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Shot noise suppression at one-dimensional hopping
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We have carried out a preliminary analysis of shot noise at hopping, focusing on uniform one-dimensional
(1D) arrays of sites separated hytunnel barriers. The results show that at low temperatures the low-frequency
density of the shot noise varies fromNLto 1 of the Schottky value, depending on the geometry, electron
density, and Coulomb interaction strength. An interesting feature %> dependence of the current spectral
density at intermediate frequencies, which reflects self-similarity of the fluctuations at different size scales.

[. INTRODUCTION value[ S;(0)=2e(l), i.e., F=1]. However, this argument is
obviously not true, since it could also be applied to a 1D
Nonequilibrium fluctuations in mesoscopic systems carseries array ofN tunnel junctions. A simple “circuit”
present additional information that is not reflected in their dctheory’*?® (see also Appendjxshows that for such an array
transport characteristics. This is one of the reasons whthe Fano factor can be very small:
“shot noise” (i.e., nonequilibrium fluctuations of current

with constant or nearly constant spectral density at low fre- F~1/N<1. 3
guencie has attracted so much attention in mesoscopics
during the last decade—see, e.g., Refs. 1-3. The physical reason for this fact is that the noise originating

An additional motivation for the present paper was pro-from each junction is strongly shunted by the junction resis-
vided by the observatidrthat the smallness of the shot noise tance, which is much smaller than the total resistance of
is a necessary condition for quasicontinuous electron transther junctions.
fer. More exactly, for an external observer a conductor pro- Thus, there is hope of having the shot noise at hopping
vides effectively Ohmigquasi-continuousconduction only  suppressed well below the Schottky value as well. However,

if the so-called Fano factor the real picture of hopping is complex, and the noise may be
much higher than the simple estimate given above. For ex-
F=S,(0)/2¢(1) (1) ample, mutual correlation of the hopping events, exponen-

tially broad distribution of their rates due to sample random-
ness, and the percolative character of transport paths in 2D
nd three-dimensiondBD) case$™?! may all be important
actors. Until recently, the situation was virtually unex-
plored: the few publications on the theory of noise in hop-
R>#/e?, C<e?T, 2) ping that we are aware dbee, e.g., Ref. 24 and references
therein concentrate on 1/noise rather than on the broad-
it may be used for resistive coupling in single-electron de-band shot nois& We are also unaware of any experimental
vices. Since using resistively coupled devices is one of thetudies of noise at hopping at frequencies high enough to
very few options available to avoid the forbidding problem avoid 1f noise dominance.
of random background charge in single-electroiigee, e.g., The goal of this paper is to develop an initial picture of
Refs. 5,8, the search for systems with quasi-continuous conshot noise at hopping. We will focus on the 1D case, and
duction is important for possible future applications of assume uniformity of hopping conditions between all the
single-electron devices in integrated circuits. sites. (A brief analysis of nonuniform systems and higher
Shot noise has been extensively analyzed for metallidimensions is given in the discussion, Sec) M. principle,
conduction(in both ballistid=® and diffusivé®~**limits) and 1D hopping may be implemented experimentally using a lin-
for single-electron tunnelind’~*® Unfortunately, metallic ear array of quantum dots between two external electrodes
conductors can satisfy the conditith<1 only if they are [Fig. 1(a)]. Besides this geometry, we will also consider a
much longer than the electron-phonon interaction lefgtA.  somewhat artificial model of hopping on a riffgig. 1(b)], at
As a result Eqs(2) can be practically met only at very low least because problems with periodic boundary conditions
temperatures—see, e.g., experimérnthe same is true for are traditional in theoretical studies of hopping. Besides that,
single-electron circuitglike one-dimensional1D) or two-  since such models automatically conserve the total electron
dimensional2D) arrayq with their relatively large island$®  number, they may crudely mimic “open” moddlBig. 1(a)]
Much higher resistanc® at small sample lengtliand  with considerable Coulomb interaction without its explicit
hence small) is typical for hopping conductors—see, e.g., account.
Refs. 20,21. Naively, one might think that since the hopping Throughout our analysis we will assume that the electron
transport is due to discrete single-electron tunneling eventstates localized at each site are nondegenerate, so that each
(“hops”), the shot noise should be close to the Schottkysite may be occupied with just one electron, or none. This

(whereS;(0) is the low-frequency density of current fluctua-
tions, and(l) is the average currenis much lower than 1. If
simultaneously the resistance of such a sample is sufficientl
high, and its stray capacitance is low,
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()
M where the factora,; depend on the structure geometry and
%2 can be expressed via its electrostatic matrix—see Appendix.
as (In general, these coefficients are different for the left and
right electrodes.In the simplest case of a 1D array between
two infinite parallel metallic platesh;=a;/L, L=3;a;,
sitei / wherea; is transport direction component idh hop vector.
g | In this work, we will use this formula, witha;=L/N
Tivt =const (i.e., \j=1/N), even for the ring geometryFig.
1(b)], though this model does not have any electrodes. This
assumption is not critical for the Fano factor, which does not
depend on\;, since at low frequencies the spectral densities
of all currentsl; and| coincide. A simple proof of this state-

FIG. 1. (a) Linear array ofN—1 localized sites connecting two
electrodeq"‘open boundary conditions]: The electron transport is
determined by the tunneling ratEs . (b) Circular array(**periodic
boundary conditions) with N sites occupied by electrons.

ment may be obtained from the spectral density definition
model can be viewed as a special case of the “orthodox” 2 T )
theory of smgle—_electro_n tunnelifgwhen the background S/(w)=lim _<J I(t)e'“tdt > (6)
charge of each island is close toe/2, so that energies of T 0
two charge statesn=0 andn=1) are close to each other
while other states are far beyond the available energy rangé the limit «—0, using the condition that the charge cannot
So, the well-developed theory of noise based either omccumulate indefinitely inside the array. In the opposite limit
Fokker-Planck®~8 or Langeviri® approach can be directly of high frequenciesmuch higher than the average tunneling
applied to any hopping structure with arbitrary electron-rate, though still much lower than the reciprocal “time of
electron interaction. However, these approaches involve takunneling,” which is considered infinitely short in our
ing into account an exponentially large number of chargegheory), the spectral densities of curreritsand| are typi-
configurations, thus limiting practical calculations to rela-cally different, and obey a simple formula. In fact, in the
tively small structuresN= 20. This is why for the numerical high-frequency limit all tunnel events are effectively uncor-
results we have used the Monte Carlo approach, similar teelated and the phases of factors exfy) in Eq. (6) are
that used for simulations of transpdrtand noisé®* at  random. From this, we obtain
single-electron tunneling, with the corresponding restriction
of the site state number. N B 5

It is instructive to compare the results for the shot noise at Sli(w)zze«'i )y, Sl(w)zzi: )‘isli(w)- (7)
1D hopping and at tunneling in 1D array of tunnel junctions.
Some formulas necessary for this comparison are derived in is easy to see that for the current through one barrier
the Appendix for the case of weak charge discreteness GBIi(oo)/Ze<|>>]_, while for the external currers, («)/2e(l)

fects. =1/N. We will mostly be interested in the readily measur-
able quantityS,;(w) and its low-frequency valu&;(0).

