (2)

used to designate an arbitrary gate within the excitation
preserving subspace.

II. FSIM GATE NUMERICS

The qubit dynamics presented in the main paper (Fig-
ure 2) are well described by numerics simulating two
interacting qutrits (e.g. a pair of coupled three-level
anharmonic oscillators) evolving with a time dependent
detuning, ∆(t), and coupling, g(t). We truncate the

full two-qutrit Hamiltonian limiting our simulation to
states with 1 or 2 excitations. Operating with the ba-
sis |01〉 , |10〉 , |11〉 , |20〉 , |02〉, the Hamiltonian describing
the system is given by:

H(g,∆, η) =


0 g 0 0 0
g ∆ 0 0 0

0 0 ∆
√

2g
√

2g

0 0
√

2g 2∆ + η 0

0 0
√

2g 0 η

 (3)

where η is the nonlinearity of each qubit, which we as-
sume is the same for both qubits (240 MHz). Using this
model, we may estimate the unitary operation enacted by
arbitrary time-domain control of the coupling strength
and the qubit detuning by discretizing these time do-
main control waveforms and performing a time ordered
integral of H(t).

In Figure S1 we qualitatively reproduce the experimen-
tal results in Figure 2 of the main text by simulating
15 ns rectangular control pulses defining both g and ∆.
In Figure S2 we illustrate the broadening effect that us-
ing shorter pulse lengths has on the Rabi interactions of
both the |01〉 ↔ |10〉 and |11〉 ↔ |02〉 interactions by
simulating rectangular pulses that are 10 ns, 15 ns, and
20 ns long. In Figures S2 and S3, we have omitted points
where the leakage exceeds a 1% threshold which identifies
the parameter space where we can perform fSim gates
with low error. Experimentally we have chosen to im-
plement our CPHASE gates with 13 ns long rectangular
pulses with a 1 ns pad on either side—when we made the
gate length shorter, leakage increased (data not shown).
Here, in Figure S2a, we qualitatively see that the width
of the 1% leakage band where we perform the CPHASE
gate begins to pinch off and the |2〉 state Rabi inter-
action reaches all the way to the on-resonance iSWAP-
like parameter space (dotted white line) when the gate
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FIG. S1. Numeric simulation of two interacting qutrits reproducing the data from our experiments in Figure 2 of the main text.
We simulate qubits with a fixed nonlinearity (240 MHz) with 15 ns long rectangular control pulses defining the qubit detuning,
∆, and their coupling, g.

length is 10 ns. Both these results qualitatively repro-
duce what we observed experimentally when attempting
iSWAP-like gates shorter than 11 ns or the CPHASE gate
shorter than 13 ns. Finally, in Figure S3 we simulate the
effect of smoothing the control pulses by simulating 20 ns
long coupler pulses that are rectangular, rectangular with
3 ns Gaussian smoothing, and cosine shaped (all detuning
pulses are rectangular and have the same length). Here
we see that smoothing reduces the extent of leakage from
the second and third |11〉 ↔ |02〉 swap lobes expanding
the available low-error fSim control space. This indicates
that pulse smoothing may be an important consideration
of any future fSim implementation that aims to perform
an arbitrary fSim using a single coupler pulse instead of
the two discrete rectangular pulses we have used in this
work.

III. GATE CHARACTERIZATION

We use a variety of techniques to characterize the per-
formance of our single and two-qubit gates. In lieu of full
process tomography, we use depth one population based
measurements to perform unitary tomography to quickly
assess the unitary operation performed by a given set of
control pulses. We then turn to benchmarking techniques
that amplify gate errors and allow for the characteriza-
tion of small error rates. We use Clifford based bench-
marking to characterize our single-qubit microwave gates
and cross-entropy benchmarking (XEB) to characterize
our two-qubit entangling gates.

A. Computing and reporting Pauli error rates

Before jumping in to gate characterization, a quick
aside on Pauli error rates. We report Pauli error rates
which are independent of the Hilbert space dimension
and thus add linearly as the circuit’s Hilbert space grows.
In the past, many have reported average single and two-
qubit depolarizing errors, ed, as exponential decay con-
stants of a sequence fidelity, F = Aemed +B where A and
B are fit parameters to compensate for state preparation
and measurement (SPAM) errors, m is the number of
gate repetitions in the sequence, and ed is the depolariz-
ing error per cycle. The Pauli error, ep, is related to ed
by the dimension of the Hilbert space:

ep = ed ×
(

1 +
1

D

)
(4)

where D = 2n is the dimension of the Hilbert space for
an n-qubit gate. We note that this results in an increase
in the reported error by a factor of 1.5 for single-qubit
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FIG. S2. Numeric simulation of a, 10 ns, b, 15 ns, and c, 20 ns rectangular control pulses showing the fSim parameter space
where leakage is less than 1% (white regions are where leakage exceeded this threshold). Experimentally we chose to perform
our CPHASE gate with 13 ns long pulses and the iSWAP-like gate with 11 ns control pulses (both of which had 1 ns pads on
either side)—as we found that shorter implementations of either gate increased leakage and the overall gate error. Here, these
numerics demonstrate that for 10 ns long gates, the low-leakage lobe where we perform the CPHASE gate narrows considerably
and the |2〉 state Rabi interaction reaches the on-resonance iSWAP-like line cut near θ = 90◦, both of which agree with our
experimental results.

gates (n = 1) and a by a factor of 1.25 for two-qubit gate
errors (n = 2) [1].

