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Shot noise suppression at one-dimensional hopping

Alexander N. Korotkov and Konstantin K. Likharev
Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800

~Received 15 December 1999!

We have carried out a preliminary analysis of shot noise at hopping, focusing on uniform one-dimensional
~1D! arrays of sites separated byN tunnel barriers. The results show that at low temperatures the low-frequency
density of the shot noise varies from 1/N to 1 of the Schottky value, depending on the geometry, electron
density, and Coulomb interaction strength. An interesting feature isv21/3 dependence of the current spectral
density at intermediate frequencies, which reflects self-similarity of the fluctuations at different size scales.
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I. INTRODUCTION

Nonequilibrium fluctuations in mesoscopic systems c
present additional information that is not reflected in their
transport characteristics. This is one of the reasons w
‘‘shot noise’’ ~i.e., nonequilibrium fluctuations of curren
with constant or nearly constant spectral density at low
quencies! has attracted so much attention in mesoscop
during the last decade—see, e.g., Refs. 1–3.

An additional motivation for the present paper was p
vided by the observation4 that the smallness of the shot noi
is a necessary condition for quasicontinuous electron tra
fer. More exactly, for an external observer a conductor p
vides effectively Ohmic~quasi-continuous! conduction only
if the so-called Fano factor

F[SI~0!/2e^I & ~1!

~whereSI(0) is the low-frequency density of current fluctu
tions, and̂ I & is the average current! is much lower than 1. If
simultaneously the resistance of such a sample is sufficie
high, and its stray capacitance is low,

R@\/e2, C!e2/T, ~2!

it may be used for resistive coupling in single-electron d
vices. Since using resistively coupled devices is one of
very few options available to avoid the forbidding proble
of random background charge in single-electronics~see, e.g.,
Refs. 5,6!, the search for systems with quasi-continuous c
duction is important for possible future applications
single-electron devices in integrated circuits.

Shot noise has been extensively analyzed for meta
conduction~in both ballistic7–9 and diffusive10–14 limits! and
for single-electron tunneling.15–18 Unfortunately, metallic
conductors can satisfy the conditionF!1 only if they are
much longer than the electron-phonon interaction length.12,14

As a result Eqs.~2! can be practically met only at very low
temperatures—see, e.g., experiment.19 The same is true for
single-electron circuits@like one-dimensional~1D! or two-
dimensional~2D! arrays# with their relatively large islands.5,6

Much higher resistanceR at small sample length~and
hence smallC) is typical for hopping conductors—see, e.g
Refs. 20,21. Naively, one might think that since the hopp
transport is due to discrete single-electron tunneling eve
~‘‘hops’’ !, the shot noise should be close to the Schot
PRB 610163-1829/2000/61~23!/15975~13!/$15.00
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value@SI(0)52e^I &, i.e., F51#. However, this argument is
obviously not true, since it could also be applied to a 1
series array ofN tunnel junctions. A simple ‘‘circuit’’
theory22,23 ~see also Appendix! shows that for such an arra
the Fano factor can be very small:

F;1/N!1. ~3!

The physical reason for this fact is that the noise originat
from each junction is strongly shunted by the junction res
tance, which is much smaller than the total resistance
other junctions.

Thus, there is hope of having the shot noise at hopp
suppressed well below the Schottky value as well. Howev
the real picture of hopping is complex, and the noise may
much higher than the simple estimate given above. For
ample, mutual correlation of the hopping events, expon
tially broad distribution of their rates due to sample rando
ness, and the percolative character of transport paths in
and three-dimensional~3D! cases20,21 may all be important
factors. Until recently, the situation was virtually une
plored: the few publications on the theory of noise in ho
ping that we are aware of~see, e.g., Ref. 24 and referenc
therein! concentrate on 1/f noise rather than on the broad
band shot noise.25 We are also unaware of any experimen
studies of noise at hopping at frequencies high enough
avoid 1/f noise dominance.

The goal of this paper is to develop an initial picture
shot noise at hopping. We will focus on the 1D case, a
assume uniformity of hopping conditions between all t
sites. ~A brief analysis of nonuniform systems and high
dimensions is given in the discussion, Sec. V.! In principle,
1D hopping may be implemented experimentally using a
ear array of quantum dots between two external electro
@Fig. 1~a!#. Besides this geometry, we will also consider
somewhat artificial model of hopping on a ring@Fig. 1~b!#, at
least because problems with periodic boundary conditi
are traditional in theoretical studies of hopping. Besides th
since such models automatically conserve the total elec
number, they may crudely mimic ‘‘open’’ models@Fig. 1~a!#
with considerable Coulomb interaction without its explic
account.

Throughout our analysis we will assume that the elect
states localized at each site are nondegenerate, so that
site may be occupied with just one electron, or none. T
15 975 ©2000 The American Physical Society
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model can be viewed as a special case of the ‘‘orthodo
theory of single-electron tunneling29 when the background
charge of each island is close to2e/2, so that energies o
two charge states (n50 andn51) are close to each othe
while other states are far beyond the available energy ra
So, the well-developed theory of noise based either
Fokker-Planck15–18 or Langevin30 approach can be directl
applied to any hopping structure with arbitrary electro
electron interaction. However, these approaches involve
ing into account an exponentially large number of cha
configurations, thus limiting practical calculations to re
tively small structures,N&20. This is why for the numerica
results we have used the Monte Carlo approach, simila
that used for simulations of transport31 and noise16,4 at
single-electron tunneling, with the corresponding restrict
of the site state number.

It is instructive to compare the results for the shot noise
1D hopping and at tunneling in 1D array of tunnel junction
Some formulas necessary for this comparison are derive
the Appendix for the case of weak charge discreteness
fects.