Il. SOME GENERAL RELATIONS For the numerica{Monte Carlg calculations of the spec-
tral density we have directly us¥tEq. (6). The time period
tween states before and after each hopping event is neglectéds chosen to be .suff|C|er.1tIy long and Fhe averaging Is d.of‘e

over many such time periods. In practical calculations, it is

because of the inelastic nature of electron transijostte ant to K th duab /2 Nt . der t
occupation numbers may be considered as random classidgiPortant to keep the produabr/zm Integer in order to
avoid numerical inaccuracy at low frequencies, and it is con-

variables. If we are not interested in extremely high frequen-

cies(when the finite photon energy becomes impoitanir- venient to calculate simultaneously the spectral density at
rent1,(t) flowing between thei(- 1)th andith site may be sever_al overtones of certain basgiow) frequency. For sev-
considered as a sum of infinitely short pulses: eral figures we have also used the newly developed method

for the calculation of spectral density, which gives much
faster convergence; this method will be described elsewhere.

In the hopping limi£%?! where quantum interference be-

LO=17(0-17 (0, 17(0=2 edt-t), @

X Il. CIRCULAR ARRAY
wheret, (t.) is the time ofkth hop in the positivgnega-
tive) direction between the sites. In the “open boundary”
problem[Fig. 1(a)], with a fixed voltage across the sample, We start with the auxiliary problem of hopping of a fixed
we may also consider currentigt) flowing in external number(M) of electrons on a uniform ring di>M sites.
electrode$:®! These currents contain contributions not only The electron may hop to either of the neighboring sites, i.e.,

from the hops to and from the electrodes, but also the polareither clockwise(with a probability rate off’ *) or counter-

A. The model
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clockwise(with rateI’ " <I'*), but only if the accepting site F
is empty. The rate§~ should satisfy the Gibbs relation

I~/T* =exp(—WIT), ) thermal i nonequilibrium
1

whereW is the energy difference between the neighboring
sites®® (Due to the circular geometry, a conceptually sound, 1
though impractical, way to create this difference is to in-
crease the magnetic flux through the ring area at a constant
rate. However, we consider the circular array mostly as a
simplification of the realistic linear array.

For the comparison of the current noise with the Nyquist
formula we will need the total resistance of the ring, which is
naturally defined as

1I/N

FIG. 2. The Fano factdrf as a function of energy difference per
Rs=V/(l), (90 siteWin a circular array occupied by one electron.

where the total “voltage™V is defined asNW/ e (the depen-
dence of the tunneling rate aN can be arbitrary

In the final part of our analysis we will include the par-
ticle interaction following the unscreened Coulomb law, so
that the potential energy of the system is

produce a finite current noise. F&>1 the Fano factor
crosses unity aWw=W_.=2T/N<T. Let us emphasize that
sinceW,.<T, the noise at this crossover is still due to ther-
modynamically equilibrium fluctuations. Finally, if the ap-
plied field is high v>T), the Fano factor is low:

1
U{ry,ro, ... rut=¢€? e F=1/N. (14)
i<j Ihi— . . .
L Thus, as a matter of principle the shot noise suppression at
_e2 ™ hopping may be really very strorigroportional to the array
“ai’& . In- n|’ (10 length, just as in tunnel junction arrgy®ow let us examine
sina— how this suppression is affected by various factors.
wheren; is the site occupied by thigh electron. The inter- C. Low temperature, no interaction

action is included into the model by adding the correspond-
ing change olJ at a hop to that £ W) describing the exter-
nal field. Since in this case the tunneling rates are no long
constant, we will need to specify an explicit relatibf (W).

In this case we will assume

At T<W (i.e.,~T'*">T") and in the absence of Cou-
épmb interactions ¢°/a<W), but for arbitrary electron den-
sity p=M/N our model is reduced to the so-called asymmet-
ric simple exclusion procedASEP model which has been
extensively studied during the past few years—for a review
I'=r*-r =wleR,, (11  see Ref. 26. Within this model, a!/M!(N—M)! possible
charge configurations of the system have equal probability
where RO gives the scale of the effective resistance of afor the arbitrary'\] and M_ZG From this fact, the average cur-

tunnel barrier between adjacent sites. rent is readily calculated to equal
B. Single-particle limit _ M N—M

Let us assumé =13 Then the current(t) consists of
uncorrelated pulses, each transferring the chargN, with  go that for a large systenN(M — )
ratesI’t andI’ ~, respectively. This is equivalent to the con-
ventional case of one tunnel junction with the electron (y=el'p(1-p). (16)

charge substituted bg/N, hence ) )
Notice that these expressiofas well as those belogware

(1Y=e('* =T 7)/IN, (12) obviously symmetric over the transformatigm—1—p,

o . which interchanges electrons and holes. From #&6), the
and the spectral density is frequency independeBi(®)  maximum value(l)may=el'/4 of dc current is achieved at
=5,(0), with p=1/2, which is a tradeoff between increasing concentration

22 1 W F‘ a;:d decreasi_ng_ a;ebrage velo]S:It!ﬁ—p)l of eachblelegtron_
_ FT— in hops per unit timgbecause of other electrons blocking its
S(0)= N (P +T7)=2¢(1) S coth (13) hops_p P 9
Equation(16) is exactly the result that could be antici-
Figure 2 shows the corresponding Fano facter pated in the complete absence of correlation between the
=N"lcoth@W/2T), as a function ofW. In thermodynamic hops. However, in fact these correlatiods exist, as re-
equilibrium, W=0, the noise satisfies the Nyquist formula, vealed, for example, by the spectral density of the current.
S =4T/Ry , which remains valid whil&/<T. At W—0 the  Figure 3 shows the result of numerical calculationSpfw)
Fano factor tends to infinity because the average current vamsing the Monte Carlo approach for two concentratigns,
ishes while the equilibrium thermodynamic fluctuations still =0.3 andp=0.5, and several values of the array lenfjth
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Pl RS SR AR of the current spectral density in the intermediate frequency
p=M/N=0.3 (a) range approaches the power |8 w)*w 3.
N=10 This dependence may be interpreted as a consequence of
the self-similarity of the fluctuation¥, which occur at any