When performing two-qubit XEB, we measure the ex-
ponential decay constant per cycle, er,cycle where each
cycle consists of the application of one single-qubit gate
per qubit and one fSim entangling gate involving both

qubits. In order to extract the error per fSim gate, we can
convert this to a Pauli error per cycle, ep,cycle, and sub-
tract off the two single-qubit Pauli gate errors, ep,q1 and
ep,q2 , which we estimate using single-qubit Clifford based
randomized benchmarking performed on each qubit in
isolation.
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FIG. S3. Numeric simulation of a, a 20 ns rectangular coupler pulse, b, a 3 ns rise time rectangular pulse, and c, cosine coupler
pulse showing the fSim parameter space where leakage is less than 1%. We observe that as the coupler pulses become more
smooth, the fSim parameters space where leakage is less than 1% expands considerably. This indicated that pulse shaping and
or smoothing may play an important role in any future implementation of the fSim gate set that aims to implement the gate
set with a single pulse.

ep,2q = ep,cycle − (ep,q1
+ ep,q2

) (5)

For simplicity, all two-qubit Pauli errors have been com-
puted assuming single-qubit Pauli errors of 7.5×10−4 per
gate per qubit consistent with our typical single-qubit
error rates immediately following a successful run of our
standard single-qubit gate calibration procedure (see sup-

plement III B).

ep,two qubit = ep,cycle−2·(7.5×10−4) = ep,cycle−1.5×10−3

(6)
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FIG. S4. Swap spectroscopy for four qubits from 5 to 6 GHz
characterizing the qubit T1 as a function of qubit frequency.
For all four qubits on this chip over the available frequencies
in the range of 5-6 GHz we find an average T1 = 25.3± 7.3µs.

B. Single-qubit coherence and gates

Qubit coherence, in conjunction with gate duration,
places a lower bound on both our single and two-qubit
gate error rates. In Figure S4 we characterize T1 for four
qubits over a frequency range of 5 to 6 GHz. To perform
this measurement we calibrate single-qubit gates, read-
out, and flux bias frequency control for a given qubit
idle frequency. We then excite the qubit to the |1〉 state
and detune the qubit to another frequency for a vari-
able amount of time before detuning back to the idle
frequency for readout. For each detuned frequency, T1

is extracted as an exponential decay of the population
over time, P |1〉 ∝ Ae−t/T1 + B, where A and B are fit
parameters to compensate for state preparation and mea-
surement errors. In Figure ?? we plot representative data
for four qubits on one processor over a frequency range
from 5−6 GHz. We find T1 = 25.3±7.3µs (one standard
deviation) by averaging the available data from all four
qubits (fmax for the second qubit was anomalously low
so we include data for this qubit from 5− 5.61 GHz).

We use single-qubit purity [2] and Clifford-based ran-
domized benchmarking [3, 4] to characterize the aver-
age error of our single-qubit gates. In Figure S5 we
present representative results for a pair of qubits demon-
strating purity-limited (incoherent error-limited) perfor-
mance. These gate errors drift over time, but imme-
diately following a successful run of our standard cali-
bration procedure we typically observe single-qubit error

8.25e-04

9.55e-04

4.90e-04
7.10e-04

FIG. S5. Representative single-qubit Clifford-based random-
ized benchmarking results used to characterize the average
error of our single-qubit gates. With a typical calibration,
the single-qubit Pauli errors for both qubits are usually in
the range of 5 − 10 × 10−4. When computing the two-qubit
gate error from the XEB per cycle error throughout this pa-
per, we assume a moderately conservative error of 7.5× 10−4

per single-qubit gate.

rates at or slightly higher than the 7.5 × 10−4 level [5].
As such, we use this estimate in computing two-qubit
error rates throughout this paper. These error rates are
consistent with the coherence limit, for Tgate = 15 ns and
T1 = 30µs, giving ep,inc ≈ 1.5×Tgate/3T1) = 2.5×10−4,
with the remainder of the error coming from leakage and
T2 [6].

C. Unitary tomography

Section II of the main text describes shallow circuits
used to characterize leakage and the two-qubit control
parameters, θ and φ. Here, we detail the procedure used
to directly measure all the non-zero matrix elements com-
posing an arbitrary photon conserving unitary operation
and the algebra used to convert these matrix elements
into the five fSim control parameters (in Eq. 1). We use
the resulting fSim model to compute the XEB sequence
fidelity which we may then use as a cost function to op-
timize some, or all, of the fSim model parameters.

In order to efficiently characterize the unitary opera-
tion performed by a given set of control pulses, we initial-
ize and measure a set of circuits as summarized in Table
S1. If we consider a general photon conserving unitary
the non-zero matrix elements will take the form:
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TABLE S1. Summary of the two-qubit unitary tomogra-
phy measurement sequences. Here, {u11, u12, u22, u21} are
the complex matrix elements of the two-qubit unitary in
[|01〉 , |10〉] subspace. The two additional measurements
(u12,excited and u22,excited) are repeated measurements of u12

and u22 but with the other qubit placed into the excited state.
This additional information is used to construct the condi-
tional phase, φ.