II. SOME GENERAL RELATIONS

In the hopping limit,20,21 where quantum interference be
tween states before and after each hopping event is negle
because of the inelastic nature of electron transport,32 site
occupation numbers may be considered as random clas
variables. If we are not interested in extremely high frequ
cies~when the finite photon energy becomes important!, cur-
rent I i(t) flowing between the (i 21)th andi th site may be
considered as a sum of infinitely short pulses:

I i~ t !5I i
1~ t !2I i

2~ t !, I i
6~ t !5(

tk
ed~ t2tk

6!, ~4!

wheretk
1 (tk

2) is the time ofkth hop in the positive~nega-
tive! direction between the sites. In the ‘‘open boundar
problem@Fig. 1~a!#, with a fixed voltage across the samp
we may also consider currentsI (t) flowing in external
electrodes.4,31 These currents contain contributions not on
from the hops to and from the electrodes, but also the po

FIG. 1. ~a! Linear array ofN21 localized sites connecting tw
electrodes~‘‘open boundary conditions’’!. The electron transport is
determined by the tunneling ratesG i

6 . ~b! Circular array~‘‘periodic
boundary conditions’’! with N sites occupied byM electrons.
’’
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ization charge changes~displacement current contribution!
due to hops between internal sites:

I ~ t !5(
i 51

N

l i I i~ t !, (
i

l i51, ~5!

where the factorsl i depend on the structure geometry a
can be expressed via its electrostatic matrix—see Appen
~In general, these coefficients are different for the left a
right electrodes.! In the simplest case of a 1D array betwe
two infinite parallel metallic plates,l i5ai /L, L[( iai ,
whereai is transport direction component ofi th hop vector.
In this work, we will use this formula, withai5L/N
5const ~i.e., l i51/N), even for the ring geometry@Fig.
1~b!#, though this model does not have any electrodes. T
assumption is not critical for the Fano factor, which does
depend onl i , since at low frequencies the spectral densit
of all currentsI i andI coincide. A simple proof of this state
ment may be obtained from the spectral density definitio

SI~v!5 lim
t→`

2

t K U E
0

t

I ~ t !eıvtdtU2L ~6!

in the limit v→0, using the condition that the charge cann
accumulate indefinitely inside the array. In the opposite lim
of high frequencies~much higher than the average tunnelin
rate, though still much lower than the reciprocal ‘‘time
tunneling,’’ which is considered infinitely short in ou
theory!, the spectral densities of currentsI i and I are typi-
cally different, and obey a simple formula. In fact, in th
high-frequency limit all tunnel events are effectively unco
related and the phases of factors exp(ıvtk

6) in Eq. ~6! are
random. From this, we obtain

SI i
~`!52e~^I i

1&1^I i
2&!, SI~`!5(

i
l i

2SI i
~`!. ~7!

It is easy to see that for the current through one bar
SI i

(`)/2e^I &>1, while for the external currentSI(`)/2e^I &
>1/N. We will mostly be interested in the readily measu
able quantitySI(v) and its low-frequency valueSI(0).

For the numerical~Monte Carlo! calculations of the spec
tral density we have directly used16 Eq. ~6!. The time period
t is chosen to be sufficiently long and the averaging is do
over many such time periods. In practical calculations, it
important to keep the productvt/2p integer in order to
avoid numerical inaccuracy at low frequencies, and it is c
venient to calculate simultaneously the spectral density
several overtones of certain basic~low! frequency. For sev-
eral figures we have also used the newly developed me
for the calculation of spectral density, which gives mu
faster convergence; this method will be described elsewh

III. CIRCULAR ARRAY

A. The model

We start with the auxiliary problem of hopping of a fixe
number~M! of electrons on a uniform ring ofN.M sites.
The electron may hop to either of the neighboring sites, i
either clockwise~with a probability rate ofG1) or counter-
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PRB 61 15 977SHOT NOISE SUPPRESSION AT ONE-DIMENSIONAL HOPPING
clockwise~with rateG2,G1), but only if the accepting site
is empty. The ratesG6 should satisfy the Gibbs relation

G2/G15exp~2W/T!, ~8!

whereW is the energy difference between the neighbor
sites.33 ~Due to the circular geometry, a conceptually sou
though impractical, way to create this difference is to
crease the magnetic flux through the ring area at a cons
rate. However, we consider the circular array mostly a
simplification of the realistic linear array.!

For the comparison of the current noise with the Nyqu
formula we will need the total resistance of the ring, which
naturally defined as

RS5V/^I &, ~9!

where the total ‘‘voltage’’V is defined asNW/e ~the depen-
dence of the tunneling rate onW can be arbitrary!.

In the final part of our analysis we will include the pa
ticle interaction following the unscreened Coulomb law,
that the potential energy of the system is

U$r1 ,r2 , . . . ,r M%5e2(
i , j

1

ur i2r j u

5
e2

a (
i , j

p

N sinp
uni2nj u

N

, ~10!

whereni is the site occupied by thei th electron. The inter-
action is included into the model by adding the correspo
ing change ofU at a hop to that (6W) describing the exter-
nal field. Since in this case the tunneling rates are no lon
constant, we will need to specify an explicit relationG6(W).
In this case we will assume

G[G12G25W/eR0 , ~11!

where R0 gives the scale of the effective resistance o
tunnel barrier between adjacent sites.

B. Single-particle limit

Let us assumeM51.35 Then the currentI (t) consists of
uncorrelated pulses, each transferring the charge6e/N, with
ratesG1 andG2, respectively. This is equivalent to the co
ventional case of one tunnel junction with the electr
charge substituted bye/N, hence

^I &5e~G12G2!/N, ~12!

and the spectral density is frequency independent,1 SI(v)
5SI(0), with

SI~0!5
2e2

N2
~G11G2!52e^I &

1

N
coth

W

2T
. ~13!

Figure 2 shows the corresponding Fano factorF
5N21coth(W/2T), as a function ofW. In thermodynamic
equilibrium, W50, the noise satisfies the Nyquist formul
SI54T/RS , which remains valid whileW!T. At W→0 the
Fano factor tends to infinity because the average current
ishes while the equilibrium thermodynamic fluctuations s
g
,
-
nt
a

t

-

er

n-
l

produce a finite current noise. ForN@1 the Fano factor
crosses unity atW.Wc52T/N!T. Let us emphasize tha
sinceWc!T, the noise at this crossover is still due to the
modynamically equilibrium fluctuations. Finally, if the ap
plied field is high (W@T), the Fano factor is low:

F51/N. ~14!

Thus, as a matter of principle the shot noise suppressio
hopping may be really very strong~proportional to the array
length, just as in tunnel junction arrays!. Now let us examine
how this suppression is affected by various factors.

C. Low temperature, no interaction

At T!W ~i.e., G'G1@G2) and in the absence of Cou
lomb interactions (e2/a!W), but for arbitrary electron den
sity r[M /N our model is reduced to the so-called asymm
ric simple exclusion process~ASEP! model which has been
extensively studied during the past few years–for a rev
see Ref. 26. Within this model, allN!/ M !(N2M )! possible
charge configurations of the system have equal probab
for the arbitraryN andM.26 From this fact, the average cur
rent is readily calculated to equal

^I &5eG
M

N

N2M

N21
, ~15!

so that for a large system (N,M→`)

^I &5eGr~12r!. ~16!

Notice that these expressions~as well as those below! are
obviously symmetric over the transformationr↔12r,
which interchanges electrons and holes. From Eq.~16!, the
maximum valuê I &max5eG/4 of dc current is achieved a
r51/2, which is a tradeoff between increasing concentrat
r and decreasing average velocityG(12r) of each electron
~in hops per unit time! because of other electrons blocking i
hops.