0.10 20 site number scalk, within the interval 2<L<N. In order to
_N explain thew Y2 scaling, let us assume that E46) is ap-
40 plicable to long-wave density perturbations in our system

and introduce two velocitieémeasured in sites per second
20 - of their propagation.
The first of them, the sount'shock” 2% velocity

S((@)/2el
ol
T T 1T T 07 I

1

1 w13 .

vs=(1-2p)T, (19

0.01 T T T TTIT] T T T T T LI A N

0.001 0.01 P 01 1 can be found from the obvious continuity equation
ot d(ep)lot=—dllox, wherel and p are understood in the
T T S VI T ST S 71 E S A IR T B sense of “local” averages overd4oN<N sites and is the
N=10 p=05 (b) site number considered as a continuous coordinate. Since
these averages are related by Ep), for small deviations
from equilibrium we gevp/dt = —(1—2p)T'dplx, i.e., an
equation describing linear waves propagating with the speed
given by Eq.(19). Notice that the sound velocity vanishes at

w
N half-filling, p=1/2, and is negative beyond this point.
L In the circular array all density fluctuations move with the
J L same sound velocity, so the fluctuation profile does not
80 evolve in time and thus overall rotation does not affect the
i i noise of current (v will, however, be important later for

0.10

I N |
LI B i |

Sy(@)/2el

" the analysis of the linear arrayTo study the relaxation of
7 0y i density fluctuations we need to consider the deviations, of

ov=—T"6p. (20)

0.01 TTTT T IIIIIIII T IIIIIII' T III|III| T
0_(;01 0.01 0.1 1 [Including the factor 2 following from Eq.19) would be an

o/2nT overestimate of our accuracy, since such nonlinear velocity
can be defined in various ways leading to different numerical
coefficients]

To calculate fluctuation$(t) at a frequencyw<<I", we
can integrate Eq(16) over the whole circle taking into ac-

The frequency dependence of the spectral density is obviount local density fluctuation8p. Since we have assumed
ously not flat as it would be in an uncorrelated case. WithUniformA; in Eq. (5) and the total number of electrons does
increasingN the spectral density decreases and forms thre80t fluctuate p(x)dx=M, the contribution from the linear
distinct regions as a function of frequency: low- and high-term él=el'(1—2p)ép vanishes. However, the current
frequency saturation regions and almost power-law decay iffuctuations do appear in the next, quadratic term of(E6):

FIG. 3. Frequency dependence of the spectral deSgfty) for
uniform circular arrays af =0 for several values of array lengthis
and electron concentratign=M/N: (a) p=0.3, (b) p=0.5.

between. 81 =—el'(8p)?, which describes the “rectification” of den-
At high frequencies, in accordance with E@) sity fluctuations.[Somewhat paradoxically, this quadratic
term does not affect the average current. This is because Eq.
sli(oo)=29<|>, Si()=2e(l)/N, (17 (16) is, strictly speaking, not valid for temporal dependence

of current at finite size scale. Nevertheless, it can be applied
the suppression of the external current fluctuations is maxito the analysis of fluctL_Jations leading to the results which are
mal. Notice that the frequencyy, of the crossover to this correct up to a numerical factgr. _
limit apparently does not depend add, while the low- The density fluctuations at the size scalg 1<L<N)
frequency crossover occurs at frequeney, which de- can be described by the binomial distribution, giving the
creases wittN crudely asw;«N~32 (In tunnel junction ar-  variance((dp)?)=p(1—p)/L. Hence, the typical relaxation
rays, o, scales adN~°—see Appendix The zero-frequency bandwidth of these fluctuationgn the frame rotating with
limit has been studied analyticalfy giving the following Vvelocity vy) is w_=|dv|/L=T[p(1—p)]*L 3?2 and the

Fano factor: corresponding spectral density$§(wL):(5p)2/wL:[p(l
—p)L]¥IT. According to the standard theory of noise rec-
a2 p(1-p)]¥? tification (see, e.g., Ref. 37 S;(w.) can be estimated as
T[T , for NNM—oe (18 (N/L)e’I'Y[S,(w,)]?w. , where the first factor accounts for

N/L virtually independent fluctuating regions. Combining
(an analytical formula is also availaBfdor arbitraryN and  these estimates and eliminatihgias a function ofw ), we
M). Figure 3 shows that at largethe frequency dependence finally obtain
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FIG. 4. Current spectral density for the array in a circle normal-

ized by Sy(w)=2el(w/27) "N~ p(1-p)]1?°[see Eq(21)].

Si(w)

2e(ly
where the numerical factd€ can be found by comparison
with the Monte Carlo resultéFigs. 3 and 4 giving a value
between 1.1 and 1.2.

Notice that Eq{(21) is accurate only if bottN andM are
sufficiently large. Figure 4 showS,(w) normalized by the
value 2(1)(w/27T) "Y3N"I p(1— p)]?? for the array with
N=280 and differentM. Even at this value oN the plateau
corresponding to Eq21) is not yet very wide. With decreas-

12T -1/3
e RS

(21)
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FIG. 5. Current spectral density for the ring array wiil- 80
andM =40 for several temperatures.
(1F)=el“p(1-p), (22)

and the net currer )= (1 ") — (1) is still given by Eq.(16)
with T'=T"—T". Plugging it into Eq.(7), we get

1
Si()/2e(l)= Ncotr(W/ZT). (23
This result formally coincides with Eq13), but now it is
only valid for sufficiently high frequencies.
Figure 5 shows the result of the Monte Carlo simulations

ing M the plateau shrinks and there is a noticeable deviatiofor the frequency dependence of the current spectral density.
from Eq. (21). Nevertheless, the numerical results presenteths the temperatur@ is raised beyond the energy difference

in Fig. 4 generally confirm the analytical result.

