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We present an analytical expression for the spectral density of the current Sowing through a
one-dimensional array of identical small-area tunnel junctions. Negligible stray capacitance, zero

temperature, and the voltage close to Coulomb blockade threshold mere assumed. Single-electron
oscillations appear explicitly (i.e., their linewidth becomes less than the average frequency) when

the number of junctions is larger than 15.

Electron transport in systems of small tunnel junctions
may show time correlation between tunneling of the sin-

gle electrons. ' This correlation leads to a number of
effects, in particular, to single-electron-tunneling (SET)
oscillations with frequency f = I/e, where I is the av-

erage current through the single-electron circuit and e is
the electron charge. SET oscillations can be observed in
a single tunnel junction biased by constant current and
also in a voltage-biased array of junctions in series. The
existence of SET oscillations in the arrays was confirmed
by observation of the peculiarities of the I-V curve when
the frequency of oscillations coincides with the &equency
of external radiation. '

The standard explanation of the origin of SET oscil-
lations in arrays is based on the interaction of single-
electron solitons. s s The soliton (antisoliton) corresponds
to polarization of junctions in the vicinity of the addi-
tional electron ("hole" ) on one of the electrodes of the
array. Because of the repulsion of solitons (and antisoli-
tons) the charge transport can be described as the move-
ment of a quasiperiodic train of solitons. This periodicity
leads to SET oscillations.

This explanation assumes the existence of stray capac-
itances Co of the islands, and requires the length of the
array greater than the soliton length, N & 2/C/Co,
where N is the number of junctions and C is the capac-
itance of one junction. In the present work we consider
the opposite limit of negligible Co (when the length of
the array is much smaller than the soliton length). It is
shown that SET oscillations exist in this case as well, and
the linewidth is almost the same (for the same N).

We will use "orthodox" theory of correlated tun-
neling which describes the transport as instantaneous
transitions between diferent charge states due to single-
electron tunneling events. For relatively simple circuits
(in particular, for single junctions or double junctions)
the corresponding master equation is not complicated,
and can be solved almost explicitly. However, for more
complex systems (in particular, arrays of junctions) the
analytical solution of the master equation is usually not
possible, and the most widely used method is Monte
Carlo simulation of electron j»mps.

In this paper we present analytical calculations of the
spectral density of the current through the array of tunnel
junctions in a special case. There are 6ve main assump-
tions: (1) all junctions are identical, (2) there are no stray
capacitances in the array, (3) the temperature is negli-
gible in comparison with e2/C, (4) background charges
of islands are negligible, and (5) the voltage across the
array is not far Rom the Coulomb blockade threshold, so
that when there is one additional electron (hole) inside
the array, the next electron (hole) cannot enter the array
before the initial one leaves it (a similar model for high
temperatures was used in Ref. 8).

The method described in the present paper was used
in Ref. 9 for calculation of SET oscillations in small-area
semiconductor superlattices.

Figure 1 shows the array of N identical tunnel junc-
tions. Each junction has the capacitance C and "seed"
I Vcurve -Io(v) [for metallic junctions Ie(v) = v/B;
however, in the case of semiconductors the nonlinearity
of Io(v) may be important9'M]. The Coulomb blockade
threshold for this system is Vt ——e(N —1)/2C [this num-

ber is N times the threshold voltage for each junction
vt ——e/2C, wthere C,t = C + C/(N —1) is the efFective
capacitance of one junction]. For the voltage range

only one additional electron (or hole) in the array is pos-
sible, and tunneling events occur in strict order [Fig. 2(a)]
discussed below.

Because all junctions are equivalent, we will not fol-

low the position of additional electrons and holes in the
array. Instead, we will count the number n of tunnel
events starting from the initial state (n = 0) when there
is no additional charge in the array (hence, one state
number corresponds to several diferent charge con6gu-
rations). At n = 0 the efFective voltage across each junc-
tion ls vo = (V —V, )/N, and the total tnnneling rate is
I'o ——NIe(vo)/e ~After a tunnelin. g event occurs in some
junction (n = 1) the voltage drop across this junction
decreases by (e/C)(N —1)/N and prevents the tunnel-

ing of the next electron (Coulomb blockade). The efFec-
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FIG. 1. The array of N tunnel junctions.