Equation~16! is exactly the result that could be antic
pated in the complete absence of correlation between
hops. However, in fact these correlationsdo exist, as re-
vealed, for example, by the spectral density of the curre
Figure 3 shows the result of numerical calculation ofSI(v)
using the Monte Carlo approach for two concentrationsr
50.3 andr50.5, and several values of the array lengthN.

FIG. 2. The Fano factorF as a function of energy difference pe
site W in a circular array occupied by one electron.
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The frequency dependence of the spectral density is o
ously not flat as it would be in an uncorrelated case. W
increasingN the spectral density decreases and forms th
distinct regions as a function of frequency: low- and hig
frequency saturation regions and almost power-law deca
between.

At high frequencies, in accordance with Eq.~7!

SI i
~`!52e^I &, SI~`!52e^I &/N, ~17!

the suppression of the external current fluctuations is m
mal. Notice that the frequencyvh of the crossover to this
limit apparently does not depend onN, while the low-
frequency crossover occurs at frequencyv l , which de-
creases withN crudely asv l}N23/2. ~In tunnel junction ar-
rays,v l scales asN22–see Appendix!. The zero-frequency
limit has been studied analytically26 giving the following
Fano factor:

F5
p1/2

2 Fr~12r!

N G1/2

, for N,M→` ~18!

~an analytical formula is also available26 for arbitraryN and
M ). Figure 3 shows that at largeN the frequency dependenc

FIG. 3. Frequency dependence of the spectral densitySI(v) for
uniform circular arrays atT50 for several values of array lengthsN
and electron concentrationr5M /N: ~a! r50.3, ~b! r50.5.
i-
h
e

-
in
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of the current spectral density in the intermediate freque
range approaches the power lawSI(v)}v21/3.

This dependence may be interpreted as a consequen
the self-similarity of the fluctuations,36 which occur at any
site number scaleL, within the interval 1!L!N. In order to
explain thev21/3 scaling, let us assume that Eq.~16! is ap-
plicable to long-wave density perturbations in our syst
and introduce two velocities~measured in sites per secon!
of their propagation.

The first of them, the sound~‘‘shock’’ 26! velocity

vs5~122r!G, ~19!

can be found from the obvious continuity equatio
](er)/]t52]I /]x, where I and r are understood in the
sense of ‘‘local’’ averages over 1!dN!N sites andx is the
site number considered as a continuous coordinate. S
these averages are related by Eq.~16!, for small deviations
from equilibrium we get]r/]t 52(122r)G]r/]x, i.e., an
equation describing linear waves propagating with the sp
given by Eq.~19!. Notice that the sound velocity vanishes
half-filling, r51/2, and is negative beyond this point.

In the circular array all density fluctuations move with th
same sound velocity, so the fluctuation profile does
evolve in time and thus overall rotation does not affect
noise of currentI (vs will, however, be important later for
the analysis of the linear array!. To study the relaxation of
density fluctuations we need to consider the deviations ofvs ,

dv.2Gdr. ~20!

@Including the factor 2 following from Eq.~19! would be an
overestimate of our accuracy, since such nonlinear velo
can be defined in various ways leading to different numer
coefficients.#

To calculate fluctuationsI (t) at a frequencyv!G, we
can integrate Eq.~16! over the whole circle taking into ac
count local density fluctuationsdr. Since we have assume
uniform l i in Eq. ~5! and the total number of electrons do
not fluctuate,*r(x)dx5M , the contribution from the linear
term dI 5eG(122r)dr vanishes. However, the curren
fluctuations do appear in the next, quadratic term of Eq.~16!:
dI 52eG(dr)2, which describes the ‘‘rectification’’ of den
sity fluctuations.@Somewhat paradoxically, this quadrat
term does not affect the average current. This is because
~16! is, strictly speaking, not valid for temporal dependen
of current at finite size scale. Nevertheless, it can be app
to the analysis of fluctuations leading to the results which
correct up to a numerical factor.#

The density fluctuations at the size scaleL (1!L!N)
can be described by the binomial distribution, giving t
variance^(dr)2&5r(12r)/L. Hence, the typical relaxation
bandwidth of these fluctuations~in the frame rotating with
velocity vs) is vL.udvu/L.G@r(12r)#1/2L23/2, and the
corresponding spectral density isSr(vL).(dr)2/vL.@r(1
2r)L#1/2/G. According to the standard theory of noise re
tification ~see, e.g., Ref. 37!, SI(vL) can be estimated a
(N/L)e2G2@Sr(vL)#2vL , where the first factor accounts fo
N/L virtually independent fluctuating regions. Combinin
these estimates and eliminatingL ~as a function ofvL), we
finally obtain
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SI~v!

2e^I &
.C

~v/2pG!21/3

N
@r~12r!#2/3, ~21!

where the numerical factorC can be found by compariso
with the Monte Carlo results~Figs. 3 and 4!, giving a value
between 1.1 and 1.2.

Notice that Eq.~21! is accurate only if bothN andM are
sufficiently large. Figure 4 showsSI(v) normalized by the
value 2e^I &(v/2pG)21/3N21@r(12r)#2/3 for the array with
N580 and differentM. Even at this value ofN the plateau
corresponding to Eq.~21! is not yet very wide. With decreas
ing M the plateau shrinks and there is a noticeable devia
from Eq. ~21!. Nevertheless, the numerical results presen
in Fig. 4 generally confirm the analytical result.

Comparing Eq.~21! with Eq. ~17! it is simple to estimate
the frequency of the crossover to the high-frequency lim
vh/2p;G@r(12r)#2, which coincides with the frequenc
scale of ‘‘collisions’’ of an electron~or a hole! with its
neighbors. Notice that for long arrays (N@1) the high-
frequency crossover shape does not depend onN ~similarly
to the linear array case–see Fig. 10!.

At low frequency Eq.~21! becomes invalid when the siz
scaleL corresponding to the frequencyvL becomes compa
rable with the total array lengthN. This allows us to estimate
the position of the low-frequency crossover:v l /2p

.C̃G@r(12r)#1/2N23/2, whereC̃ is a numerical factor. So
we have explained the dependencev l}N23/2 seen in Fig. 3.
One can also check that at this frequency the result given
Eq. ~21! transforms into Eq.~18!.

It is interesting to find out at which electron concentrati
the single-particle resultF51/N becomes invalid. ForN
@1 and small number of electrons26 F
.(M !) 222M21/(2M )!N, so that considerable deviatio
from the single-particle result starts already fromM52 and
scales asM1/2. This reflects the fact that in 1D arrays, si
nificant correlation of hops starts at very small concen
tions because randomly drifting electrons cannot pass e
other.