W, thermal fluctuations gradually overwhelm the correlation

Comparing Eq(21) with Eq. (17) it is simple to estimate effects, so that the high-frequency plateau described by Eq.
the frequency of the crossover to the high-frequency limit:(23) raises and gradually “floods” regions of lower and

wn/2m~T[p(1—p)]% which coincides with the frequency
scale of “collisions” of an electron(or a hole with its
neighbors. Notice that for long arraysN¥1) the high-
frequency crossover shape does not dependll gsimilarly
to the linear array case—see Fig..10

At low frequency Eq(21) becomes invalid when the size
scaleL corresponding to the frequeney; becomes compa-
rable with the total array lengtN. This allows us to estimate
the position of the low-frequency crossoveto,/27

=CI'[p(1-p)]¥>N~2%2 whereC is a numerical factor. So,
we have explained the dependenge:N 32 seen in Fig. 3.

lower frequencies[The fact that the low-frequency part of
the curve is less affected by thermal fluctuations can be in-
terpreted as follows. Our arguments for E¢&1) and (18)
were based only on equal distribution of states and([E6).

for the average current, which both remain unchanged for
arbitrary temperature. So, as long as the temperature is small
enough so that Eq16) is still applicable for the analysis of
fluctuations at the frequency of interest, the result is virtually
unchanged.S,(w) may be approximately found as the larg-
est of values given by Eq23) and the zero temperature
result. As soon a$=T.=W[Np(1—p)]*? the fluctuations

One can also check that at this frequency the result given bgre essentially thermal at all frequencies, and the Fano factor

Eq. (21) transforms into Eq(18).

It is interesting to find out at which electron concentration

the single-particle resulE=1/N becomes invalid. FoN
>1 and small number of electrofis F
=(M1)222M~1/(2M)IN, so that considerable deviation
from the single-particle result starts already frivin=2 and

scales asv 2. This reflects the fact that in 1D arrays, sig-

is given by the Nyquist expression

2T

Notice that as in the single-particle approximationNat 1
there is a broad temperature regiokl i><T<WN) where

nificant correlation of hops starts at very small concentrail€ array is in thermal equilibrium, while the Fano factor is
tions because randomly drifting electrons cannot pass eacHill much less than 1.

other.

D. Temperature effect

In the case of finite temperature whEn ~I"*, the popu-

E. Coulomb interaction effects

Coulomb interaction reduces the concentration fluctua-

tions, so one could also expect a decrease of the current

lation of all charge configurations remain equal, so the averfluctuations. This is illustrated in Fig. 6, which shows typical

age currents satisfy the equation

Monte Carlo results for zero temperature. One can see that as
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FIG. 6. Current spectral density in a ring array at zero tempera- FIG. 8. The dependence of the Fano factor for the ring array on
ture for several values of Coulomb interaction strengthe?/aWw. the strengthr of Coulomb interaction.

5 rotated by the external field. The Fano factor behavior in
soon ag®/a becomes comparable or larger thahithe low-  this case may be rather complex, because it depends on
frequency fluctuations are gradually suppressed and caphether the integer® and N are “commensurate’(more
closely approach the limit14). Figure 7 shows a typical strictly, whether their greatest common divisor is larger than
dependence of the Fano factor on the array lengtfor  1)—see Fig. 8. If it is, beyond some critical valug of the
moderate values of the relative Coulomb interaction strengtiatio e?/aW (about 2.6 foiN=20 andM = 10, see Fig. Bthe
r=e?/aW. At relatively smallN the scalingF(N) is in be-  Wigner crystal is stalledat T=0), the system essentially
tweenN~* andN~ "2 while eventually at largé\ it reaches  turning into a Mott dielectric. At a little less tharr; the

the dependencEoN""? similar to the case without Cou- Fano factor starts to increase rapidly fréfa 1N to some
lomb interaction. The presence of this transition is specifiG/alue F.; abover, the ratio F=S,(0)/2e(l) is undeter-

for 1D case, since in 1D systems the Coulomb interactionmined, since aff=0 there are neither fluctuations nor cur-
cannot provide long-range electroneutralitijecause the rent. In the opposite case of “incommensuratsl’ and N
electric field pLe)/L? produced by a charged fragment of (the greatest common divisor ol and N is 1) the Mott
lengthL, decreases with ]. Hence, at large scale the density transition may be absent @t=0 even for arbitrary large,
fluctuations are Coulomb decoupled, which makes the gemand both the current and Fano factor may tend to the single
eral idea of the Fano factor derivation in Sec. Ill C valid, particle resultg12) and (13), respectively. It is curious that
leading to the scaling<N~"2 (In contrast, in 3D case the on the way to this limit the functioff (r) may make a bump

Coulomb interaction does provide effective long-range elecas if it tried to mimic the behavior of its commensurate
troneutrality, sd= inversely proportional to the system size is counterpart—see Fig. 8.

expected.

Stronger Coulomb interactionr £[min(p,1—p)] %/2) IV. LINEAR ARRAY
tries to fix the distance between the neighboring electrons
and to turn them into a 1D Wigner crystal, which may be A. The model

The main change associated with the linear array with
external electrodefFig. 1(a)] is that the numbeM of par-
ticles in the array is not more fixed. Instead, what is fixed are
the chemical potentials of the metallic electrodgsg rela-
tive to the localized state energy. A model of the linear array
should use this condition to specify rates of electron hopping
between the electrodes and the edge localized sites. A rea-
sonable way to reduce the number of additional parameters is
to introduce two extra “edge” sitefi =0,N, not shown in
Fig. 1(@)], which are very close to the electrodes. Then the
“edge” tunneling ratesIfR are much higher than the
“bulk” rates I';", so that the edge sites are in thermal equi-
librium with the electrodes, and the probability of their oc-

. ——T T . — cupation may be considered fractional but fixdd:z=[1
10 N 100 500 +exp(—,uL,R/T)]*1. In this approximation, for a uniform ar-
ray the rates of tunneling between the edge sites and their

FIG. 7. Fano factor for ring arrays with a fixed electron concen-neighbors (=1 andi=N—1) are related to the bulk rates
tration (M/N=0.5) as function of the array lengtk, for several I'* as follows:

values of Coulomb interaction strength. Lines are just guides for the N N N N
eye. Fy=fI", I'y=>Q1-fxT'", (25

0.1

fo1 1)

R RR

L

0.01

ool

T T I
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05— 1 v v 0 L 0 b Ly array[Fig. 1(b)] has a simple explanation: the total number
4 £ =£,=0.3 # 0.5 i of electrons in the case of “open boundary conditions” may
04 — B significantly fluctuate, while on the ring this number is fixed.
Analytically, this effect may be especially simply considered
| N=5 i for the casef<1 (or similarly 1—-f<1). Then the array is
3 0.3 A B empty most of the time, and is entered very rarely by an
'\‘8\ 1 - electron(or hole. After the entry, the electron is transferred
F 0.2 - - in a succession of hops through the array, in total transferring
4 10 L chargee from one electrode to another. This is exactly the
01 - 20 N situation for which the original Schottky formula was de-
| m | rived, so that we gdt =1 in agreement with the correspond-
ing limit of Eq. (29).
0.0 47— T In the casef <N~ %2 (when electrons do not collide with
0.00 0.02 0.04 0.06 0.08 0.10