Matrix element Initial state Measure qubit
u11 (x, 0) 0
u12 (0, x) 0
u22 (0, x) 1
u21 (x, 0) 1

u21,excited (1, x) 0
u22,excited (1, x) 1

U =

|00〉 |01〉 |10〉 |11〉 1 0 0 0
0 u11 u12 0
0 u21 u22 0
0 0 0 u33

 |00〉
|01〉
|10〉
|11〉

(7)

Where unm denotes a non-zero element. We measured
unm by initializing excited qubit in the basis ket of col-
umn m with an X/2 gate, and measuring the expectation
value of σx + iσy of the excited qubit in the basis ket de-
noted by row n. e.g. for u21 we initialize the left qubit,
apply the fSim gate, and then measure σx + iσy of the
right qubit—this is the complex value of u21. This proce-
dure works for the single excitation subspace (e.g. n,m
in [1, 2]), but u33 is computed from repeated measure-
ments of u12,excited and u22,excited where the previously
uninitialized qubit is instead placed into the |1〉 state
as summarized in Table S1. This procedure is similar
to process tomography, but requires considerably fewer
measurements to characterize the fSim matrix. We note
that an optimal measurement sequence would require
only 2n-1 circuits (for a n × n matrix) [7]. Even with
several thousand repetitions of each circuit, characteriz-
ing the matrix with this method takes only a few seconds.
Our series of six circuits is intentionally over-complete to
avoid singular behavior when some matrix elements are
small. In table S2 we list the conversion between the ma-
trix elements and the five parameters of our fSim control
model. These are useful measurements for building an
fSim model, but we cannot characterize small gate errors
(≈ 10−3) using this method due to the limitations of state
preparation and measurement (SPAM) errors which are
a few percent.

D. Cross-entropy error benchmarking

Cross-entropy benchmarking (XEB) is a powerful tech-
nique for characterizing the error of an arbitrary gate [8].
It is particularly useful when implementing non-Clifford
gates like the continuous fSim gate set we use here. XEB

TABLE S2. Computing fSim model parameters from the re-
sults of our unitary tomography protocol. The “condition”
column is present because we compute u33 = u22,excited/u

∗
11

or u33 = u12,excited/u
∗
21 depending on if u11 or u21 is larger to

ensure the result is non-singular. ψ10 is the phase difference
accumulated between the two qubits over the gate duration.
fSim parameter Value condition

θ arctan(|u12|/|u11|) none
φ ∆+ − ∠(u12,excited × u21) |u21| > |u11|
φ ∠(u22)− ∠(u22,excited) |u21| < |u11|

∆+ ∠(−u11 × u21) |u21| > |u11|
∆+ ∠(u11 × u22) |u21| < |u11|
∆− 2× ∠(u11)−∆+ none

∆−,off −2 (∠(−u12/ı̇) + ψ10) + ∆+ ψ10 = (ωq1
− ωq0

) ∗ tgate

uses a repetitive gate sequence to amplify small errors
where each cycle consists of a random single-qubit gate
from the set {X/2, Y/2, ±X/2±Y/2} applied to each
qubit followed by the fSim gate we are benchmarking.
We extract the error per cycle as an exponential decay in
the XEB sequence fidelity, FXEB. The sequence fidelity
is computed using the cross-entropy between two prob-
ability distributions P and Q, S(P,Q) = −

∑
i piln(qi),

by comparing the expected, measured, and incoherent
probability distributions for a given gate sequence,

FXEB =
S(Pincoherent, Pexpected)− S(Pmeasured, Pexpected)

S(Pincoherent, Pexpected)− S(Pexpected)
(8)

The numerator is the difference between the measured
and expected cross-entropy and the denominator serves
as a normalization so that FXEB takes a value from [0,
1]. We then use 1−FXEB as a cost function to optimize
the five parameters of our fSim control model. For a
given random sequence, we compute the expected proba-
bility distribution using perfect single-qubit gate models
and the fSim model obtained from our unitary tomogra-
phy experiment (supplement III C). Since, the sequence
fidelity is dependent on the single and two-qubit gate
models used in the cross-entropy calculation, we can use
1 − FXEB as a cost function to optimize some or all of
our fSim gate model parameters, a process termed ex situ
optimization.

E. RB vs XEB

As a sanity check, one may ask that we compare the
result of Clifford based randomized benchmarking (RB)
and cross-entropy benchmarking (XEB). Clifford based
RB requires an inversion gate, inverting a random gate
sequence to map the total ideal gate sequence starting in
the |0〉 state back to |0〉. For most of the fSim gates, the
inversion gate is non-trivial, but, for the special case of a
CZφ = fSim(0◦, 180◦), which is part of the Clifford gate
set, this comparison is possible.

