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We consider the effect of phase backaction on the correlator hIðtÞIðtþ τÞi for the output signal IðtÞ from
continuous measurement of a qubit. We demonstrate that the interplay between informational and phase
backactions in the presence of Rabi oscillations can lead to the correlator becoming larger than 1, even
though jhIij ≤ 1. The correlators can be calculated using the generalized “collapse recipe,” which we
validate using the quantum Bayesian formalism. The recipe can be further generalized to the case of
multitime correlators and arbitrary number of detectors, measuring non-commuting qubit observables.
The theory agrees well with experimental results for continuous measurement of a transmon qubit. The
experimental correlator exceeds the bound of 1 for a sufficiently large angle between the amplified and
informational quadratures, causing the phase backaction. The demonstrated effect can be used to calibrate
the quadrature misalignment.
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Introduction.—Continuous quantum measurements
(CQMs) are attracting significant attention in quantum
computing and quantum physics. Although they have
been theoretically discussed for a long time using various
approaches [1–9], current interest in CQMs is mainly
motivated by relatively recent experiments with super-
conducting qubits [10–16]. They are useful for quantum
computing applications such as quantum feedback [17–21],
rapid state purification [22], preparation of entangled
states [14,23,24], and continuous quantum error correction
[25,26]. CQMs are also shedding light on our under-
standing of the still debatable quantum measurement
process, including nontrivial cases such as simultaneous
CQM of noncommuting observables [15,16,27].
Temporal correlators of the output signals from CQMs

are important objects to study because they bear non-
classical features due to the interplay between coherent
quantum evolution and measurement-induced quantum
backaction. In particular, violation of a classical bound
is a clear indication of quantum behavior. As an example,
macrorealism assumptions have been tested with correla-
tors from CQM via the continuous Leggett-Garg inequality
[11]. There is significant recent interest in correlators from
CQMs [28–33], including multitime correlators and the
case of noncommuting observables. In particular, multitime
correlators are important in the continuous operation of
quantum subsystem codes [34].
Quantum backaction frommeasurement can be described

in terms of Kraus operators [1]. The polar decomposition of
a Kraus operator suggests, in general, two types of quantum
backaction that are related to the nonunitary and unitary

factors of the polar decomposition. In particular, in circuit
QED-based measurements of superconducting qubits they
are often referred to as informational backaction and phase
backaction, respectively [9,13,35]. Circuit QED systems are
ideal to study these two types of quantum backaction
because their relative strength is easily tunable by the
phase of the pump applied to a phase-sensitive parametric
amplifier [8,9,13].
In this Letter, we study the effect of phase backaction on

output-signal correlators for continuous measurement of a
superconducting qubit. We present a general theory for
multitime correlators in the spirit of the “collapse recipe”
[30,32,36], which is extended here to include phase
backaction and proven using the quantum Bayesian for-
malism. In such a generalized recipe, correlators from
continuous qubit measurements can be calculated by
assuming fictitious “strong” measurements (with discrete
outcomes �1) at the time moments entering the correlator
and assuming ensemble-averaged evolution at other times.
Importantly, the fictitious strong measurements can move
the qubit state outside the Bloch sphere, and correspond-
ingly the outcome probabilities for the next strong meas-
urement can be negative. Even though the procedure is
bizarre from a physical point of view, this is a simple way to
obtain correct correlators, including the case of simulta-
neous CQM of noncommuting qubit observables and
arbitrary coherent evolution and decoherence.
In particular, our theory predicts the counterintuitive

result that correlators can be larger than 1, even though the
average value of the output is between �1. To test this
prediction, we perform CQM of σz (Fig. 1) and show that
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the experimental correlators indeed exceed unity when we
use a sufficiently strong phase backaction and sufficiently
fast Rabi oscillations. Note that such nonclassical values
would be natural for weak values [37]; however, our
experiment is not related to weak values since it does
not use postselection.
The quantum Bayesian formalism.—As the simplest

case, let us consider a Rabi-rotated qubit under continuous
σz measurement in the typical circuit QED setup with a
phase-sensitive amplifier [13,15]—see Fig. 1. In this case
the relative strength of the phase backaction and informa-
tional backaction is controlled by the angle φa between the
amplified and informational quadratures [8,9]. We will
discuss the correlator (t2 > t1)