/27 each otherthe frequency dependence §f can be obtained
from Eq.(14) of Ref. 38, which was derived from the ortho-
FIG. 9. Frequency dependence of the spectral defgfy) for  dox theory of single-electron tunneling for the similar se-
uniform linear arrays with symmetric boundary conditiohs=fr  quential transport scenario. Assuming that tunneling rates are

—0.3, atT=0. equal,I';" =T, besides the negligibly small rat&] , we get
Iy=1—-f)r", Iy=fal'". (26) S(w) 1 2 I? Re1—1w/T)N"?
We will be interested in the case of identical localized sites 2el N N2 2| m 9

and similar electrodes, so that = ug andf =fr=".
External electrodes also modify the Coulomb interactionye have confirmed this result using Monte Carlo simula-

of electrons. Besides that, the image charge effect makes thgns. EorN>1 this formula is reduced to

self-energy of the sites dependent on their location, leading

to nonuniform transport c_ondmons. Since in the_present pa- S(w) [sin(Nw/2l)]?
per we concentrate on uniform arrays, we will limit ourselves = , (31
to the case of negligible Coulomb interaction. 2el Naw/2l

that is obviously the normalized and squared Fourier image
of the rectangular envelope of the train Mfcurrent pulses
For the case o =0, our model is reduced to the ASEP during the single-electron passage.
model with open boundari€§.Transport properties for the For f~1, Eq.(28) may be interpreted as follows. Let us
latter model have been studied in detail, especially fior again apply Eq(16) to long-range fluctuations. Then since
=fg="f. In this case, the probability of any charge configu-dl/dp=el'(1—2p), one findsS;(0)=e?I'*(1—2p)?S,(0),
ration is the sanf8 as if each site had independent occupa-whereS,(0) is the low-frequency intensity of fluctuations of
tion with probabilityf. As a consequence, the dc current isthe total array occupationp&M/N). Notice that forp=f
given by Eq.(16) with p=f. The Fano factor can also be =1/2 the result vanishes, and we should go after the higher-
calculated analytically’ order effect as we did for the ring array. For all other values
of f, we may use the estima@p(0)~<(5p)2>/Aw, where
(2k)! ‘ {(8p)?y="f(1—f)/N and the effective bandwidth w can be
FZl_Zf(l_f)kao m[f(l_f)] @D estimated adv¢|/N [unlike in the ring array, the density
fluctuation is carried out of the linear array with velocity
and forN—c one finds a simple resaft given by Eq.(19)]. Combining these formulas, we obtain
Aw~[1-2f[T/N, S,(0)~f(1-f)/T[1-2f], and F
F=|1-2f], (28 —constx |1—2f|. The numerical factor in this result for the
showing that the shot noise is much higher than in the circuF@no factor cannot be derived in this crude way, but it obvi-
lar arrays, cf., Eq(18). Only in the evidently special point ©UuSly equals unity because &1 we should get the previ-
f=1/2, the Fano factor scales as in the closed boundar§us resultF=1. Thus we completely recover the exact re-

B. Global electron number fluctuation effects

N—-2

Case2_7 sult (28)
One more possible derivation of that equation can be ob-
F=(aN)"%2 N>1. (29)  tained along the following line. If <1/2, then the electrons

can be supplied from the left electrode with the maximum
Figure 9(for f=0.3 and several values &f) shows that rate fI', while the average ‘“sink” velocity (+f)I" is
S(w) smoothly decreases with frequency from the valuelarger. Hence, only electrons relatively close to the left
given by Eq.(28) and eventually reaches the levgi(«) boundary can affect the entrance of the next electrons, and so

=2el/N, in accordance with the general E@). As we will  the low-frequency correlation is essentially the boundary ef-
see later, at larg®l the frequency dependence is quite richfect. Using this idea and taking into account, for example,
and exhibits three crossovers. correlations only due to the three first jumps, it is easy to

The fact that the low-frequency shot noise in the linearobtain F=1—2f+ O(f%). Taking into account more jumps
array [Fig. 1(a)] at f#1/2 is much higher than in the ring we would eventually show that E28) is exact.
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@ 160 1 ~=10
7 r =0.3
0
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. - 0.001 0.01 o/2nT" 0.1 1
UL B L DL B FIG. 11. Frequency dependence of the current spectral density
0.0001 0.001 0.010)/27:1“ 0.1 1 in the linear array witiN=10 andf =fz=0.3 at several tempera-
tures.
20 1 1 ]III|II 1 1 IIIIII| 1 1 IIIIIII 1 1 L1111
1 r ~IN~391—2f|99f(1—f)] %5 and finally the high-
] C frequency saturation occurs @tz w,~I'[f(1—f)]?, similar
1.5 - to the ring array case.
i L The casef =1/2 plays a special role in the ASEP theory,
6 ] C as can be easily noticed comparing E(8) and (29). Ac-
v 10 7 N tually, this case is quite important since for sufficiently long
= 1 - arrays withf, >1/2 andf g<1/2 the electron concentration in
a ] i the bulk of the array is clodeto f=1/2 (so{l)=el'/4) and,
0.5 7] N hence, the scalingF=N~2 holds as in Eq.(29). [As an
] - example, for f =1, fr=0 the result ¥ F
s f3(27-r)1’2/16N1/2.] At f=1/2 the low-frequency fluctua-
0.0001 0.001 0.01 o1 1 tions can no longer be considered as a boundary effect, since

the “sink” velocity (1—f)I'" is equal in this case to the
maximum supply ratefI’; hence, the transport becomes

FIG. 10. (@) Current spectral density for linear array wifp jammed and the correlations involve the whole array length.
=fgr=0.5 at T=0. Notice the dependencs (w)~w " in the In the respect that the boundary effects are no longer im-
intermediate frequency range between the saturations at low freaortant, the linear array dt=1/2 is very similar to the circle
quency £~N~"9) and high frequency%(=<)/2el=1/N). (b) The  array. Figure 10 shows the frequency dependence of the cur-
same data normalized t(w) =2el(w/27) " *NTf(1-f)]*°.  rent spectral density fof=1/2 and several values &. The

data look similar to that in Fig. 3. The main featurewis *®

A concentration fluctuation supplied from the boundarydependence in the intermediate frequency range. To check

moves with velocityvs, so forN>1 the corresponding en- the validity of Eq.(21) in this range, Fig. 1®) shows the