In Figure S6a we perform single-qubit Clifford based
randomized benchmarking (gate sequence inset), extract-
ing average single-qubit Pauli errors ep,q1 = 0.7 × 10−3
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FIG. S6. Comparison of Clifford-based randomized bench-
marking (RB) and cross-entropy benchmarking (XEB). a,
Single-qubit Clifford based randomized benchmarking mea-
suring average Pauli errors of 0.09% and 0.07% for each qubit.
b, Two-qubit Clifford based randomized benchmarking with
(blue) and without (red) an interleaved CZφ gate, allowing
us to extract the Pauli error per CZ + φ of 0.41%. c, Two-
qubit cross-entropy benchmarking where each cycle includes
two single-qubit gates and a CZφ gate yielding a Pauli error
per cycle of 0.59%. Here we find that the sum of the single and
two-qubit errors measured with Clifford based RB (0.09% +
0.07% + 0.41% = 0.57%) corresponds well to the XEB error
per cycle (0.59%).

and ep,q2 = 0.9 × 10−3. In Figure S6b we perform two-
qubit Clifford based randomized benchmarking with and
without an interleaved CZφ gate (sequences inset), ex-
tracting a Pauli error per CZφ of 4.1 × 10−3. Then, in
Figure S6c we use XEB to measure the per cycle error
of the CZφ + two single-qubit gates obtaining ep,cycle =
5.7 × 10−3. If we then sum the Clifford based errors for
each SQ gate and the CZφ (0.7 + 0.9 + 4.1) × 10−3 =
5.7 × 10−3 we find good agreement with the XEB error
per cycle ep,cycle = 5.9× 10−3.

F. Error budgeting

In this section, we use various techniques to provide a
more thorough budget of our XEB per cycle errors. As we
have discussed, XEB measures the total error per cycle,
ep,cycle. This includes coherent and incoherent errors for
one single-qubit gate per qubit and one fSim gate. We use
single-qubit Clifford-based randomized benchmarking to
characterize the average total error for single-qubit gates,
we use purity benchmarking to characterize incoherent
error of both the single-qubit and fSim gates, and we use
|2〉 state readout in conjunction with XEB to character-
ize per cycle leakage (which is included in the incoherent
error). Here we focus on the two-qubit gate errors by
assuming purity-limited single-qubit Pauli gate errors of
7.5 × 10−4 as described in supplement III B—this effec-
tively means we subtract 1.5 × 10−3 from ep,cycle to ob-
tain ep,2q for both error per gate and purity loss per gate
measurements.

In Figure S7a we perform Purity benchmarking for
each XEB gate sequence and obtain an average Purity
loss of 3.76× 10−3 per fSim gate. In Figure S7b we plot
ep,2q,unitary tomography, the Pauli error per fSim gate using
the fSim gate model obtained from unitary tomography.
The average ep,2q,unitary tomography is 5.07×10−3 indicat-
ing a coherent error of 1.31×10−3 per fSim. In Figure S7c
we perform ex situ optimization of our fSim gate model
to reduce the coherent error by changing the three single-
qubit detuning model parameters. We hold the values of
θ and φ fixed to the sampling grid, but allow the single-
qubit phases in the fSim model to be optimized. With
this improved gate model coherent error is nearly elim-
inated. The average error ep,2q,ex situ is 3.83 × 10−3 re-
ducing the average coherent error to 7× 10−5 per gate.

We characterize leakage by directly measuring the |2〉
state population as a function of the XEB sequence
depth. In Figure S8 we perform this measurement for
a line cut of fSim control pulses that sweep the coupler
bias on either side of the low-leakage bias used to per-
form a CPHASE gate. We find leakage to be minimized
to a value of 5 − 6 × 10−4 for a range of coupler biases
spanning nearly 10 “clicks” of our 13-bit bipolar DAC
(2/213 ≈ 0.0002).

In total, these metrics indicate that we have achieved
incoherent-error-limited gates with fairly low leakage (if
necessary, leakage may be reduced further by optimizing
the gate length at the potential expense of additional
incoherent error). Additionally, we find that we are able
to perform the desired fSim(θ, φ) gate we want without
incurring additional coherent error. A critical component
in achieving these results was eliminating the non-gate-
like behaviors induced by long settling tails on our flux
bias pulses. As such, we will now detail the procedure
used to calibrate our flux control pulses.
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two qubits gatex103

FIG. S7. Comparison of purity benchmarking and cross-entropy benchmarking with and without a constrained ex situ op-
timization of the fSim control angles. a, Purity loss per two qubit gate. b, XEB error per gate using the fSim gate model
obtained from unitary tomography (supplement III C). c. XEB error after a constrained ex situ optimization of the fSim gate
parameters where θ and φ were held fixed to the grid and the single-qubit phases were optimized.

G. Unitary overlap

The unitary overlap of two unitary matrices, e.g. some
target fSim, Utarget, and the actual fSim, Uactual, is de-
fined as Tr(Utarget ·Uactual)/D, where D is the dimension
of the Hilbert space. The unitary overlap is related to the
Pauli error, ep = 1−(Tr(Utarget ·Uactual)/D)2. The Pauli
error in an fSim gate for small deviations in either θ or
φ is proportional to the square of the deviation angle. In
Figure S9 we plot the additional coherent error incurred if
you assume some actual fSimactual = fSim(θ+ δθ, φ+ δφ)
is instead some target fSimtarget = fSim(θ, φ). This plot
indicated that a deviation of either 2.5◦ in θ or 4◦ in φ
with result in an additional coherent error of 1 × 10−3.
In our case (Figure S7), after a constrained optimization
where θ and φ were fixed to a grid, our average error
was approximately 1× 10−4 higher than the purity limit

which corresponds to a deviation of about 1◦ in either θ
or φ.