tive voltage drop across any other junction increases by
vq —vp ——e/CN. After each tunneling event the n»aber
of blocked junctions increases by 1, and, at n = N —1,
only one junction is still "open." After the next jump
the initial state (n = 0) is restored. Figure 2(a) is the
graphical representation of the master equation

d

dt
o(n—+1) = o(n)r„—o(n+1)r„+, ,

where o (n) is the probability of the state n (state n = N
is equivalent to n = 0). The transition rates are given by
the expression

r„= (N —n)e-'I,
~

I'V —V, ne l

The simplest way to calculate the average current I
through the array is to write the average time of one
cycle through all states [Fig. 2(a)] as the s»m of average
times for each step:

all junctions are already out of the Coulomb blockade,
and a second electron (hole) can enter the array. The di-

agram which corresponds to the master equation for this
case is shown in Fig. 2(b). Using this diagram one can
calculate the average current through the array without
an explicit solution of the master equation (the method
is similar to that explained in Sec. VII of Ref. 11):

N —2 N 2(—ra

I = e ) D~+Ep+ ). I"s (E„+x —D„)
n=O

where

D„=I'„, E„=GNp„y + (N —n —1)G~

F„=1+G~y„g/(N —n —1)G„

(V —V, +ne/C)G„=Ip
i N )

e.

Now let us calculate the spectral density Sl(u) of the
current within the first step of the Coulomb staircase
[voltage range (1)] following the method of Refs. 11 and
12. The current in the external circuit

I(t) = —) S(t-t;)

-N —x

I = e ) (I'„)
n=O

(4)

contains equal contributions &om tunneling through all
junctions (t; are the moments of tunneling events). The
autocorrelation function of the current is

Note that it is also possible to write an analytical ex-
pression for the average current in the case when the volt-
age corresponds to the next (second) step of the Coulomb
staircase,

0 1 N-2 N-1

Vq+e/C ( V ( Vq+2e/C

[the Coulomb staircase is well pronounced for nonlinear
Ip(v) —see Ref. 9]. In this case at charge state n = N 1—

(I(r)I(0)) = {I(—r) I(0))
2 ) I' o'(m, r~n+ 1)r„o',q(n)

T1PA

+Acr(r),

where o(m, r~k) is the probability of the charge state
m at t = v & 0 given that at t = 0 the system had
charge number k [it is the solution of Eq. (2) with a
definite initial condition], and o,q(n) = o (n, r ~ oo~k) is
the stationary distribution. The term Ab(r) determines
the high-frequency asymptote of SI(u) which satisfies the
Schottky formula

r, r, 2A = lim Sl(u ) = 2 I. —
w-+oo N (9)

0 1 N-2 N-1
4E AL
gP ~ %P

(b)
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Using the relation r„o,q(n) = I/e it is possible to sim-
plify Eq. (8):

(I(r)I(0)) = ) r o(m, r~n) + —b(r) . (10)

Fourier transformation of the master equation (2)
(rewritten in the matrix form) gives the solution for
o (m, r~n) in the frequency representation: ~

FIG. 2. Configuration space and the diagram of transi-
tions for the voltage ranges given by (a) Eq. (1) (first step of
Coulomb staircase) and (b) Eq. (5) (second step of Coulomb
staircase).

(
rnn ~

'Eld1 —r )
o., (m)

where the elements of the matrix F are given by
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Note that the second term in Eq. (11) depends on the
particular choice of boundary conditions and does not
a6ect the final results. Fourier transformation of Eq.
(10) gives the spectral density

2eI 4eI . t' 1S,(~) = + , ) r' Re
j(x(d 1 —F )

Q

0.8 -'

06-'

0.4

Because the matrix F has the two-diagonal form, it is
possible to write (iv) 1 —7) explicitly, which gives the
final expression for the spectral density of current,

2e 4eI

l
Si(~) = —I+ , Re

N —1 N

x(Ny) )
A=1 Tn=1

N 1(—
i

1
„"o&

fL

i=i &

gd
+ I's+ )

(14)

Calculations using this expression are obviously much
faster than Monte Carlo simulations. Typical results
[for linear Io(v)] are presented in Fig. 3. The low-
&equency limit of spectral density satisfies the equation

N —1

S,(0) = 2.I ) r„-'
N —1

n=0

- 2

(15)

while the high-frequency limit is given by Eq. (9).
The most interesting feature is the peak near the &e-

quency u/2z' = I/e which represents the SET oscilla-
tions. One can see that the quality of oscillations im-
proves with increase of the number of junctions. For the
quantitative characterization of oscillations we have cal-
culated the half width A~ of the peak (at half height)
and the ratio r = SI(0)/SI(27rI/e) Figure 4 s.hows these
quantities as functions of the voltage across the array for
diferent N.

