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Shot noise at hopping via two sites

Yusuf A. Kinkhabwala and Alexander N. Korotkov
Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800

~Received 19 June 2000!

The average current and the shot noise at correlated sequential tunneling via two localized sites are studied.
At zero temperature the Fano factor averaged over the positions and energies of sites is shown to be 0.707. The
noise dependence on temperature and frequency is analyzed numerically.
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Shot noise in mesoscopic structures has been the su
of thorough studies in the recent past.1–3 In particular, a
theory of shot noise at tunneling of single electrons cor
lated due to Coulomb blockade effects4 has been well
developed5–10 and verified experimentally.11 Recently, at-
tempts have been made12,13 to extend this theory to hoppin
transport,14 which can be formally considered as a spec
case of correlated single-electron tunneling.

In a typical hopping situation there is a considerablef
contribution at low frequencies~see Ref. 15, and reference
therein!, so one can discuss the shot noise only at sufficie
high frequencies. The 1/f noise at hopping is mainly due t
electron-electron interaction: the slowly evolving trapp
charge configurations can significantly affect the curr
through nearby channels. The 1/f component is absent a
hopping through noninteracting one-dimensional~1D! chains
of sites12 ~while the slow fluctuations of the chain paramete
due to external traps can restore this component!. In the
present paper we consider hopping through very short ch
which are just pairs of sites, and assume that the param
of these pairs do not fluctuate in time, so that the noise d
not have 1/f contribution.

For two-site hopping we basically follow the model intr
duced by Glazman and Matveev.16 The only difference is
that we take into account the correlation between tunne
events neglected in Ref. 16~in this respect our model is
closer to the model of Ref. 22!. Using the methods devel
oped in Ref. 6 we calculate the currentI and the current
spectral densitySI(v) for an individual two-site channel
The summation over many parallel channels with rand
parameters is done similar to Ref. 16. The main object of
study is the Fano factorF ~the low frequency noise norma
ized by the Schottky valueSI52eI). We will show that at
zero temperature the Fano factors for individual two-s
channels range from 5/14 to 1, while after averaging we
F̄50.707~the similar problem for one-site channels has be
considered in Ref. 17 with the resultF̄53/4). For a finite
temperatureT the Fano factor can be calculated numerica
after the averaging we obtainF̄ as a function of the ratio
T/eV whereV is the voltage between electrodes.

The schematic of a two-site channel is shown in Fig.
The thicknessd of an insulating layer between two metall
electrodes is assumed to be much greater than the ele
localization radiusa, and we use the model of sequent
~incoherent! hops of single electrons. The lengths of the l
and right hops arex1 and x3, respectively, while the hop
between two sites has the lengthr 25(x2

21y2)1/2, wherex2

5d2x12x3 andy is the shift of site positions in the plan
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parallel to electrodes. Each site can be occupied by at m
one electron and the effect of electron spin is neglected~the
case of double degeneracy due to spin will be discus
later!. The tunneling rates from electrodes to empty si
~tunneling to nearest neighbor only, see Fig. 1! are assumed
to be

G1
15G0 exp~22x1 /a! f ~2eV1«1!,

G3
25G0 exp~22x3 /a! f ~«2!, ~1!

where superscripts indicate the direction of tunneling,«1 and
«2 are the site energies counted from the Fermi level of
right electrode, andf («)5@11 exp(«/T)#21 is the Fermi
function. Similarly, the rates of tunneling from occupie
sites to neighboring electrodes are

G1
25G0 exp~22x1 /a! f ~eV2«1!,

G3
15G0 exp~22x3 /a! f ~2«2!. ~2!

Notice that we have neglected the Coulomb interaction
electrons on different sites~energies«1,2 do not depend on
the occupation of neighboring site!. The rate of inelastic tun-
neling between the sites depends on the energy differe
D«5«12«2, and foruD«u much smaller than\s/a ~wheres
is the sound velocity! can be calculated as14

G2
65aG0exp~22r 2 /a!

6D«

12exp~7D«/T!
, ~3!

where the dimensional factora describes the relative
strength of phonon-assisted tunneling compared to ‘‘re
nant’’ tunneling assumed in Eqs.~1! and ~2!.