Kðt1; t2Þ≡ hIðt2ÞIðt1Þi; ð1Þ

where IðtÞ ¼ ½ĨðtÞ − Ĩo�=ΔIðφaÞ is the normalized output
signal, ĨðtÞ is the actual experimental output, Ĩo is the
offset, and ΔIðφaÞ ¼ ΔImax cosφa is the response, so that
this normalization provides hIi ¼ 1 or −1 when the qubit is
in the state j1i or j0i, respectively (the symbol h::i means
ensemble average). The normalized signal can be modeled
as [7,32]

IðtÞ ¼ Tr½σzρðtÞ� þ
ffiffiffiffiffi
τm

p
ξðtÞ ¼ zrðtÞ þ ffiffiffiffiffi

τm
p

ξðtÞ; ð2Þ

where r ¼ ðx; y; zÞ is the Bloch vector defined by the qubit
density matrix parametrization ρ¼ð1þxσxþyσyþzσzÞ=2
and z ¼ ð0; 0; 1Þ is the measurement axis direction

corresponding to the measured observable σz ¼
j1ih1j − j0ih0j. The white Gaussian noise ξðtÞ has zero
average, hξðtÞi ¼ 0, and two-time correlator

hξðtÞξðt0Þi ¼ δðt − t0Þ: ð3Þ

The “measurement time” τm ¼ τmin= cos2 φa in Eq. (2) is
the time to reach the signal-to-noise ratio of 1.
The qubit evolution can be described by the quantum

Bayesian equation [8,9] (in Itô interpretation)

_r ¼ Λensðr − rstÞ þ
z − ðzrÞrffiffiffiffiffi

τm
p ξðtÞ þK

z × rffiffiffiffiffi
τm

p ξðtÞ; ð4Þ

where the first term is the ensemble-averaged evolution, the
second term is the informational backaction, and the third
term is the phase backaction with K ¼ tanφa. The evolu-
tion of the ensemble-averaged state rens ≡ hri,

_rens ¼ Λensðrens − rstÞ; ð5Þ

is characterized by the 3 × 3 matrix Λens and stationary
state rst; this evolution corresponds to the Lindblad-form
equation, _ρens ¼ −ði=ℏÞ½Hq; ρens� þ L½ρens�, where Hq is
the qubit Hamiltonian and L describes the qubit ensemble
decoherence. In our case, the contribution to L due to
measurement is Lm½ρ� ¼ Γm½σzρσz − ρ�=2, where Γm ¼
ð1þK2Þ=ð2ητmÞ ¼ 1=ð2ητminÞ is the measurement-
induced ensemble dephasing rate and η is the detector
quantum efficiency. Note that Γm does not depend on φa, in
contrast to K and τm.
Collapse recipe.—The collapse recipe was previously

introduced to calculate two-time correlators [36] and
multitime correlators [32] without phase backaction. For
the correlator (1), this recipe states that we should replace
continuous measurement at time moments t1 and t2 by
(fictitious) projective measurements and use ensemble-
averaged evolution at any other time. The projective
measurements probabilistically produce discrete results
Ik ¼ �1 and correspondingly collapse the qubit to j1i
or j0i.
As proven below, in the presence of phase backaction,

the correlator (1) still can be calculated in a somewhat
similar way; however, we should use a quite unusual
generalized collapse recipe (GCR). In particular, after a
projective measurement at time t1 with the result I1 ¼ �1,
the qubit state collapses to I1rcoll, where

rcoll ¼ zþKðz × r1Þ ð6Þ

and r1 ≡ rðt1 − 0Þ is the qubit state just before the collapse.
We emphasize that, excluding the case when z × r1 ¼ 0 or
K ¼ 0, state (6) is outside the Bloch sphere. After the
collapse at time t1, the qubit evolves according to Eq. (5).
Thus, using the GCR, the correlator (1) can be calculated as