IV. CONTROL PULSE CALIBRATION

In a world without flux settling tails, we would be able
to implement an arbitrary fSim gate with a fidelity that is
the sum of the requisite CPHASE and iSWAP-like gates
by just merging the control pulses into a composite fSim
gate pulse sequence. Unfortunately, due to flux settling
tails, further calibration, described in IV C, was required.
The keystones of this calibration were two-fold: 1) When
performing two flux control based gates back to back (e.g.
2 ns separation), adjust the amplitude of the second pulse
based on the first. 2)When implementing a composite
gate, perform a CPHASE gate followed by the iSWAP-
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Coupler flux bias (arb)

FIG. S8. Plot of leakage and total XEB error per cycle for
a 13 ns CPHASE gate as a function of the coupler bias. The
increment on the x-axis is four times the minimum increment
of our DAC (2/214, e.g. a 14-bit bipolar DAC ≈ 0.0001). In
this case we find that leakage reaches a minimum of 5 − 6 ×
10−4 for a range of coupler amplitudes approximately 10x our
minimum DAC adjustment.

like gate so that bleed through is well behaved; in the
reverse order, bleed through of the iSWAP-like coupler
pulse into the CPHASE gate pulses will result in leakage
to the |2〉 state which is an error in the fSim model. Using
these two principles, we were able to implement a robust
calibration of the complete fSim gate set.

As we have demonstrated numerically in supplement
II, our desired implementation of the fSim gate set is
possible with less than 1% error using simple rectangu-
lar control pulses. Unfortunately, the system transfer
function (electronics and wiring) is imperfect and cannot
produce these ideal waveforms exactly. Fortunately, as
explored numerically in Figure S3, our fSim implemen-
tation is mostly sensitive to the integral of our control
pulses rather than the shape. This likely remains true
unless the spectral content of our flux control pulses ap-
proaches the qubit frequency. However, we must be very

FIG. S9. We may choose to interpret some fSimactual =
fSim(θ+δθ, φ+δφ) as some fSimtarget = fSim(θ, φ), by accept-
ing additional coherent error. For small deviations in either θ
or φ the error is proportional to the square of the deviation.

careful to ensure our control pulses do not bleed into each
other which requires careful calibration of our flux bias
settling tails.

We can consider settling non-idealities at two time
scales: 1) pulse distortion during the duration of a gate
(roughly 15 ns), and 2) pulse settling that occurs after the
intended gate duration. Distortion at short times may,
for instance, make it difficult to place the qubits exactly
on resonance during a gate—this may make it difficult
to achieve a swap angle, θ, of 90◦ swap amplitude (Rabi
oscillation amplitude = g2/(g2 + π∆2/2) = 1 if and only
if the qubits are on resonance), but fortunately these dis-
tortions do not have a huge impact on the rest of the fSim
parameter space. Due to the periodic nature of Rabi os-
cillations the resulting fSim is mostly dependent on the
integral of the control pulses. Pulse settling that occurs
outside the intended gate interval means that adjacent
gates will bleed in to each other. If the tails are relatively
short (a few ns), it is possible to mitigate this error just
by placing a short idle time between gates. Pulse set-
tling at longer times is particularly nefarious because it
becomes no longer feasible to pad gates with idle times
and setting times of 5-1000+ ns have been observed in
superconducting qubit systems [9, 10]. If left uncompen-
sated, the performance of the mth 15 ns long gate would
be dependent on the preceding 1-60+ gates. This runs
contrary to the entire notion of gate-based local opera-
tions and certainly would not fit within our static fSim
control model used with XEB. As such, it is this long-
time settling in particular that requires a careful cali-
bration to enable the sensible control strategy employed
throughout this letter.

The full fSim gate calibration happens in three stages.
In the first stage, we calibrate the electronics to eliminate
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TABLE S3. Summary of the settling parameters for two
qubits. The average of the settling compensation for these
two qubits was applied to the coupler.

α1 (%) τ1 (ns) α2 (%) τ2 (ns) α3 (%) τ3 (ns)
q2 -0.46 858 -1.00 104 -4.94 10
q3 -0.61 996 -0.82 94 -5.97 9

coupler (avg q2 & q3) -0.53 927 -0.91 99 -5.45 10

the long-time settling flux settling. In the second stage,
we describe the calibration procedure for the CPHASE
and iSWAP-like gate sets. Then, for the fSim gate fam-
ily, we perform further calibrations of the composite fSim
gates to achieve the best possible gate performance by ad-
justing the control amplitude of the second pulse depen-
dent on the first rather than adding longer buffer times
between flux pulses.

A. Electronics calibration

On this device there are a total of seven flux bias lines,
four for the qubits and three for the couplers. Each
channel is driven by a dedicated 1 GS/s, 14-bit DAC con-
trolled by an FPGA to form an arbitrary waveform gener-
ator. Each flux bias line uses nominally identical cabling,
attenuation, and filtering from room temperature down
to the sample’s chip mount as shown in Figure S10. To
compensate for non-idealities in each line, we first mea-
sure the qubit’s response to a flux pulse, fit the response
using three exponential decay time constants, and then
use this model to pre-distort our control pulses as in pre-
vious work [10, 11]. This allows us to directly measure
and compensate for the transfer function of each qubit’s
flux bias wiring. Implementing a similar in situ calibra-
tion of the coupler bias lines is the subject of on-going
work. For now, we have found it sufficient to simply ap-
ply the average of the two adjacent qubit settling models
to the coupler. The pulse calibration parameters for the
pair of qubits and the coupler used to benchmark the
fSim gate set are summarized in Table S3.