D. Temperature effect

In the case of finite temperature whenG2;G1, the popu-
lation of all charge configurations remain equal, so the av
age currents satisfy the equation

FIG. 4. Current spectral density for the array in a circle norm
ized byS0(v)52eI(v/2p)21/3N21@r(12r)#2/3 @see Eq.~21!#.
n
d

:

y

-
ch

r-

^I 6&5eG6r~12r!, ~22!

and the net current^I &5^I 1&2^I 2& is still given by Eq.~16!
with G5G12G2. Plugging it into Eq.~7!, we get

SI~`!/2e^I &5
1

N
coth~W/2T!. ~23!

This result formally coincides with Eq.~13!, but now it is
only valid for sufficiently high frequencies.

Figure 5 shows the result of the Monte Carlo simulatio
for the frequency dependence of the current spectral den
As the temperatureT is raised beyond the energy differenc
W, thermal fluctuations gradually overwhelm the correlati
effects, so that the high-frequency plateau described by
~23! raises and gradually ‘‘floods’’ regions of lower an
lower frequencies.@The fact that the low-frequency part o
the curve is less affected by thermal fluctuations can be
terpreted as follows. Our arguments for Eqs.~21! and ~18!
were based only on equal distribution of states and Eq.~16!
for the average current, which both remain unchanged
arbitrary temperature. So, as long as the temperature is s
enough so that Eq.~16! is still applicable for the analysis o
fluctuations at the frequency of interest, the result is virtua
unchanged.# SI(v) may be approximately found as the lar
est of values given by Eq.~23! and the zero temperatur
result. As soon asT*Tc5W@Nr(12r)#1/2, the fluctuations
are essentially thermal at all frequencies, and the Fano fa
is given by the Nyquist expression

F5
2T

NW
. ~24!

Notice that as in the single-particle approximation, atN@1
there is a broad temperature region (WN1/2!T!WN) where
the array is in thermal equilibrium, while the Fano factor
still much less than 1.

E. Coulomb interaction effects

Coulomb interaction reduces the concentration fluct
tions, so one could also expect a decrease of the cur
fluctuations. This is illustrated in Fig. 6, which shows typic
Monte Carlo results for zero temperature. One can see th

- FIG. 5. Current spectral density for the ring array withN580
andM540 for several temperatures.
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soon ase2/a becomes comparable or larger thanW, the low-
frequency fluctuations are gradually suppressed and
closely approach the limit~14!. Figure 7 shows a typica
dependence of the Fano factor on the array lengthN for
moderate values of the relative Coulomb interaction stren
r[e2/aW. At relatively smallN the scalingF(N) is in be-
tweenN21 andN21/2, while eventually at largeN it reaches
the dependenceF}N21/2 similar to the case without Cou
lomb interaction. The presence of this transition is spec
for 1D case, since in 1D systems the Coulomb interact
cannot provide long-range electroneutrality@because the
electric field (rLe)/L2 produced by a charged fragment
lengthL, decreases withL#. Hence, at large scale the dens
fluctuations are Coulomb decoupled, which makes the g
eral idea of the Fano factor derivation in Sec. III C val
leading to the scalingF}N21/2. ~In contrast, in 3D case the
Coulomb interaction does provide effective long-range el
troneutrality, soF inversely proportional to the system size
expected.!

Stronger Coulomb interaction (r *@min(r,12r)#23/2)
tries to fix the distance between the neighboring electr
and to turn them into a 1D Wigner crystal, which may

FIG. 6. Current spectral density in a ring array at zero tempe
ture for several values of Coulomb interaction strengthr 5e2/aW.

FIG. 7. Fano factor for ring arrays with a fixed electron conce
tration (M /N50.5) as function of the array lengthN, for several
values of Coulomb interaction strength. Lines are just guides for
eye.
an

th

c
n

n-

-

s

rotated by the external fieldW. The Fano factor behavior in
this case may be rather complex, because it depends
whether the integersM and N are ‘‘commensurate’’~more
strictly, whether their greatest common divisor is larger th
1!—see Fig. 8. If it is, beyond some critical valuer c of the
ratio e2/aW ~about 2.6 forN520 andM510, see Fig. 8! the
Wigner crystal is stalled~at T50), the system essentiall
turning into a Mott dielectric. Atr a little less thanr c the
Fano factor starts to increase rapidly fromF*1/N to some
value Fc ; above r c the ratio F5SI(0)/2e^I & is undeter-
mined, since atT50 there are neither fluctuations nor cu
rent. In the opposite case of ‘‘incommensurate’’M and N
~the greatest common divisor ofM and N is 1! the Mott
transition may be absent atT50 even for arbitrary larger,
and both the current and Fano factor may tend to the sin
particle results~12! and ~13!, respectively. It is curious tha
on the way to this limit the functionF(r ) may make a bump
as if it tried to mimic the behavior of its commensura
counterpart—see Fig. 8.

IV. LINEAR ARRAY

A. The model

The main change associated with the linear array w
external electrodes@Fig. 1~a!# is that the numberM of par-
ticles in the array is not more fixed. Instead, what is fixed
the chemical potentials of the metallic electrodesmL,R rela-
tive to the localized state energy. A model of the linear ar
should use this condition to specify rates of electron hopp
between the electrodes and the edge localized sites. A
sonable way to reduce the number of additional paramete
to introduce two extra ‘‘edge’’ sites@ i 50,N, not shown in
Fig. 1~a!#, which are very close to the electrodes. Then
‘‘edge’’ tunneling ratesGL,R

6 are much higher than the
‘‘bulk’’ rates G i

6 , so that the edge sites are in thermal eq
librium with the electrodes, and the probability of their o
cupation may be considered fractional but fixed:f L,R5@1
1exp(2mL,R/T)#21. In this approximation, for a uniform ar
ray the rates of tunneling between the edge sites and t
neighbors (i 51 and i 5N21) are related to the bulk rate
G6 as follows:

G1
15 f LG1, GN

15~12 f R!G1, ~25!

-

-

e

FIG. 8. The dependence of the Fano factor for the ring array
the strengthr of Coulomb interaction.
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G1
25~12 f L!G2, GN

25 f RG1. ~26!

We will be interested in the case of identical localized si
and similar electrodes, so thatmL5mR and f L5 f R5 f .

External electrodes also modify the Coulomb interact
of electrons. Besides that, the image charge effect make
self-energy of the sites dependent on their location, lead
to nonuniform transport conditions. Since in the present
per we concentrate on uniform arrays, we will limit ourselv
to the case of negligible Coulomb interaction.