(b)

(a)

(c)

FIG. 1. (a) Schematic illustration of the experimental setup for
continuous measurement of qubit observable σz. A superconduct-
ing qubit is dispersively coupled to a 3D microwave resonator.
The leaked field is amplified by a phase-sensitive Josephson
parametric amplifier (JPA), producing the (downconverted)
normalized output signal IðtÞ. The cancellation tone displaces
the outgoing field close to the vacuum, thus preventing JPA
saturation. The coherent states corresponding to the eigenstates of
σz are illustrated in panel (b) by two circles in phase space. The
line through their centers defines the informational quadrature,
while the JPA’s pump phase defines the amplified quadrature. The
angle φa between them affects the phase backaction. (c) Exper-
imental pulse sequence.

PHYSICAL REVIEW LETTERS 122, 223603 (2019)

223603-2



Kðt1; t2Þ ¼
X

I1;I2¼�1

I1I2pðI2; t2jI1; t1ÞpðI1; t1Þ; ð7Þ

where the sum is over four scenarios of outcomes,

pðI1; t1Þ ¼
1þ I1zr1

2
ð8Þ

is the probability to get the first outcome I1 ¼ �1, and

pðI2; t2jI1; t1Þ ¼
1þ I2zrensðt2jI1rcoll; t1Þ

2
; ð9Þ

is the “conditional probability” to get the outcome I2 ¼ �1
at time t2 given that we got outcome I1 at time t1. Here
rensðtjrin; tinÞ denotes the solution of Eq. (5) with initial
condition rensðtinÞ ¼ rin at time tin < t. Since rens can be
outside the Bloch sphere, the “probability” (9) can be
negative or larger than 1; however, the normalization
condition

P
I2¼�1 pðI2; t2jI1; t1Þ ¼ 1 still holds. If the

qubit is prepared in a state r0 (jr0j ≤ 1) at t0 < t1, then
r1 ¼ rensðt1jr0; t0Þ is within the Bloch sphere, so the first
probability (8) has the usual range of values. Note that the
recipe for multitime correlators (discussed below) has
essentially the same form.
GCR from the quantum Bayesian formalism.—Let us

prove the recipe of Eqs. (6)–(9) using Eqs. (2)–(5). The
proof somewhat follows Refs. [30,32]. First, we rewrite
Eq. (7) of the GCR as

Kðt1; t2Þ ¼ z½rensðt2jrcoll; t1Þð1þ z1Þ=2
− rensðt2j − rcoll; t1Þð1 − z1Þ=2�; ð10Þ

where z1 ≡ zr1 and t2 > t1. Next, we calculate the corre-
lator (1) directly and show that the result coincides with
Eq. (10). Using Eq. (2), we decompose the correlator as

Kðt1; t2Þ ¼ z½Kð1Þðt1; t2Þ þ Kð2Þðt1; t2Þ�; ð11Þ

where the vector-valued correlators Kð1;2Þ are defined as

Kð1Þðt1; t2Þ≡ hrðt2Þiz1;
Kð2Þðt1; t2Þ≡ hrðt2Þ ffiffiffiffiffi

τm
p

ξðt1Þi: ð12Þ

Differentiating Kð1Þ over t2 and using Eq. (4), we find
that Kð1Þ satisfies an equation similar to Eq. (5),