Let us start with the zero-temperature case. Then
transport is possible only ifeV.«1.«2.0, and electrons
move only in one direction,G1

25G2
25G3

250 ~for simplicity
we omit the superscript ‘‘1,’’ G i[G i

1). The kinetic~‘‘mas-

FIG. 1. Schematic of two-site tunneling channel.
R7727 ©2000 The American Physical Society
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ter’’ ! equation in this case can be represented graphically
Fig. 2. The configuration space consists of four charge st
of the two-site system which are denoted as 00, 01, 10,
11, while arrows show transitions between them. The gra
cal representation of the master equation in a relatively sm
configuration space is a very convenient tool and often
lows straightforward calculation of the average current a
zero-frequency spectral density~see, e.g., Ref. 18!.

The basic idea of the method6 is to consider the random
‘‘travel’’ of the system state within the configuration spa
and divide the duration of this stochastic process into blo
which start and end in a specific charge state. Because o
Markovian property of the process~absence of memory!
these blocks are mutually uncorrelated, so the averaging
the blocks is rather simple. In the case of Fig. 2 let us cho
the charge state 01 as the block divider. Then there are
types of blocks: 01→00→10→01 ~type 1! and 01→11
→10→01 ~type 2!, while the blocks are additionally charac
terized by the time spent in each charge state.

The average current can be calculated6 as

I 5ek̄/ t̄, ~4!

where t̄ is the average block duration andk̄ is the average
number of electrons transferred between electrodes per b
~the averaging is taken over a large number of blocks!. To
calculate these average magnitudes let us notice that
blocks of type 1 and type 2 have probabilities

p15G3 /~G11G3!, p25G1 /~G11G3!, ~5!

and the average durationst1 and t2 of the blocks of each
type can be calculated as

t15~G11G3!211G1
211G2

21 ,

t25~G11G3!211G3
211G2

21 ~6!

@notice that the average waiting time (G11G3)21 of the first
hop is equal for both types#. Taking into account that eac
block corresponds to the transfer of one electron,k15k2

5 k̄51, and calculating the average block duration

t̄5p1t11p2t2, ~7!

we finally obtain the formula for the average current:19

I 5eS 1

G2
1

11G1 /G31G3 /G1

G11G3
D 21

. ~8!

This equation differs from the result of Ref. 16 becau
the correlation between the occupations of two sites was
glected in Ref. 16. The correct equation for the current wh
coincides with Eq.~8! was obtained later in Ref. 22.

FIG. 2. Graphical representation of the master equation for z
temperature.
y
es
nd
i-
ll
l-
d

s
he

er
e
o

ck

he

e
e-
h

The same method as above can be used for the calcula
of the low-frequency limitSI(0) of the current spectral den
sity which is given by the general equation6

SI~0!5~2/t̄ !~e2k21I 2t222eIkt! ~9!

~averaging is again over blocks! which in our case at zero
temperature simplifies to

SI~0!52eI@~t2/ t̄2!21#. ~10!

So, besides Eqs.~4!–~7! we also need to calculatet2:

t25p1t1
21p2t2

2, ~11!

where because of Poissonian statistics of each tunne
event we have

t1
22t1

25~G11G3!221G1
221G2

22 ,

t2
22t2

25~G11G3!221G3
221G2

22 . ~12!

Combining these equations we finally obtain

SI~0!52eIS 1

G2
2

1
~11R1R21!224

~G11G3!2 D
3S 1

G2
1

11R1R21

G11G3
D 22

, ~13!

whereR[G1 /G3. Analyzing the Fano factorF[SI(0)/2eI
one can see that the uniform caseG15G25G3 providesF
59/25 which is not the minimum possible value. The min
mum Fano factor is achieved atG15G355/63G2 and equal
to Fmin55/14 ~it is still noticeably larger than the naive es
timate F51/3). The maximal valueFmax51 is obviously
achieved when one of the ratesG i is much smaller than two
other rates.