®/2nT

velope inl(t) has rectangular shape with duratidii|v,]. same data as Fig. (& but normalized by Sy(w)

Combining the corresponding frequency dependence of 2el(w/27) YN~ f(1—f)]?3 We see that abl grows,

S (w) with the exact result foF, we get the intermediate region becomes more and more pronounced.
S(w) sin(Nw/2I'|1—2f|) 2 C. Temperature effects

=|1-2f| Nw/Zl[1—2f] | (32 Figure 11 shows the numerically calculated effect of non-
vanishing temperature on the shot noise in a linear array. It
shows that the effect is quite similar to that in a ring array
At sufficiently high frequencyw>|vg/N, the “nonlin-  (Fig. 5, however, because of the higher initial intensity of
ear” contribution from the concentration fluctuations obvi- low-frequency fluctuationgat T=0) the noise becomes
ously should be the same in the linear and ring ar(ayjth completely thermal at a higher temperatufe; W|1— 2f|.
equal average concentratips- f). Hence S, (w) will still be
given by Eq.(21) while in the crossover region it can be
crudely estimated as a sufor maximum valugof two con-
tributions given by Eg@gs.(32) and (21). As a result, Probably the most important result of our analysis is that
there are three characteristic frequenciesSjtw) depen- in contrast to the expectation based on the analysis of 1D
dence atN>1: the low-frequency saturation occurs at arrays of conventional tunnel junctions, the shot noise in
o=wo~T|1-2f|/N, the intermediate-frequency depen- uniform 1D hopping arrays is typically much higher than
dence described by Eg.(21) starts at w=w, 1/N of the Schottky valueS =2e(l). However, in some

2el

V. DISCUSSION
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cases this lower bound can be achieved. In order to sort owfase the transport is unidirection&l, =0, and the average
these cases, it is useful to consider the current fluctuations &sirrent is obviously given by the expression
the result of three major sources:

- time randomness of electron tunneling events, -1

; (33

2 (rH

11

1+

-2
: (35

Z<F*>2 E(F)l

- electron density fluctuations, and (I=e
- thermal fluctuations.
Crudely speaking, the lower boun@@ )/N for the noise  while the formula for the current spectral density has been
is determined by the first contribution, while the second conderived in Ref. 38 for the case =1/N, and can be readily
tribution typically increases the noise significantly even atgeneralized to include arbitray; :
T=0.
At relatively high frequencies the current spectral density N -1
in a ring array and 1D array between electrodes behaves S/(w)=2¢€(l) E N2+ 4e(l )Re| 1+—) —11
pretty similarly. In particular, the high-frequency asymptote ry
is given by the same E@7) and is determined by capacitive N N-1 N
factors\;. (This result .is aIsp valid for the con'ventional case Z E 2 \ )\m+IH
of 1D array of tunnel junctions—see AppendiX \;=1/N, = =1 m=1
then in all cases at low temperatuiie we have S;(«)
= 2e(I)/N. lw )H a0
However, at low frequency the noise behavior in a ring I+ '
array and a linear array is quite different. The reason for the kerm
difference is that in a linear array the total number of elec\yhere by definitionl'y. =T, . At zero frequency this for-
trons can fluctuate while in the ring array it is fixed. In the mula is reduced to
case when the single-particle approximation is applicable for
a linear array, the relative density fluctuations are maximal, S|(0)
and the Fano factor is not suppressed:1 at T=0. The
electron “collisions” (the Pauli exclusionreduce these fluc-
Luall]:ti?_lr?.s, bl:ct qgiée inﬁffic‘i‘?nt]lfy. iny”ir;]the slpl)epial casle Ofand allows us to study the statistics of the Fano factor for
T B e e s fandom istibuton f | 1 ong arayN=1
other cases the dependengéN) quickly saturates a't the As the major factor, let us take into account the depen-
. dence of tunneling rate on the distanag between sites,
level F=|1—2f|. One can speculate that Coulomb mterac-r+ r o4 h the localization length, and
tion should be a more efficient factor in suppressiorFof 0 €Xp(-2a/¢), where{ is the localization length, an
since it may significantly reduce the electron density fluctua3SSUMe that mdependent randamobey the Poisson distri-
tions, however, this conclusion has still to be verified nu-Pution. p(a)=ao “exp(—a/ay) whereap>¢ is the average
merically. spacmg Then/the distribution of rates can be parameterized
In contrast to the linear array, in the uniform ring array @I =LoX] 20'¢ where the random number has uniform
the uncorrelated motiofof a single electronprovides the dlstrlbutlon between 0 and 1. The minimal ratéottle-
maximal suppression of the Fano factbr=1/N. The Pauli  neck”) T, will be aboutT'o(2a,/£eN)?%/¢ on average
exclusion in fact increases leading toF <N~ 2. However, (here e=2.71), while the next minimal ratd’ ;.1 will be
the extra correlations due to Coulomb interaction betweemuch largerl nins1/Tmin~ (28o/£eN) ~2%0/é>1 It is easy
electrons on different sites make transport “smoother” andto see that in this case both the average cufiegt(33)] and
reduce the Fano factor, in some cases down to the lowghe Fano factofEq. (35)] are determined by the bottleneck:
boundF=1/N. (Iy=elnin andF=1.
It is instructive to compare these results with those for a It is also instructive to consider a model where the maxi-
1D array of tunnel junctiongsee Appendix In the latter mal distancea; is limited by some big value,.x (8max
model the Fano factor is determined purely by the junctior>ag). For example, this describes the situation in which
resistances. In some sense, this is a consequence of strosgme other transport mechanism starts to dominate over tun-
Coulomb interaction that forbids noticeable charge fluctuaneling when the sites are too far apart, thus limitlhgrom
tions and establishes fast long-range correlations betwedselow. If N<exp@ma/ag), the results for the average current
currents through different tunnel junctions. In the uniformand the Fano factor do not differ from the case considered
array at low temperature the noise suppression is maximagbove. However, for very long array>exp@ma/ag), the
F=1/N. However, if the junctions are very small, single- transport is limited by many similar bottlenecks, so tfiat
electron effects can lead to significant charge fluctuations=el exp(—2am/E+amax/@)/N and the Fano factor de-
and thus increase the Fano factor. For examplesl is  creases with the array length=exp@myax/ao)/N.
realized in the vicinity of the Coulomb blockade threshold ~ We can use this result for a preliminary estimate of the
when the transport has a bottleneck even in the uniform arFano factor for hopping in disordered 2D and 3D systems
ray. when the transport is mainly determined by percolation
So far we have reviewed our results for the uniform caseclusters?! If the single-particle approach is applicable, then
Now let us briefly discuss hopping transport noise in nonuni-as in the case above we can simply count the number of
form 1D arrays. It is simple to study one particle inside thesimilar bottlenecks in the transport direction. With this argu-
ring array with arbitrary disorder at low temperatures. In thisment, we obtain a simple estimate
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&1 &, tions. Separating the current througth junction into two
I—C O—F06 parts flowing in opposite directions,
CiR| OG> R _ _
o ﬁ] : 2m2 - OH=AD=7), AN ) =exp(—e(V)IT),
YAV 1 J_ .. (A1)
T Cea T Ce and using the Schottky formula for each part, we get the
= following white [ S(w) = S(0)] spectral density for the noise
- sourceg;(t):
FIG. 12. 1D array ofN tunnel junctions with capacitanc& N B
and resistanceR; , while C; are the capacitances to the ground. Sii(w)=2€(1;") +2e(l; ) = 2e(l )coth(e(V;)/2T).