∂t2K
ð1Þðt1; t2Þ ¼ Λens½Kð1Þðt1; t2Þ − z1rst�; ð13Þ

with initial condition Kð1Þðt1; t1Þ ¼ r1z1. Therefore,

Kð1Þðt1; t2Þ ¼ Pðt2jt1Þz1r1 þ z1Pstðt2jt1Þ; ð14Þ

where Pðtjt0Þ is a 3 × 3 matrix satisfying equation
∂tPðtjt0Þ¼ΛensðtÞPðtjt0Þ with Pðt0jt0Þ ¼ 1, andPstðtjt0Þ ¼
−
R
t
t0 Pðtjt00ÞΛensðt00Þrstðt00Þdt00 is a vector.
Similarly, Kð2Þ satisfies equation

∂t2K
ð2Þðt1; t2Þ ¼ ΛensKð2Þðt1; t2Þ; ð15Þ

in which there is no term proportional to rst, in contrast
to Eq. (13), because hΛensrstξðtÞi ¼ 0. To find the
initial condition Kð2Þðt1; t1 þ 0Þ, we discretize Eq. (4)
with a timestep δt and obtain rðt1 þ δtÞ − rðt1Þ≈
½z − z1r1 þKðz × r1Þ�δtξðt1Þ= ffiffiffiffiffi

τm
p

, which has a typical
size ∼

ffiffiffiffi
δt

p
since hξ2ðt1Þi ¼ ðδtÞ−1—see Eq. (3). Inserting

this result for rðt1 þ δtÞ into Eq. (12), we obtain
Kð2Þðt1;t1þ0Þ¼z−z1r1þKðz×r1Þ in the limit δt → 0.
Thus,

Kð2Þðt1; t2Þ ¼ Pðt2jt1Þ½rcoll − z1r1�; ð16Þ

so that τm in the definition (12) of Kð2Þ cancels out.
From Eqs. (11), (14), and (16), we obtain

Kðt1; t2Þ ¼ z½Pðt2jt1Þrcoll þ z1Pstðt2jt1Þ�; ð17Þ

with the terms proportional to z1r1 in Eqs. (14) and (16)
exactly canceling each other and not contributing to
Eq. (17). This is expected from linearity of quantum
mechanics, which requires a linear (not quadratic) depend-
ence of the correlators on the initial state.
Finally, formally solving Eq. (5) as rensðtjrin;tinÞ¼

PðtjtinÞrinþPstðtjtinÞ and using this solution in Eq. (10),
we see that the result exactly coincides with Eq. (17). This
proves that the GCR yields the same correlator as the one
obtained from the quantum Bayesian formalism.
We emphasize that even though the GCR is quite useful

for calculation of correlators, actual quantum trajectories
are described by the much more complicated quantum
Bayesian equation (4). In particular, quantum state tomog-
raphy would not find the qubit state outside the Bloch
sphere. Nevertheless, since the GCR leads to correct
correlators, it can give us an intuition for predicting
correlators from continuous measurements.
Experimental correlators larger than 1.—Next we dis-

cuss that the effective qubit evolution outside the Bloch
sphere leads to correlators larger than 1 in the experiment
illustrated in Fig. 1. In the experiment the qubit undergoes
Rabi oscillations with frequency ΩR over the x axis and
continuous measurement of σz. Neglecting energy relaxa-
tion, the ensemble-averaged evolution is described by
Eq. (5) with rst ¼ 0 (i.e., unital evolution) and

Λens ¼

0
B@

−Γ 0 0

0 −Γ −ΩR

0 ΩR 0

1
CA; ð18Þ

PHYSICAL REVIEW LETTERS 122, 223603 (2019)

223603-3



where Γ is the ensemble dephasing rate, which is mostly
due to measurement, Γ ≈ Γm. Because of unitality (rst ¼ 0),
there is a symmetry

rensðtj − rin; tinÞ ¼ −rensðtjrin; tinÞ; ð19Þ

so Eq. (10) for the correlator reduces to only one term,

Kðt1; t2Þ ¼ zrensðt2jrcoll; t1Þ; ð20Þ

and therefore in the GCR we can pretend that the measure-
ment result at t1 is always I1 ¼ þ1. This moves the qubit to
the state rcoll given byEq. (6), and the correlator is simply the
qubit z component at time t2, i.e., K ¼ zens ≡ zrens.
In the experiment, the qubit is prepared at time t0 ¼ 0 in