B. Global electron number fluctuation effects

For the case ofT50, our model is reduced to the ASE
model with open boundaries.26 Transport properties for the
latter model have been studied in detail, especially forf L
5 f R5 f . In this case, the probability of any charge config
ration is the same26 as if each site had independent occup
tion with probability f. As a consequence, the dc current
given by Eq.~16! with r5 f . The Fano factor can also b
calculated analytically:27

F5122 f ~12 f ! (
k50

N22
~2k!!

k! ~k11!!
@ f ~12 f !#k, ~27!

and forN→` one finds a simple result26

F5u122 f u, ~28!

showing that the shot noise is much higher than in the cir
lar arrays, cf., Eq.~18!. Only in the evidently special poin
f 51/2, the Fano factor scales as in the closed bound
case:27

F5~pN!21/2, N@1. ~29!

Figure 9~for f 50.3 and several values ofN) shows that
SI(v) smoothly decreases with frequency from the va
given by Eq.~28! and eventually reaches the levelSI(`)
52eI/N, in accordance with the general Eq.~7!. As we will
see later, at largeN the frequency dependence is quite ri
and exhibits three crossovers.

The fact that the low-frequency shot noise in the line
array @Fig. 1~a!# at f Þ1/2 is much higher than in the rin

FIG. 9. Frequency dependence of the spectral densitySI(v) for
uniform linear arrays with symmetric boundary conditions,f L5 f R

50.3, atT50.
s
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array @Fig. 1~b!# has a simple explanation: the total numb
of electrons in the case of ‘‘open boundary conditions’’ m
significantly fluctuate, while on the ring this number is fixe
Analytically, this effect may be especially simply consider
for the casef !1 ~or similarly 12 f !1). Then the array is
empty most of the time, and is entered very rarely by
electron~or hole!. After the entry, the electron is transferre
in a succession of hops through the array, in total transfer
chargee from one electrode to another. This is exactly t
situation for which the original Schottky formula was d
rived, so that we getF51 in agreement with the correspond
ing limit of Eq. ~28!.

In the casef !N21/2 ~when electrons do not collide with
each other! the frequency dependence ofSI can be obtained
from Eq.~14! of Ref. 38, which was derived from the ortho
dox theory of single-electron tunneling for the similar s
quential transport scenario. Assuming that tunneling rates
equal,G i

15G, besides the negligibly small rateG1
1 , we get

SI~v!

2eI
5

1

N
1

2

N2

G2

v2 F12
Re~12ıv/G!N21

~11v2/G2!N21 G ; ~30!

we have confirmed this result using Monte Carlo simu
tions. ForN@1 this formula is reduced to

SI~v!

2eI
5Fsin~Nv/2G!

Nv/2G G2

, ~31!

that is obviously the normalized and squared Fourier im
of the rectangular envelope of the train ofN current pulses
during the single-electron passage.

For f ;1, Eq. ~28! may be interpreted as follows. Let u
again apply Eq.~16! to long-range fluctuations. Then sinc
]I /]r5eG(122r), one findsSI(0)5e2G2(122r)2Sr(0),
whereSr(0) is the low-frequency intensity of fluctuations o
the total array occupation (r[M /N). Notice that forr5 f
51/2 the result vanishes, and we should go after the high
order effect as we did for the ring array. For all other valu
of f, we may use the estimateSr(0);^(dr)2&/Dv, where
^(dr)2&5 f (12 f )/N and the effective bandwidthDv can be
estimated asuvsu/N @unlike in the ring array, the density
fluctuation is carried out of the linear array with velocityvs
given by Eq. ~19!#. Combining these formulas, we obta
Dv;u122 f uG/N, Sr(0); f (12 f )/Gu122 f u, and F
5const3u122 f u. The numerical factor in this result for th
Fano factor cannot be derived in this crude way, but it ob
ously equals unity because atf 51 we should get the previ
ous result,F51. Thus we completely recover the exact r
sult ~28!.

One more possible derivation of that equation can be
tained along the following line. Iff ,1/2, then the electrons
can be supplied from the left electrode with the maximu
rate f G, while the average ‘‘sink’’ velocity (12 f )G is
larger. Hence, only electrons relatively close to the l
boundary can affect the entrance of the next electrons, an
the low-frequency correlation is essentially the boundary
fect. Using this idea and taking into account, for examp
correlations only due to the three first jumps, it is easy
obtain F5122 f 1O( f 3). Taking into account more jump
we would eventually show that Eq.~28! is exact.
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A concentration fluctuation supplied from the bounda
moves with velocityvs , so for N@1 the corresponding en
velope in I (t) has rectangular shape with durationN/uvsu.
Combining the corresponding frequency dependence
SI(v) with the exact result forF, we get

SI~v!

2eI
.u122 f uFsin~Nv/2Gu122 f u!

Nv/2Gu122 f u G2

. ~32!

At sufficiently high frequency,v@uvsu/N, the ‘‘nonlin-
ear’’ contribution from the concentration fluctuations obv
ously should be the same in the linear and ring arrays~with
equal average concentrationr5 f ). Hence,SI(v) will still be
given by Eq.~21! while in the crossover region it can b
crudely estimated as a sum~or maximum value! of two con-
tributions given by Eqs.~32! and ~21!. As a result,
there are three characteristic frequencies inSI(v) depen-
dence at N@1: the low-frequency saturation occurs
v&v l;Gu122 f u/N, the intermediate-frequency depe
dence described by Eq. ~21! starts at v*vm

FIG. 10. ~a! Current spectral density for linear array withf L

5 f R50.5 at T50. Notice the dependenceSI(v);v21/3 in the
intermediate frequency range between the saturations at low
quency (F;N21/2) and high frequency (SI(`)/2eI51/N). ~b! The
same data normalized byS0(v)52eI(v/2p)21/3N21@ f (12 f )#2/3.
of

;GN23/5u122 f u9/5@ f (12 f )#22/5, and finally the high-
frequency saturation occurs atv*vh;G@ f (12 f )#2, similar
to the ring array case.