The Langevin noise sources are presented by random current gen- (A2)

eratorsé;(t) parallel to the junctions. . L
G p : Let us denote byp;(t) the fluctuating part of théth is-

land potential[ ¢o(t) = dn(t)=0 because we assume con-
stant potentials of the leafishen the current;(t) through
wherelL is the sample length arld. is the characteristic size ith junction can be written as
of the percolation cluster. The applicability range of the ap-
proach is rather unclear, so this result still has to be con- L) =) +[¢i-1()— Ai(DIR + &(1). (A3)
firmed using either more quantitative analysis or numericalrhe evolution of¢(t) is described by the equation
Monte Carlo modeling(Preliminary numerical analysis of
2D hopping on uniform slanted square lattice gives the . N
dependencd FoL~” wherer=0.85 is rather close but dif- $i= 2, 1(O[D;;—D; 1], (Ad)
ferent from unity) =1

In conclusion, in the present paper we have studied theghereD=C"? is the inverse capacitance matfixbviously

shot noise at hopping in 1D arrays of sites, concentrating om, ;=D; ; and Do;=Dy;=0) and can be rewritten in the
the uniform case and briefly considering the effect of disor<ollowing form:
der. It is important to extend this study to 2D and 3D hop-

F~L./L, (36)

ping. The presented results hint that the Coulomb interaction Nt N
may play the crucial role in the suppression of low-frequency b= kZl A kbt kzl Bi kék, (A5)
shot noise. - -
A =B, IR+ 1—Bi /Ry, A6
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APPENDIX: 1D ARRAY OF TUNNEL JUNCTIONS

P(w)=

1

. . . |w1—A) Bé(w). (A8)

In this Appendix we calculate the spectral density of the

shot noise in a 1D array of tunnel junctions. We will first use Using Eq.(A3) we find the Fourier transform df(t):

the standard circuit theory and then extend the calculations to

the case of weak single-electron effe@ighich are assumed N

to be small because of high temperature or high cuyrent li(w)= ,21 Xij(w)é(w), (A9)
Figure 12 shows the array &f tunnel junctions in series. =

Each junction is characterized by resistafteand capaci- g Nt 1 1

tance(.?i (i=1,... .,N), while Cy  (k=1, ... ,N'— 1)'der'lote X j(0)=8;+ = 2 ( — ) —( — ) By,

capacitances of “islands” to the ground. This circuit does Ric1[Vlo—AJ Vlo—A)

not describe the long-range capacitances which can be espe- (Al10)

cially impprtant for i:'slands and jynctions of small sf‘?&hr_ﬂ where by definition (w—A)gklz (Iw—A)ﬁ:O-

can require numerical calculation of the total capacitance . : LN :

matrix**~*? The derivation below is valid for arbitrary ca- . Notice that aiw—¢» the only surviving term in EqA10)

pacitance matrix, however, for simplicity we will refer to '° the Kronecker symbod;; so that

Flg. 12. . . ()= &(). (ALD)
In the absence of single-electron correlations the

curve of the array is lineafl)=V/Ry , Rs=3;R;, and the At w=0 it is possible to proveusing somewhat cumber-

average voltage across each junction is proportional to theome algebrathe relation

junction resistance(V;)=(I)R;. To study the fluctuations

we follow the standard cjrcuit Fheo’ﬁ/and introducg the |i(0):2 (R{/Rs)£(0), (A12)

sources of the current noisg(t) in parallel with the junc- j




PRB 61 SHOT NOISE SUPPRESSION AT ONE-DIMENSIONAL HOPPING 15985

which obviously means that at low frequencies the current is N-1 S1m

distributed according to resistances and equal in all junc- Z NiXjj=61j—C1Byj— > R_+C1A1,m}

tions.[Equation(A12) shows that the fractioR; /Ry of the ! m.k 1

current; flows through the array while the rest is returned 1

via the “shunt” R; .] X(ﬂ) By, - (A19)
The spectral density of the currentthroughith junction @ m.k

can be readily calculated as e )
In the limit =0 the spectral densit$,(0) of the exter-

nal current coincides with the spectral density of the current
through any junctiorisee Sec. )land, hence, is given by Eq.
(A14). While at low-frequencyg, is determined only by the
circuit resistances, in the opposite limib— oo, it is deter-
mined mainly by the circuit capacitances,

s”<w>=$ Xi(@)]2Sy, (A13)

because the noise sourggsare mutually uncorrelatelgince
S;j(w) does not depend on frequency, we omail. Using
Egs.(A2), (All), and(A12) we get the simple expressions in
the limiting cases: S,(oo)=2i )‘izsfi:26<|>2i N coth(e(I)Ri/2T)
(A20)

(resistances are important only when the Nyquist noise con-
tribution is considerableT=IR;). It is simple to check that

in the thermal equilibrium] =0, the low-frequency noise
[see Eq.(Al14)] always satisfies the Nyquist formul§,(0)
=4T/Ry , however, at finite frequency the noise is different

_ 2 : L
In experiment it is usually impossible to measure the curf0r €xample () =4TZ;A{/R; . Notice that in this formal-

rent through one junction, and the only measurable quantitfp™ @=2* Still meansf o<max(T.eV)). However, it would
is the current in the external lead, which contains the contriP€ Simple to take into account zero-point fluctuations by re-

bution from the displacement current and, hence, depends diacing  Ed.  (A2)  with®  S;(w)=R/ 'S.(eV,