Following Ref. 16 let us assume many two-site chann
‘‘in parallel’’ and find the total currentI S and spectral den-
sity SI ,S(0) integrating over channels with different site p
sitionsx1 , x3 , y and different energies«1 and«2. Assuming
a sufficiently thick insulating layer we may approximate t
distance between sites asr 2.x21y2/2x̃2, where x̃2 corre-
sponds to the channel with the maximum current. For suc
channel y50 and G15G25G35G0 exp(22d/3a)(aeV)1/3

@see Eqs. ~8! and ~1!–~3!# which gives x̃25(d/3)
1(a/3)ln(aeV). At zero temperature the total current can
calculated as

I S5n2AE
2`

`

dj1E
2`

`

dj3E
0

`

2py dy

3E
0

eV

dD« ~eV2D«! I ~j1 ,j3 ,y,D«!, ~14!

where n is the density of states,A is the area@A@d2, A
@n22a23d21(eV)22#, the x-positions of the sites are mea
sured from the optimal values,j i5xi2 x̃i , x̃15 x̃35(d
2 x̃2)/2 ~the integration is extended to infinity sinced@a),
and the currentI is given by Eq.~8!.

Using the relation I (j1 ,j3 ,y,D«)5exp(22d/a) I(j1

2d,j32d,0,D«) whered5y2/6x̃2, it is easy to show that the
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integration*0
`2py dy gives the factor 3pax̃2. Calculating

the integral overD« analytically and integrals overj1 andj3
numerically, we get the result

I S55.237eG0 n2Aa3x̃2 exp~22d/3a! a1/3~eV!7/3.
~15!

Notice that the scalingI S}V7/3 is the same as in the mode
which neglects correlations.16

A similar sum over different two-site channels can
calculated for the current spectral density at zero freque
@just replacingI in Eq. ~14! with SI(0) given by Eq.~13!#.
Integrating analytically overy andD« and numerically over
the two remaining variables we obtain the following avera
Fano factor at zero temperature:

F̄[SI ,S~0!/2eIS50.7074. ~16!

Let us now consider the finite-temperature case. O
method for calculation ofI andSI(0) based on the analysi
of blocks can still be easily applied ifG2

2Þ0 while G1
2

5G3
250 ~this situation occurs when«1 and«2 are well in-

side the energy strip defined by the Fermi levels of the e
trodes!. In this case the currentI and the spectral densit
SI(0) are given by Eqs.~4! and ~9!, where21

t̄5p1t11p2t21p3t3, k̄5k25p11p2 ,

p15G3
1/GS , p25G1

1/GS , p35G2
2/GS ,

t151/GS11/G1
111/G2

1 , t351/GS11/G2
1 ,

t251/GS11/G3
111/G2

1 , GS5G3
11G1

11G2
2 ,

t25p1t1
2̄1p2t2

2̄1p3t3
2̄, kt5p1t11p2t2,

t1
22t1

25~GS!221~G1
1!221~G2

1!22,

t2
22t2

25~GS!221~G3
1!221~G2

1!22.

t3
22t3

25~GS!221~G2
1!22. ~17!

In the case when allG i
2 are nonzero, it is more natural t

use the general master-equation formalism for the ave
current4 and spectral density.6 We have developed a numer
cal code and integrated over different two-site channels
the same way as above, just using the numerical resultsI
andSI(0) instead of Eqs.~8! and~13!. ~One more difference
from the zero-temperature case is the separate integra
over«1 and«2.! The dashed line in Fig. 3 shows the depe
dence of the ratiog[I S(T)/I S(0) on the normalized tem
peratureT/eV. @We neglect the weak temperature depe
dence of x̃2 and actually calculate the dependence of
numerical factor in Eq.~15!.# The asymptote atT@eV is g
521.7 (T/eV)4/3, so the conductanceG is equal to G

5113.6e2G0 n2Aa3x̃2 exp(22d/3a) a1/3T4/3, where x̃2 can
be approximated as (d/3)1(a/3)ln(aT) ~the scalingT4/3 is
the same as in the model without correlations16!.