After performing the electronics calibration we find the
unitary gate interactions of our fSim gates to be well
characterized by either unitary tomography, performed
with a depth-1 circuit, or cross-entropy bench-marking
using a depth N circuit where N varies from 5 to 700.
This fact is illustrated by Figure S7 panels b and c where

AWG -6 dB -20 dB

300 K 4 K 15 mK

500 MHz LPF Al chip

FIG. S10. Flux bias wiring: Each flux bias line was routed via
a dedicated 50 Ohm coaxial cable from room temperature to
the mK stage of the cryostat with 200 MHz Gaussian filters
integrated with the arbitrary waveform generator (AWG), 6
dB of attenuation at 300K, 20 dB of attenuation at 4K, and
a 500 MHz reflective low pass filter at 10 mk.

Coupler flux bias (arb)

Updated bias: -0.1323

Qubit biases (arb)
q0: 0.0001
q1: 0.0477

FIG. S11. CPHASE gate calibration scan. We use the pre-
calibrated bias-to-qubit frequency function to choose a desired
qubit-qubit detuning and then sweep the amplitude of the
coupler flux bias to identify the amplitude that completes a
diabatic |11〉 ↔ |02〉 swap indicated by the dotted vertical
line.

the difference in the average error of all 525 fSim gates
differs by only 1.2×10−3 with and without optimizing the
single-qubit unitary parameters—this provides an upper
bound on the effects of pulse bleed through on gate fi-
delity. If we consider the gate timing of the cross-entropy
benchmarking sequence in Figure S7, which used 28 ns
fSim gates interleaved with 15 ns single-qubit gates, this
result indicates that our settling is well compensated at
times longer than 15 ns. This result also indicates that
the qubit biases are settled enough to have a minimal
impact on the single-qubit gate errors. If this were not
the case then we would require a circuit-depth-dependent
gate model to reach the purity limit. However, the set-
tling of the coupler bias flux signal at times less than 15 ns
becomes non-negligible and merits special consideration
when calibrating fSim gates composed of a CPHASE gate
in close proximity to an iSWAP-like gate. So, we will now
detail the calibration procedure for each of the compo-
nent gate families in the next section and finish our cal-
ibration discussion with a description of composite fSim
calibration procedure.

B. CPHASE and iSWAP-like calibrations

We calibrate the CPHASE interaction by repeating the
leakage experiment described in main Figure 2a to fine
tune the coupler bias amplitudes and to identify combi-
nations of qubit detunings, ∆, and corresponding cou-
pler bias amplitudes that yield low-leakage gates. We
use the qubit frequency bias transfer function to choose
qubit biases that set the desired qubit detuning, ∆ in
the vicinity of η. The frequency range around η is set
by the width of the Rabi interaction which, for a fixed
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pulse length, is inversely proportional to gate length since
shorter gates require stronger coupling, g (see Figure S2
in supplement II). We use 15 ns pulses (13 ns rectangular
pulses with a 1 ns padding on either side) which makes
the Rabi interaction span about 75 MHz on either side of
the qubit nonlinearity, η. For each detuning in this range,
we repeat the experiment in main Figure 2a varying the
coupling strength to minimize leakage. An example of
the raw data from this experiment is provided in Fig-
ure S11 where the dotted line indicates the low-leakage
coupler bias amplitude that achieves one full swap from
|11〉 to |02〉 and back. We initialize the |11〉 state, apply
the CPHASE control pulses, and measure the |1〉 state
population of the lower frequency qubit to identify when
the population has completed a full swap. Then, for each
combination of ∆ and the corresponding low-leakage cou-
pler bias we repeat the experiment from main Figure 2b
to measure the conditional phase. This procedure works
well for φ : [−130◦, 130◦] until the Rabi swap amplitude
becomes small and the peak becomes broad along the
coupling strength line-cut. At that point, we extrapolate
towards the zero coupling bias while measuring the con-
ditional phase to fill out the rest of the conditional phase
control space.

In Figure S12 we calibrate a 13 ns iSWAP-like gate
(11 ns rectangular pulses, with 1 ns padding) by repeat-
ing the experiment from main Figure 2c three times with
the qubits on resonance (∆ = 0 MHz) to fine-tune the
pulse amplitudes needed to reach θ = 90◦. Then, for
0◦ < θ < 90◦ we simply interpolate the coupler bias
between the “OFF” bias and the θ = 90◦ bias. For
each iSWAP-like tune up experiment we initialize one
qubit to the |1〉 state, apply the iSWAP-like pulses to
the qubits and coupler, and then measure the |1〉 state
population of the other qubit. In Figure S12a, we first
use our pre-calibrated qubit frequency bias DC transfer
functions to choose qubit flux bias amplitudes that place
both qubits at the same frequency, and we sweep the cou-
pler bias from the “OFF” bias to the maximum coupling
bias to identify the amplitude that achieves exactly one
a swap from the first to the second qubit corresponding
to θ = 90◦ (dotted line). In Figure S12b, we repeat the
experiment using the coupler bias from Figure 12a while
sweeping the bias of one qubit to maximize the ampli-
tude of the swapped population, thus placing the qubits
on resonance. Finally, in S12c, we repeat the experiment
using the new qubit flux biases to fine-tune the coupler
flux bias.