Si(0)=2¢(1) >, (R?/RE)coth(e(1)R;/2T), (A14)
J

Sji(0) = 2¢(lycoth(e(1YR;/2T). (A15)

the currents through all junctions. The curré(t) at the left
external lead can be expressed as the linear combination,

()= Nli(t), (A16)

)\i:51i+; CO,ij,iv EI )\i:]., (Al?)

where Cy is the elementalways negativeof the capaci-
tance matrix between the left electrode &t island. In the
case of Fig. 12Cq,= — C, 81 because the left electrode is
capacitively coupled only with the first island, 36= d;;
—CyBy;. If all Cq;=0 in Fig. 12, then\;=C; Y/Z;C; *,
while for a long uniform array,C;=C=const, Cy;=C
=const, N2>C/Cg, the coefficients are, =" 1(1— ),
where X=1+Cy/2C—[(C4/2C)?+C4/C]*2 If the tunnel-
ing system is different from what is shown in Fig. 12 and
consists of small islands which are separated by much larg
distances and imbedded into the plane capadigaternal
electrodey then similar to the hopping casg=a;/X;a;,
whereg; is the length of the projection ath tunneling jump
onto the direction perpendicular to the capacitor planes.
Using Egs.(A16) and (A9) we obtain the following ex-
pression for the spectral density of the left external current

2

s,(w)=; ‘EI NiXi (@) Sy (A18)

[notice that at finite frequencyg (w) for the left and right
electrodes can be differdntn the particular case shown in
Fig. 12,

*hw)coth (eV,=hw)/2T].

In a uniform array at zero temperature the noise at low
frequency is suppressédtimes[see Eq(A14)]in compari-
son with the Schottky formula,S;(0)=S;(0)=2el/N.
However, at high frequency the suppression of the external
current noise is usually weakef§(<)=2elZ\2, 1N
sEi)\izsl, while for the current through a particular junc-
tion there is no suppression at &, () =2el.

It is interesting to find out at whicl the low-frequency
result is no longer accurate. We have studied the long uni-
form arrays shown in Fig. 12> (C/Cg4)*? and found nu-
merically that the relative accuracy<1l of the low-
frequency resultS;(w)/2el=(1+¢€)/N, corresponds to the
frequencyw/2m=1.1(RCy) ~*€N~2. This formula, how-
ever, cannot be used to describe the crossover to the high-
frequency asymptotes, () = (1+4C/Cgy) 2

If the typical size of the tunnel junctions is small, single-
electron effect® become important. Below we extend the
standard noise theory to this case, assuming that single-
electron effects are weak due to relatively high temperature,

er

T=e?/C, or relatively high current|=e/RC (C and R
>Rq are the typical capacitance and resistance of tunnel

junctions.

According to the “orthodox” theony® the rate of tunnel-
ing throughith junction (in the positive directiop
I=Vve"eR[1—exp —eVe'IT)] (A21)

is governed by the effective voltagee”, which is always
smaller than the actual voltagé ,
VeEff=v,—e/2C,;, (A22)

1/C;i=Dj_1j-1+D;i—=2Di_4;, (A23)
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whereC,; is the total capacitance oth junction. (For tun- o JF: J T T N S S L T S A
neling in the opposite direction the effective voltage is ] 2 -
—V;—el2C,;.) Linearizing Eq.(A21) and averaging over i 3.4
the fluctuatingV;,(t), we obtain the equation 0.6 -
(==, (A24) 3 ] N=10 i
@ 0.4 — Cg/C=0.1 -
. (Vi) —el2C; a ] T=e2/C I
(0= RiT—e ez (V) —erzcymy A% i V=5e/C I
' N b _ 1=0.44 ¢/RC N
which allows us to calculate the average voltapés for the . -
given average currerl ). (Notice that the high-voltage off- il i
set of thel-V curve is equal toVy¢=Z2;e/2C,; exactly) 0.0 4T T
This approximation has been successfully used for the ana 0.0 0.1 0.2 03 0.4 0.5
lytical and numerical analysis of tHeV curves of Coulomb (0/2m)RC

blockade thermometefé.

Since we assumed an essentially linear response of any
junction current, it is natural to use the formalism of the
standard circuit theory, so the result for the current spectr
density will be given by the same Eq&10), (A13), and 2e((1+)+(17)), 2e(1)coth(e()R/2T), and 2(I)coth(e(V;)/2T)

. . . i i ’ i ’ i ’
(A17)—(A19). However, the second equality in ECA2) is respelctivelyl. For the line 4by coincidence, almost indistinguish-

no _Ionger valid, and we hav_e at least three re_'asonablgble from line 3 S is calculated using the quadratic approxima-
choices for the ‘“seed” noise spectral densitys;  ion.

=2e(l)+2e(l;), S;=2e(l)coth(e(V;)/2T), or Sy
= 2¢(l)coth(e(1)R;/2T). The first choice seems to be the finite temperature$we did not implement this last idea nu-
most natural one, however, numerical comparison with thenerically). Figure 13 shows the frequency dependence of the
results of Monte Carlo simulations shows that the first for-spectral density of the current in tlileft) external electrode
mula usually underestimates noi¢gee Fig. 13 the third  for the uniform array ofN=10 junctions withC4/C=0.1
formula overestimates it, and the second formulaich isin ~ symmetrically biased by voltagé=5e/C at temperaturd
between two othejsusually gives the closest result, though =e?/C. The thick line shows the results of Monte Carlo
not always. Notice, however, that all three approximationssimulations while the thin lines represent the calculations
coincide in the limits of both low and high temperature, sousing Egs.(A18)—(A19). For the lowest and highest thin
the difference between them is never too significant withinlines, the first and third formulas fo8; discussed above
the applicability range of the formalism. have been used. The thin line corresponding to the second
As the next level of approximation for the “seed” noise formula is almost indistinguishable from the thin line show-
S; at finite temperature, it is possible to estimate the staning the result using the secornduadrati¢ approximation of
dard deviation of fluctuatiny;(t) and take into account the S, . As one can see, these lines are quite close to the Monte
correction due to the second derivative of E421). It is Carlo result. With an increase of current or temperature all
also possible to take into account the effective increase of théhin lines become closer to each other, and the agreement
junction resistances used in the evolution equatidB) at  with the Monte Carlo result becomes even better.

FIG. 13. Normalized spectral densiB(w) for a uniform array
small tunnel junctions. Thick line shows the result of Monte
arlo simulations while thin lines 1-4 are calculated using Egs.
A18)—(A19). For lines 1-3 the “seed” nois&,; is calculated as
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