The Fano factor averaged over different channels, a
function of T/eV, is shown in Fig. 3 by the thick solid line
The low-temperature value is given by Eq.~16!, while the
high-temperature asymptoteF̄52T/eV ~lower dotted line!
can be easily derived from the Nyquist formula.
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It is interesting to compare the temperature dependenc
F̄ for two-site and one-site channels. In the latter case
still use Eqs.~1! and ~2! for the tunneling rates similar to
Ref. 17. The thin solid line in Fig. 3 shows the average Fa
factor for one-site channels, as a function ofT/eV ~this curve
in other coordinates has been calculated in Ref. 17!. The
low-temperature value isF̄53/4, while the high-temperature
asymptoteF̄52T/eV is the same as for two-site channe
and direct-tunneling case.@The result for the direct tunnel
ing, F5coth(eV/2T), is shown for comparison by the uppe
dotted line.# Obviously, with the increase of the numberN of
sites in the channel the average Fano factor decreases. H
ever, its dependence onN seems to saturate rapidly, as ind
cated by the small difference between the results for one-
and two-site channels. So, even for largeN one should ex-
pect the dependenceF̄(T) to deviate significantly atT&eV
from the result for an Ohmic conductor,F52T/eV. This can
be explained by the fact that the 1D chains of sites w
‘‘soft’’ ~not strong! bottlenecks still give considerable con
tribution to the total current, while the Fano factor for su
chains is comparable to unity.~The situation is different13 for
2D or 3D hopping because the percolation cluster does
have bottlenecks at the size scale much larger than the
relation length of the cluster. As a consequence, for su
ciently large samples we expectF52T/eV.!

So far we have discussed only the current spectral den
at zero frequency. Our computer code can also treat
finite-frequency case. At finite frequencyv it is necessary to
specify where the current is measured. We have consid
the current in the electrodes and assumed natural electro
ics when the electron hop through thei th gap transfers
chargeqi5exi /d in the electrodes. The spectral density
finite v depends not only on tunneling ratesG i

6 but also on
qi and thus on the positions of sites. For averaging over
two-site channels we have used the approximationqi

.ex̃i /d.e/3. The solid line in Fig. 4 shows the frequenc
dependenceSI ,S(v)/2eIS for T50. The frequency scale is
determined by tunneling rates, so for normalization we ha
used Gn[G0 exp(22d/3a)(aeV)1/3. For comparison, we
also showSI(v)/2eI for the uniform channel,G15G25G3

FIG. 3. The Fano factorF̄ averaged over two-site~thick solid
line! and one-site~thin solid line! channels, as a function of tem
perature. Dotted lines showF(T) for direct tunneling and Ohmic
conduction. Dashed line shows the averaged two-site currentI (T)
normalized byI (0).
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~lower dashed line! and for two nonuniform channels:G1
5G250.1G3 ~middle dashed line! and 10G15G250.1G3
~upper dashed line! at D«5eV. Notice that the solid line
~averaged noise! has a finite slope atv50 ~even though the
slope is zero for each individual channel! and approaches th
high-v asymptote of 1/3 asv21/2. The dotted line in Fig. 4
shows the ratioSI(v)/2eI averaged over one-site channe
@then Gn[G0 exp(2d/a)#, which can be calculated analyt
cally: 1/21@(v2Gn

2214)1/222# Gn
2/v2.

FIG. 4. Solid line: the frequency dependence of the normali
current spectral densitySI(v)/2eI averaged over two-site channel
Dashed lines correspond to particular channels~see text!. The dot-
ted line showsSI(v)/2eI averaged over one-site channels.
n

s-
Finally, let us briefly consider the effect of electron sp
using a simple model. Assuming the double degeneracy
to spin ~but still allowing at most one electron per site!, we
should double the tunneling ratesG1

1 andG3
2 @see Eq.~1!#,

while leaving all other rates unchanged. At zero temperat
this will lead to a trivial extra factor 21/3 in Eq. ~15! and a
very small change ofx̃2, while the average Fano factor give
by Eq. ~16! does not change. The calculations at finite te
perature show thatF̄ is a little larger in the case of doubl
degeneracy compared to the spinless case, however, the
ference is so small that the corresponding curves in Fig
cannot be distinguished. The maximum differenceDF̄'5
31024 is achieved atT/eV'0.3, while atT@eV the differ-
ence approaches zero. A similar very weak dependence
the spin degeneracy for one-site channels has been rep
in Ref. 17 ~we have found the maximum differenceDF̄
51.1231023 at T/eV'0.33).

In conclusion, we have studied the shot noise of two-s
hopping channels. The different average Fano factor and
ferent frequency dependence of the noise in comparison
one-site channels and direct tunneling can, in principle,
verified experimentally~using the difference of the tempera
ture dependence of the average current!.
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