C. fSim calibration

Once we have calibrated the iSWAP-like and CPHASE
gates, we should nominally be able to use one of each to
implement any fSim gate. Unfortunately our pulse re-
sponse is imperfect at short times, as described in sup-
plement IV A. This was less of an issue for the iSWAP-
like and CPHASE gates in Section IV of the main text

New coupler bias: -0.1323

New q1 bias: 0.0926

Other biases (arb)
q0: -0.0265
q1: 0.0822

Other biases (arb)
q0: -0.0265
Coupler: -0.1344

Other biases (arb)
q0: -0.0265
q1: 0.0926

New coupler bias: -0.1333

Coupler flux bias (arb)

Choosing a coupler flux bias

Refining flux bias for q1

q1 flux bias (arb)

Refining the coupler flux bias

Coupler flux bias (arb)

FIG. S12. iSWAP-like gate calibration for θ = 90◦ performed
in three steps. In each experiment we initialize the |01〉 state
and measure the population of the first qubit to identify the
control biases to complete a full swap to |10〉 a, We use prior
calibrations to bias the qubits on-resonance and scan the cou-
pler bias amplitude to find the bias that completes one swap.
b, Using the new coupler flux bias we scan the bias of one
qubit to place them on resonance. c, Using the updated qubit
biases, we again scan the coupler bias to find tune the coupler
bias.

because the XEB gate sequence alternated (10 ns) single
and (13 ns or 15 ns) two-qubit gates; in those cases, the
uncompensated flux bias settling tails resulted in a small
detuning at the qubit idle frequencies. However, when we
perform an fSim gate as a composition of a CPHASE fol-
lowed immediately by an iSWAP-like gate, the tail of the
first coupler pulse bleeds into the second coupler pulse.
Even a small settling tail adding to the amplitude of the
coupler pulse can drastically change the coupling during
the second gate due to the large coupler flux sensitivity
at strong couplings (main Figure 1c). In the future, this
problem may be mitigated by identifying and removing
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q0:|1⟩

q1:|1⟩

coupler

13 ns

15 ns

CPHASE:
fSim(θCPHASE≈0⚬,ϕCPHASE) 

Amplow-leak

Vary Δ 

q0:|1⟩

q1:|1⟩

coupler

13 ns

15 ns

CPHASE:
fSim(≈0⚬,ϕCPHASE) 

Amplow-leak

11 ns

13 ns

iSWAP-like:
fSim(0⚬& 90⚬,ϕiSWAP-like) 

find bias for Δ = 0 MHz

θfSim=90⚬ 
θfSim=0⚬ 

q0

q1

13 ns

15 ns

CPHASE:
fSim(≈0⚬,180⚬) 

Amplow-leak

Δ for ϕCPHASE=180⚬

11 ns

13 ns

iSWAP-like:
fSim(θiSWAP-like,ϕiSWAP-like) 

Δ = 0 MHz

coupler
Interpolating amp

a

b

c

Vary Δ 

FIG. S13. Three steps to calibrating the fSim gate to account for pulse distortion due to the first (CPHASE) pulses bleeding
into the second (iSWAP-like) pulses. a, Follow the usual CPHASE calibration procedure to bring-up a full CPHASE gate
family corresponding to fSim(θ ≈ 0◦, φ : [0◦, 360◦]). b, Follow the iSWAP-like tune up procedure, but play the CPHASE
control pulses before the iSWAP-like pulses. Use the sequence to identify the flux bias amplitudes that achieve fSim gates
with θ = 0◦ and θ = 90◦ for each proceeding CPHASE gate. c, for a preceding CPHASE gate with φ = 180◦, bring up gates
corresponding to fSim(θ : [0◦, 90◦], φ = 180◦).

the physical origin of these settling tails, with a more
thorough in situ calibration procedure for the couplers,
or by placing longer idle times between gates.

In this work, we deal with pulse bleed through by cali-
brating composite fSim gates where the amplitudes of the
second set of pulses in the composite fSim sequence is de-
pendent on the first, thus eliminating the need for exces-
sive idle times between gates. Conveniently, the tune up
procedure for each gate in the composition is the same as
in the isolated iSWAP-like or CPHASE case, just with
the two sets of pulses played back-to-back—this works
because each experiment in our usual bring-up procedure
operates within an isolated manifold (e.g. one excita-
tion for θ or two excitations for φ) when performing fSim
gates. The ordering of the gates within the fSim gate is
chosen to place the CPHASE gate before the iSWAP-like

gate. Since both coupler pulses have the same sign, if the
CPHASE coupler amplitude bleeds into the iSWAP-like
coupler amplitude, this results in slightly more swapping
which is easily measured and adjusted for by reducing the
iSWAP-like coupler amplitude to compensate. If we or-
dered the gates in the reverse order, pulse bleed through
would generate leakage during the CPHASE gate which
is much more difficult to characterize and remove.