The casef 51/2 plays a special role in the ASEP theor
as can be easily noticed comparing Eqs.~28! and ~29!. Ac-
tually, this case is quite important since for sufficiently lon
arrays withf L.1/2 andf R,1/2 the electron concentration i
the bulk of the array is close26 to f 51/2 ~so ^I &5eG/4) and,
hence, the scalingF}N21/2 holds as in Eq.~29!. @As an
example, for f L51, f R50 the result is27 F
53(2p)1/2/16N1/2.# At f 51/2 the low-frequency fluctua
tions can no longer be considered as a boundary effect, s
the ‘‘sink’’ velocity (12 f )G is equal in this case to the
maximum supply ratef G; hence, the transport become
jammed and the correlations involve the whole array leng

In the respect that the boundary effects are no longer
portant, the linear array atf 51/2 is very similar to the circle
array. Figure 10 shows the frequency dependence of the
rent spectral density forf 51/2 and several values ofN. The
data look similar to that in Fig. 3. The main feature isv21/3

dependence in the intermediate frequency range. To ch
the validity of Eq.~21! in this range, Fig. 10~b! shows the
same data as Fig. 10~a! but normalized by S0(v)
52eI(v/2p)21/3N21@ f (12 f )#2/3. We see that asN grows,
the intermediate region becomes more and more pronoun

C. Temperature effects

Figure 11 shows the numerically calculated effect of no
vanishing temperature on the shot noise in a linear array
shows that the effect is quite similar to that in a ring arr
~Fig. 5!, however, because of the higher initial intensity
low-frequency fluctuations~at T50) the noise become
completely thermal at a higher temperature,T*Wu122 f u.

V. DISCUSSION

Probably the most important result of our analysis is t
in contrast to the expectation based on the analysis of
arrays of conventional tunnel junctions, the shot noise
uniform 1D hopping arrays is typically much higher tha
1/N of the Schottky valueSI52e^I &. However, in some

e-

FIG. 11. Frequency dependence of the current spectral den
in the linear array withN510 andf L5 f R50.3 at several tempera
tures.
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cases this lower bound can be achieved. In order to sort
these cases, it is useful to consider the current fluctuation
the result of three major sources:

- time randomness of electron tunneling events,
- electron density fluctuations, and
- thermal fluctuations.
Crudely speaking, the lower bound 2e^I &/N for the noise

is determined by the first contribution, while the second c
tribution typically increases the noise significantly even
T50.

At relatively high frequencies the current spectral dens
in a ring array and 1D array between electrodes beha
pretty similarly. In particular, the high-frequency asympto
is given by the same Eq.~7! and is determined by capacitiv
factorsl i . ~This result is also valid for the conventional ca
of 1D array of tunnel junctions–see Appendix!. If l i51/N,
then in all cases at low temperatureT we have SI(`)
52e^I &/N.

However, at low frequency the noise behavior in a ri
array and a linear array is quite different. The reason for
difference is that in a linear array the total number of el
trons can fluctuate while in the ring array it is fixed. In th
case when the single-particle approximation is applicable
a linear array, the relative density fluctuations are maxim
and the Fano factor is not suppressed:F51 at T50. The
electron ‘‘collisions’’ ~the Pauli exclusion! reduce these fluc
tuations, but quite inefficiently. Only in the special case
half-filling ( f 50.5) when ‘‘traffic jams’’ have all size scales
the Fano factor decreases asN21/2 with the array lengthN; in
other cases the dependenceF(N) quickly saturates at the
level F5u122 f u. One can speculate that Coulomb intera
tion should be a more efficient factor in suppression ofF,
since it may significantly reduce the electron density fluct
tions, however, this conclusion has still to be verified n
merically.

In contrast to the linear array, in the uniform ring arr
the uncorrelated motion~of a single electron! provides the
maximal suppression of the Fano factor,F51/N. The Pauli
exclusion in fact increasesF leading toF}N21/2. However,
the extra correlations due to Coulomb interaction betw
electrons on different sites make transport ‘‘smoother’’ a
reduce the Fano factor, in some cases down to the lo
boundF51/N.

It is instructive to compare these results with those fo
1D array of tunnel junctions~see Appendix!. In the latter
model the Fano factor is determined purely by the junct
resistances. In some sense, this is a consequence of s
Coulomb interaction that forbids noticeable charge fluct
tions and establishes fast long-range correlations betw
currents through different tunnel junctions. In the unifor
array at low temperature the noise suppression is maxim
F51/N. However, if the junctions are very small, singl
electron effects can lead to significant charge fluctuati
and thus increase the Fano factor. For example,F51 is
realized4 in the vicinity of the Coulomb blockade thresho
when the transport has a bottleneck even in the uniform
ray.

So far we have reviewed our results for the uniform ca
Now let us briefly discuss hopping transport noise in nonu
form 1D arrays. It is simple to study one particle inside t
ring array with arbitrary disorder at low temperatures. In t
ut
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case the transport is unidirectional,G i
250, and the average

current is obviously given by the expression

^I &5eF(
i

~G i
1!21G21

, ~33!

while the formula for the current spectral density has be
derived in Ref. 38 for the casel i51/N, and can be readily
generalized to include arbitraryl i :

SI~v!52e^I &(
l 51

N

l l
214e^I &ReH F)

l 51

N S 11
ıv

G l
1D 21G21

3F(
l 51

N

l l
21 (

l 51

N21

(
m51

N

lmlm1 l )
k51

l

3S 11
ıv

Gk1m
1 D G J , ~34!

where by definitionGN1k
1 5Gk

1 . At zero frequency this for-
mula is reduced to

SI~0!

2e^I &
5F(

i
~G i

1!22GF(
i

~G i
1!21G22

, ~35!

and allows us to study the statistics of the Fano factor
random distribution ofG i

1 in a long array,N@1.
As the major factor, let us take into account the dep

dence of tunneling rate on the distanceai between sites,
G i

15G0 exp(22ai /j), wherej is the localization length, and
assume that independent randomai obey the Poisson distri
bution, p(ai)5a0

21 exp(2ai /a0) wherea0@j is the average
spacing. Then the distribution of rates can be parameter
asG i

15G0xi
2a0 /j , where the random numberxi has uniform

distribution between 0 and 1. The minimal rate~‘‘bottle-
neck’’! Gmin will be about G0(2a0 /jeN)2a0 /j on average
~here e52.71!, while the next minimal rateGmin11 will be
much larger,Gmin11 /Gmin;(2a0 /jeN)22a0 /j@1. It is easy
to see that in this case both the average current@Eq. ~33!# and
the Fano factor@Eq. ~35!# are determined by the bottlenec
^I &5eGmin andF51.

It is also instructive to consider a model where the ma
mal distanceai is limited by some big valueamax (amax
@a0). For example, this describes the situation in whi
some other transport mechanism starts to dominate over
neling when the sites are too far apart, thus limitingG from
below. If N!exp(amax/a0), the results for the average curre
and the Fano factor do not differ from the case conside
above. However, for very long arrays,N@exp(amax/a0), the
transport is limited by many similar bottlenecks, so that^I &
.eG0 exp(22amax/j1amax/a0)/N and the Fano factor de
creases with the array length,F.exp(amax/a0)/N.