the state r0 ¼ ðx0; 0; 0Þ with x0 ¼ �1 (i.e., along the
rotation axis). Without the intuition provided by the
GCR, this choice to observe correlators larger than 1 is
counterintuitive. However, according to the GCR, the
effective after-collapse qubit evolution starts outside the
Bloch sphere at the state

rcoll ¼ ð0; x1 tanφa; 1Þ; x1 ¼ x0 expð−Γt1Þ; ð21Þ

which after Rabi rotation can have z component up toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x21 tan

2 φa

p
. This geometrical picture is illustrated in

Fig. 2, making clear that both phase backaction and Rabi
oscillations are necessary to observe K > 1.
In the experiment, the correlator is additionally time

averaged in order to reduce fluctuations,

KðτÞ≡ 1

T

Z
tskipþT

tskip

Kðt1; t1 þ τÞdt1; ð22Þ

where T is the averaging duration, which starts with a small
delay tskip to skip initial transients. Using the GCR, we
obtain—see the Supplemental Material [38],

KðτÞ ¼
�
cosðΩ̃RτÞ þ

Γ
2Ω̃R

sinðΩ̃RτÞ
�
e−Γτ=2

þ tanφa
cx0ΩR

Ω̃R
sinðΩ̃RτÞe−Γτ=2; ð23Þ

where c ¼ expð−ΓtskipÞ½1 − expð−ΓTÞ�=ðΓTÞ and Ω̃R ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

R − Γ2=4
p

. This correlator does not depend on the
quantum efficiency η. The first and second terms in
Eq. (23) are due to informational and phase backactions,
respectively. Note that the quantum regression formula [39]
applied to the qubit state gives only the first term [30] and
cannot be used in the case with phase backaction. Though
theoretically KðτÞ can exceed unity for any nonzero values
of ΩR and φa, in the experiment we need sufficiently fast
Rabi oscillations and rather large φa to overcome exper-
imental fluctuations. From Eq. (23) for jΩRj ≫ Γ, the
maximum value of KðτÞ is Kmax ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 tan2 φa

p
.

The measurement setup is shown in Fig. 1 and further
discussed in the Supplemental Material [38]. In the experi-
ment we use Γ ¼ 1=1.8 μs, ΩR=2π ¼ �1 MHz, and
φa ¼ 70°. (In the Supplemental Material [38], we also
present data for φa ¼ 0, 40°, and 80°.) The averaged
correlator (22) is obtained from the recorded data using
T ¼ 0.28 μs and tskip ¼ 0.28 μs, so that c ¼ 0.79 in
Eq. (23). Figure 3(a) shows the experimental correlators
K�ðτÞ, where the subscript indicates the sign of the product
x0ΩR [38]. In each case the ensemble averaging is over
6.5 × 105 recorded traces. We see a good agreement
between experiment (symbols) and theory (lines) in

FIG. 2. Qubit evolution in the GCR picture. At time t1, the
qubit state jumps to rcoll [Eq. (21)], which is outside the Bloch
sphere when phase backaction is present. Rabi oscillations then
can produce z component zens ≡ zrens larger than 1, so that the
correlator Kðt1; t2Þ ¼ zensðt2Þ exceeds 1.

(a)

(b)

FIG. 3. Experimental correlators exceeding unity, for the phase
misalignment φa ¼ 70°, initial state x0 ¼ �1, Rabi frequency
ΩR=2π ¼ �1 MHz, and ensemble dephasing rate Γ ¼ 1=1.8 μs.
Panel (a) shows the correlators K�, with � indicating the sign of
x0ΩR. Panel (b) shows the correlator difference ΔKðτÞ ¼
KþðτÞ − K−ðτÞ. Experimental results are represented by sym-
bols, the theory is shown by lines.
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Fig. 3(a). Most importantly, experimental correlators reach
values up to K ≃ 2, thus confirming that correlators can be
larger than 1.
Figure 3(b) shows the correlator difference ΔKðτÞ≡