For the purpose of building a robust registry of gates,
we erred on the side of over-calibration for this demon-
stration. However, we find these control parameters are
well behaved and it should be possible to sample more
sparsely in the future to simplify calibration of the full
fSim gate set. Figure S13 outlines the three steps used
to calibrate our composite fSim gates. In Figure S13a,
we first calibrate many CPHASE gates spaced every 1◦



13

using control pulses for just the CPHASE gate as shown
on the right following the procedure outlined in supple-
ment IV B. Then, in Figure S13b, for each preceding
CPHASE gate we follow the iSWAP-like calibration pro-
cedure (also supplement IV B) to identify qubit and cou-
pler bias amplitudes to achieve both a θ = 0◦ and 90◦

gate. Finally, in Figure S13c, for a CPHASE conditional
phase, φCPHASE = 180◦, we tune up iSWAP-like gates
for θ from 0◦ to 90◦ in 1◦ increments by interpolating
between the mininimum and maximum amplitudes de-
termined in S13b. We use this calibration to produce a
spline for θiSWAP−like → %(bias90◦ − bias0◦) and another
for θiSWAP−like → φiSWAP−like.

With the fSim gate registry in hand we set out to
benchmark specific fSim gates. For a given target fSim,
we first look up the iSWAP-like pulse amplitudes that
achieve the correct swap angle θiSWAP−like, and subtract
the conditional phase due to the iSWAP-like gate from
the total target to choose pulse amplitudes for the desired
CPHASE gate (e.g. φCPHASE = φtarget − φiSWAP−like).
We then performed unitary tomography (supplement
III C) using the pulse amplitudes we looked up in the reg-
istry to quickly assess the resulting fSim control angles of
the composite gate. If either control angle is off by more
than 1◦, we used the registry to adjust the correspond-
ing iSWAP-like (θ) or CPHASE (φ) control amplitudes
by ±1◦ accordingly. This process converged to an fSim
gate within 1◦ of both θtarget and φtarget for the tar-
get fSim with fewer than 9 adjustments for each of the
525 fSim gates we benchmarked. Once the unitary to-
mography experiment indicated the composite fSim gate
produced a unitary operation near the target fSim gate,
we performed purity and cross-entropy benchmarking.

V. SYSTEM STABILITY

As the size of quantum processors grows (number of
qubits), so too does the time it takes to calibrate a de-
vice (at least until fully parallel calibrations are possible).
As the system drifts from these calibrations over time,
the performance of a processor will fall and calibrations
must be revisited. If the required calibration time is long
compared to the scale of drift, then the device becomes
unusable in practice. While electronics drift with both
time and temperature must be considered when designing
a system, one particularly worrisome issue is the time de-
pendence of two level system (TLS) defects entering and
leaving the qubit spectrum [12].

Here we present a promising snapshot of the stabil-
ity of our system. In the process of calibrating the fSim
gate set, we started by calibrating the single-qubit gates
and readout. We then operated with the same single-
qubit calibrations for several days while we were work-
ing on the fSim gate ultimately obtaining our primary
fSim benchmarking dataset about a week after the ini-
tial single-qubit calibration. Shortly after this, a TLS
showed up near one of the qubit’s idle frequencies signif-

icantly limiting its coherence. Then, after about another
week, we returned to the original calibration parameters
to benchmark a subset of the same fSim(θ, φ) gates pre-
sented in the main text. We were pleasantly surprised to
find that the original calibration was still good enough
to produce high-fidelity gates.

In Figure S14 we used the two-week-old iSWAP-like
and CPHASE calibrations to benchmark a less dense grid
of fSim gates. While the average performance has de-
graded by a factor of two from the initial calibration, the
average error is still less than 1%, but that is not the
whole story. These fSim gates were benchmarked in a
random order—if we look at a plot of the gate error as
a function of time for these 91 (figure S14b), we see a
strong time dependence where the first 50 gates (bench-
marked over the course of an hour) have an average error
much lower than gates #50 to #80. This would seem to
indicated that the two-week-old electronics calibration is
stable enough to maintain high-fidelity gates for weeks,
and that the decreased fidelity is likely due to the residual
and/or intermittent presence of a TLS interacting with
one of the qubits. In an ideal world, we would be able to
prevent or remove TLS defects, but, at least presently,
we do not know how to do this. Instead, relying on the
stability of our electronics, an optimal strategy for main-
taining up-time on a large-scale quantum processor will
likely involve calibrating a number of idle frequency con-
figurations and being able to quickly vet and switch to
an old configuration if and when a TLS shows up.
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Purity loss per
two qubits gatex103

a b c

FIG. S14. Snapshot of system stability. A few days after taking the data in main Figure 4, a TLS showed up at one of the
qubit idle frequencies effectively breaking the calibration. After about another week, we returned to the original calibration and
repeated the fidelity measurement on a subset of 91 fSim gates which we present here (top and middle rows). We find that
the average gate fidelity had decreased somewhat, but is still above 99%. Furthermore, if we look at the gate error rates sorted
in the order they were measured (bottom row), a strong time-dependence becomes apparent. Many of the gates presenting
low errors (≈ 5× 10−3) as they did after the initial calibration. It is not until gates numbered 60 to 80 or so where large errors
show up. This indicates that our control electronics are stable enough to maintain a high-fidelity calibration on the timescale
of weeks, and that TLSs are likely the biggest threat to maintaining long term calibrations.
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