Q..0 I I i I I I [ & 1 I i I t I j I
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(V—V, )/(e/C)

FIG. 4. The relative half linewidth (at half height) of
SET oscillations (solid lines) and the ratio Si(0)/Si(2mI/e)
(dashed lines) as functions of the voltage. The number of
junctions N =13, 15, 20, and 25 (from top to bottom).

Oscillations are weak near the Coulomb blockade
threshold (the solid curves are cut in the region where
it is impossible to determine the linewidth); they im-
prove with the increase of dc voltage bias up to some
optimal value (which depends on N), and then become
worse again, disappearing at high voltages [our analyt-
ical method of calculations can only be applied within
the range (1)]. After the optimization over the voltage,
we plot (Fig. 5) the dependence of minimal relative half
linewidth (squares) and minimal ratio r (triangles) as
functions of the number of junctions. [Note that for
N & 20 the optimal voltage for minimal linewidth is
out of the range (1); in this case we used Monte Carlo
results represented by solid squares. ] Using Fig. 5 one
can say that SET oscillations are practically absent for
N ( 15 (full linewidth is larger than the frequency), and
they continuously improve with increase of the number
of junctions.
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FIG. 3. The normalized spectral density of the current
through the array of N junctions for difFerent ¹ Linear
"seed" I Vcurve of junctions is-assumed. V = V& + e/2C.

FIG. 5. The minimal (optimized over the voltage) rel-
ative half linewidth of oscillations (squares) aud ratio
Si(0)/Sg(2+I/e) (triangles) as functions of the number of
junctions. Solid squares represent results of Monte Carlo sira-
ulations.
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Finally, let us discuss briefly the applicability range
of these results to the case when the ass»mptions used
are not strictly satisfied. Small variations of parameters
of diHerent junctions obviously do not afFect the results
strongly. The method should be valid at small temper-
atures T (( e /CN. Fluctuations of background charge
(which can be on the order of the electron charge) may af-
fect the spectral density strongly; however, one can hope
that Fig. 5 would not change significantly. The presence
of stray capacitances Co of islands should be important
for N & gC/Co. The corresponding curve in Fig. 5
should deviate &om our results and eventually saturate

(when N )) QC/Co). However, it is not clear whether
the presence of Co can improve oscillations (decrease the
linewidth) for particular N O. ur preliminary calculations
for N = 21 and N = 25 using the Monte Carlo simula-
tions do not show any improvement over the Co ——0 case
within 5% accuracy.

The author thanks D. V. Averin and K. K. Likharev for
&uitful discussions and critical reading of the manuscript.
The work was supported in part by AFOSR Grant No.
91-0445 and ONR Grant No. N00014-93-1-0880.

D. V. Averin and K. K. Likharev, in Mesoscopic Phenomena
in Solids, edited by B. L. Altshuler, P. A. Lee, and R. A.
Webb (Elsevier, Amsterdam, 1991),p. 173.
P. Delsing, in Single Charge Tunneling, edited by H.
Grabert and M. H. Devoret (Plenum, New York, 1992),
p. 249.
P. Delsing, K. K. Likharev, L. S. Kuzmin, and T. Claeson,
Phys. Rev. Lett. 8$, 1861 (1989).
P. Delsing, D. B. Haviland, T. Claeson, A. N. Korotkov,
and K. K. Likharev, in Single-Electron 1bnneling and Meso-
scopic Devices, edited by H. Koch and H. Lubbig (Springer-
Verlag, Berlin, 1992), p. 97.
K. K. Likharev, IBM J. Res. Dev. $2, 144 (1988).
K. K. Likharev, N. S. Bakhvalov, G. S. Kazacha, and S. I.
Serdyukova, IEEE Trans. Magn. 25, 1436 (1989).
M. Amman, E. Ben-Jacob, and K. Mullen, Phys. Lett. A

142, 431 (1989).
B. Laikhtman, Phys. Rev. B 41, 138 (1990).
A. N. Korotkov, D. V. Averin, and K. K. Likharev, Phys.
Rev. B 49, 1915 (1994).
A. N. Korotkov and Yu. V. Nazarov, Physica B 173, 217
(1991).
A. N. Korotkov, Phys. Rev. B 49, 10381 (1994).
A. N. Korotkov, D. V. Averin, K. K. Likharev, and S. A.
Vasenko, in Single-Electron Vbnneling and Mesoscopic De-
vices (Ref. 4)& p. 45.
An effective method for Monte Carlo spectral calculations
was discussed in Ref. 11.In particular, this idea was used in
computer package MosEs (created by Ruby Chen at SUNY,
Stony Brook, NY) which calculates single-electron trans-
port in arbitrary single-electron circuits.