We can use this result for a preliminary estimate of t
Fano factor for hopping in disordered 2D and 3D syste
when the transport is mainly determined by percolat
clusters.21 If the single-particle approach is applicable, th
as in the case above we can simply count the numbe
similar bottlenecks in the transport direction. With this arg
ment, we obtain a simple estimate
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F;Lc /L, ~36!

whereL is the sample length andLc is the characteristic size
of the percolation cluster. The applicability range of the a
proach is rather unclear, so this result still has to be c
firmed using either more quantitative analysis or numer
Monte Carlo modeling.~Preliminary numerical analysis o
2D hopping on uniform slanted square lattice gives
dependence39 F}L2n wheren.0.85 is rather close but dif
ferent from unity.!

In conclusion, in the present paper we have studied
shot noise at hopping in 1D arrays of sites, concentrating
the uniform case and briefly considering the effect of dis
der. It is important to extend this study to 2D and 3D ho
ping. The presented results hint that the Coulomb interac
may play the crucial role in the suppression of low-frequen
shot noise.
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APPENDIX: 1D ARRAY OF TUNNEL JUNCTIONS

In this Appendix we calculate the spectral density of t
shot noise in a 1D array of tunnel junctions. We will first u
the standard circuit theory and then extend the calculation
the case of weak single-electron effects~which are assumed
to be small because of high temperature or high current!.

Figure 12 shows the array ofN tunnel junctions in series
Each junction is characterized by resistanceRi and capaci-
tanceCi ( i 51, . . . ,N), while Cg,k (k51, . . . ,N21) denote
capacitances of ‘‘islands’’ to the ground. This circuit do
not describe the long-range capacitances which can be e
cially important for islands and junctions of small size,40 that
can require numerical calculation of the total capacita
matrix.40–42 The derivation below is valid for arbitrary ca
pacitance matrix, however, for simplicity we will refer t
Fig. 12.

In the absence of single-electron correlations theI -V
curve of the array is linear,̂I &5V/RS , RS5( iRi , and the
average voltage across each junction is proportional to
junction resistance,̂Vi&5^I &Ri . To study the fluctuations
we follow the standard circuit theory22 and introduce the
sources of the current noisej i(t) in parallel with the junc-

FIG. 12. 1D array ofN tunnel junctions with capacitancesCi

and resistancesRi , while Cg,i are the capacitances to the groun
The Langevin noise sources are presented by random current
eratorsj i(t) parallel to the junctions.
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tions. Separating the current throughi th junction into two
parts flowing in opposite directions,

^I &5^I i
1&2^I i

2&, ^I i
1&/^I i

2&5exp~2e^Vi&/T!,
~A1!

and using the Schottky formula for each part, we get
following white @S(v)5S(0)# spectral density for the nois
sourcej i(t):

Sj i~v!52e^I i
1&12e^I i

2&52e^I &coth~e^Vi&/2T!.
~A2!

Let us denote byf i(t) the fluctuating part of thei th is-
land potential@f0(t)5fN(t)50 because we assume co
stant potentials of the leads#, then the currentI i(t) through
i th junction can be written as

I i~ t !5^I &1@f i 21~ t !2f i~ t !#/Ri1j i~ t !. ~A3!

The evolution off i(t) is described by the equation

ḟ i5(
j 51

N

I k~ t !@Di , j2Di , j 21#, ~A4!

whereD[C21 is the inverse capacitance matrix~obviously
Di , j5D j ,i and D0,i5DN,i50) and can be rewritten in the
following form:

ḟ i5 (
k51

N21

Ai ,kfk1 (
k51

N

Bi ,kjk , ~A5!

Ai ,k[Bi ,k11 /Rk112Bi ,k /Rk , ~A6!

Bi ,k[Di ,k2Di ,k21 . ~A7!

Notice that A is (N21)3(N21) matrix while B is (N
21)3N matrix. In the frequency representation Eq.~A5!
can be written asıvf(v)5Af(v)1Bj(v) (ı is the imagi-
nary unit! and can be easily solved in the matrix form,

f~v!5S 1

ıv12ADBj~v!. ~A8!

Using Eq.~A3! we find the Fourier transform ofI i(t):

I i~v!5(
j 51

N

Xi , j~v!j j~v!, ~A9!

Xi , j~v!5d i j 1
1

Ri
(
k51

N21 F S 1

ıv2AD
i 21,k

2S 1

ıv2AD
i ,k

GBk, j ,

~A10!

where by definition (ıv2A)0,k
215(ıv2A)N,k

2150.
Notice that atv→` the only surviving term in Eq.~A10!

is the Kronecker symbold i j so that

I i~`!5j i~`!. ~A11!

At v50 it is possible to prove~using somewhat cumber
some algebra! the relation

I i~0!5(
j

~Rj /RS!j j~0!, ~A12!

en-
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which obviously means that at low frequencies the curren
distributed according to resistances and equal in all ju
tions. @Equation~A12! shows that the fractionRj /RS of the
currentj j flows through the array while the rest is return
via the ‘‘shunt’’ Rj .#

The spectral density of the currentI i throughi th junction
can be readily calculated as

SIi ~v!5(
j

uXi , j~v!u2Sj j , ~A13!

because the noise sourcesj j are mutually uncorrelated@since
Sj j (v) does not depend on frequency, we omitv#. Using
Eqs.~A2!, ~A11!, and~A12! we get the simple expressions
the limiting cases:

SIi ~0!52e^I &(
j

~Rj
2/RS

2 !coth~e^I &Rj /2T!, ~A14!

SIi ~`!52e^I &coth~e^I &Ri /2T!. ~A15!

In experiment it is usually impossible to measure the c
rent through one junction, and the only measurable quan
is the current in the external lead, which contains the con
bution from the displacement current and, hence, depend
the currents through all junctions. The currentI (t) at the left
external lead can be expressed as the linear combinatio

I ~ t !5(
i

l i I i~ t !, ~A16!

l i5d1i1(
j

C0,jBj ,i , (
i

l i51, ~A17!

whereC0,k is the element~always negative! of the capaci-
tance matrix between the left electrode andkth island. In the
case of Fig. 12,C0,k52C1d1k because the left electrode
capacitively coupled only with the first island, sol i5d1i

2C1B1,i . If all Cg,i50 in Fig. 12, thenl i5Ci
21/( jCj

21 ,
while for a long uniform array,Ci5C5const, Cg,i5Cg
5const, N2@C/Cg , the coefficients arel i5X i 21(12X),
whereX511Cg/2C2@(Cg/2C)21Cg /C#1/2. If the tunnel-
ing system is different from what is shown in Fig. 12 a
consists of small islands which are separated by much la
distances and imbedded into the plane capacitor~external
electrodes!, then similar to the hopping casel i5ai /( jaj ,
whereai is the length of the projection ofi th tunneling jump
onto the direction perpendicular to the capacitor planes.