KþðτÞ − K−ðτÞ. This difference is more immune to
offset fluctuations of the detector outputs, so the exper-
imental ΔKðτÞ is less noisy than K�ðτÞ in Fig. 3(a). The
experimental result (circles) in Fig. 3(b) agrees very
well with the theoretical result (solid line) ΔKðτÞ ¼
tanφa × 2cðΩR=Ω̃RÞ sinðΩ̃RτÞe−Γτ=2.
The correlator difference ΔKðτÞ can be useful to

accurately set φa ¼ 0 in experiments that need to avoid
phase backaction. At present this is typically done by
maximizing the response ΔIðφaÞ, which is not a sensitive
calibration method due to the quadratic dependence of ΔI
on φa near the maximum at φa ¼ 0. In contrast, ΔKðτÞ ∝
tanφa vanishes at φa ¼ 0 and depends linearly on φa in the
vicinity (this still holds for the unscaled correlators), thus
potentially providing a much better calibration accuracy
(zero crossing detection is easy and accurate experimen-
tally). The practical use of ΔKðτÞ for this purpose needs
further investigation.
Note that the GCR provides an intuitive, but bizarre

explanation for the correlators larger than 1. The same
conclusion can be reached from the quantum Bayesian
formalism but it lacks simplicity. In such formalism, the
signal from the detector at time t1 provides us some
information about the fluctuating number of photons in
the cavity, which moves the qubit along the equator of the
Bloch sphere, thus affecting the z component of the qubit
state at the later time t2 due to Rabi rotations.
The GCR for multitime correlators.—In the case of

simultaneous CQM of Nd noncommuting qubit observ-
ables σl ≡ nlσ (here σ is the vector of Pauli matrices, nl is
the lth measurement axis direction on the Bloch sphere,
and l ¼ 1; 2;…; Nd), the GCR for an N-time correlator of
the output signals IlðtÞ can be naturally generalized as
[cf. Eq. (7)]

Kl1…lN ðt1;…tNÞ≡ hIlN
ðtNÞ � � � Il2ðt2ÞIl1ðt1Þi

¼
X2N

fIlj¼�1g

�Yj¼N

j¼2

IljpðIlj ; tjjIlj−1 ; tj−1Þ
�

× Il1pðIl1 ; t1Þ; ð24Þ

where the time arguments are ordered as t1<t2< ���<tN ,
pðIl1 ; t1Þ is given by Eq. (8) with z replaced by nl1, and the
conditional probability factors are

pðIlj ; tjjIlj0 ; tj0 Þ ¼
1þ IljnljrensðtjjIlj0 r

ðj0Þ
coll; tj0 Þ

2
: ð25Þ

The collapsed state at time tj is Iljr
ðjÞ
coll, where

rðjÞcoll ¼ nlj þKljnlj × rensðtjjIlj−1rðj−1Þcoll ; tj−1Þ ð26Þ

for j ≥ 2 [cf. Eq. (6)] and rð1Þcoll is given by Eq. (6) with z and
K replaced by nl1 and Kl1 , respectively. Parameters Kl ¼
tanφa

l characterize the relative strength of phase backaction
in the lth detector [15]. In Eqs. (25)–(26), rens obeys the
evolution Eq. (5), where Λens accounts for measurement of
all σl. This method to calculate N-time correlators is
proven in the Supplemental Material [38]. Multitime
and/or multidetector correlators can also exceed unity in
the presence of phase backaction (with coherent evolution
not always needed) [38].
Conclusions.—We have developed a recipe for the

calculation of correlators in continuous qubit measure-
ments with phase backaction. As a consequence of the
effective evolution outside the Bloch sphere, the normal-
ized correlators can exceed 1. This has been confirmed
experimentally, with the correlator reaching the value of 2.
The correlators can be used as a calibration tool.
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