Using Eqs.~A16! and ~A9! we obtain the following ex-
pression for the spectral density of the left external curre

SI~v!5(
j
U(

i
l iXi , j~v!U2

Sj j ~A18!

@notice that at finite frequency,SI(v) for the left and right
electrodes can be different#. In the particular case shown i
Fig. 12,
is
-

-
ty
i-
on

er

t:

(
i

l iXi , j5d1 j2C1B1,j2 (
m,k

N21 Fd1m

R1
1C1A1,mG

3S 1

ıv2AD
m,k

Bk, j . ~A19!

In the limit v50 the spectral densitySI(0) of the exter-
nal current coincides with the spectral density of the curr
through any junction~see Sec. II! and, hence, is given by Eq
~A14!. While at low-frequencySI is determined only by the
circuit resistances, in the opposite limit,v→`, it is deter-
mined mainly by the circuit capacitances,

SI~`!5(
i

l i
2Sj i52e^I &(

i
l i

2 coth~e^I &Ri /2T!

~A20!

~resistances are important only when the Nyquist noise c
tribution is considerable,T*IRi). It is simple to check that
in the thermal equilibrium,I 50, the low-frequency noise
@see Eq.~A14!# always satisfies the Nyquist formula,SI(0)
54T/RS , however, at finite frequency the noise is differe
for example,SI(`)54T( il i

2/Ri . Notice that in this formal-
ism v5` still means\v!max(T,eVi). However, it would
be simple to take into account zero-point fluctuations by
placing Eq. ~A2! with43 Sj i(v)5Ri

21(6(eVi

6\v)coth@(eVi6\v)/2T#.
In a uniform array at zero temperature the noise at l

frequency is suppressedN times@see Eq.~A14!# in compari-
son with the Schottky formula,SI(0)5SIi (0)52eI/N.
However, at high frequency the suppression of the exte
current noise is usually weaker,SI(`)52eI( il i

2 , 1/N
<( il i

2<1, while for the current through a particular junc
tion there is no suppression at all,SIi (`)52eI.

It is interesting to find out at whichv the low-frequency
result is no longer accurate. We have studied the long u
form arrays shown in Fig. 12,N@(C/Cg)1/2, and found nu-
merically that the relative accuracye!1 of the low-
frequency result,SI(v)/2eI5(11e)/N, corresponds to the
frequencyv/2p.1.1(RCg)21e1/2N22. This formula, how-
ever, cannot be used to describe the crossover to the h
frequency asymptote,SI(`)5(114C/Cg)21/2.

If the typical size of the tunnel junctions is small, singl
electron effects29 become important. Below we extend th
standard noise theory to this case, assuming that sin
electron effects are weak due to relatively high temperatu
T*e2/C̃, or relatively high current,I *e/R̃C̃ (C̃ and R̃
@RQ are the typical capacitance and resistance of tun
junctions!.

According to the ‘‘orthodox’’ theory,29 the rate of tunnel-
ing throughi th junction ~in the positive direction!,

G5Vi
e f f/eRi@12exp~2eVi

e f f/T!# ~A21!

is governed by the effective voltageVi
e f f , which is always

smaller than the actual voltageVi ,

Vi
e f f5Vi2e/2Ct,i , ~A22!

1/Ct,i5Di 21,i 211Di ,i22Di 21,i , ~A23!
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whereCt,i is the total capacitance ofi th junction.~For tun-
neling in the opposite direction the effective voltage i
2Vi2e/2Ct,i .) Linearizing Eq.~A21! and averaging ove
the fluctuatingVi(t), we obtain the equation

^I &5^I i
1&2^I i

2&, ~A24!

^I i
6&5

6^Vi&2e/2Ct,i

Ri@12exp~2e~6^Vi&2e/2Ct,i !/T!#
, ~A25!

which allows us to calculate the average voltages^Vi& for the
given average current^I &. ~Notice that the high-voltage off
set of theI -V curve is equal toVo f f5( ie/2Ct,i exactly.!
This approximation has been successfully used for the a
lytical and numerical analysis of theI -V curves of Coulomb
blockade thermometers.44

Since we assumed an essentially linear response of
junction current, it is natural to use the formalism of t
standard circuit theory, so the result for the current spec
density will be given by the same Eqs.~A10!, ~A13!, and
~A17!–~A19!. However, the second equality in Eq.~A2! is
no longer valid, and we have at least three reasona
choices for the ‘‘seed’’ noise spectral density:Sj i

52e^I i
1&12e^I i

2&, Sj i52e^I &coth(e^Vi&/2T), or Sj i

52e^I &coth(e^I &Ri /2T). The first choice seems to be th
most natural one, however, numerical comparison with
results of Monte Carlo simulations shows that the first f
mula usually underestimates noise~see Fig. 13!, the third
formula overestimates it, and the second formula~which is in
between two others! usually gives the closest result, thoug
not always. Notice, however, that all three approximatio
coincide in the limits of both low and high temperature,
the difference between them is never too significant wit
the applicability range of the formalism.

As the next level of approximation for the ‘‘seed’’ nois
Sj i at finite temperature, it is possible to estimate the st
dard deviation of fluctuatingVi(t) and take into account th
correction due to the second derivative of Eq.~A21!. It is
also possible to take into account the effective increase of
junction resistances used in the evolution equation~A3! at
.
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finite temperatures~we did not implement this last idea nu
merically!. Figure 13 shows the frequency dependence of
spectral density of the current in the~left! external electrode
for the uniform array ofN510 junctions withCg /C50.1
symmetrically biased by voltageV55e/C at temperatureT
5e2/C. The thick line shows the results of Monte Car
simulations while the thin lines represent the calculatio
using Eqs.~A18!–~A19!. For the lowest and highest thi
lines, the first and third formulas forSj i discussed above
have been used. The thin line corresponding to the sec
formula is almost indistinguishable from the thin line sho
ing the result using the second~quadratic! approximation of
Sj i . As one can see, these lines are quite close to the M
Carlo result. With an increase of current or temperature
thin lines become closer to each other, and the agreem
with the Monte Carlo result becomes even better.

FIG. 13. Normalized spectral densitySI(v) for a uniform array
of small tunnel junctions. Thick line shows the result of Mon
Carlo simulations while thin lines 1–4 are calculated using E
~A18!–~A19!. For lines 1–3 the ‘‘seed’’ noiseSj i is calculated as
2e(^I i

1&1^I i
2&), 2e^I &coth(e^I &Ri /2T), and 2e^I &coth(e^Vi&/2T),

respectively. For the line 4~by coincidence, almost indistinguish
able from line 3! Sj i is calculated using the quadratic approxim
tion.
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