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Combined Bloch and single-electron-tunneling oscillations in one-dimensional arrays
of small tunnel junctions
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It is shown that at sufBciently low temperatures, one-dimensional arrays of ultrasmall tunnel
junctions (for example, semiconductor superlattices) may exhibit an unusual type of electron transfer.
This process can be considered as fast "Bloch" oscillations with frequency f& = e/h (where e is the
electron energy change due to tunneling through one tunnel barrier), modulated with lower single-
electron-tunneling frequency fs = I/e (where I is the dc electric current through the array).

One of the most important results of the field of corre-
lated single-electron tunneling (for reviews see, e.g. , Refs.
1 and 2) is the concept of the so-called "single-electron-
tunneling" (SET) oscillations with frequency, s

fs = I/e,

fundamentally related to the dc electric current I. Such
oscillations arise due to the particle properties of elec-
trons and can take place in systems with purely cla8-
Sical dynamics. 4 They can be, however, most naturally
implementeds s in one-dimensional (1D) arrays of small
tunnel junctions.

But it is well known that such systems, at suK-
ciently weak electron scattering, may allow another type
of fundamental periodic process: so-called "Bloch" (or
"Stark" ) oscillations with frequency

minibands. In our analysis, energy gaps 6, (i = 1, 2, . . .)
between the lowest minibands were supposed to be wider
than c and k~T, so that the electron motion is restricted
to the lowest miniband (i = 1), and its energy in the kth
quantum well can be presented as

p'
e~ p

——60+ eC»+ (s)2m'
where 60 is the 1D quantization energy, 4p is the back-
ground potential including the part ( eEdk) —due to ex-
ternal electric field E, and p is the electron momentum
in the plane of the layer (quantization in this direction
was accepted to be negligible). The Hamiltonian of the
system can be written as

H: ) [ek pakpa&p (ta& as+i p + H.c.)]
k,p

fgy = e/h, (2) + ) V„„,ak„ak p + HI, + HR .(I) t

k,p,p'
(4)

where e is the electron energy change due to its tunneling
through one junction (in the simplest case of negligible
self-charging eKects, c = eEd, where E is the external
electric field and d is the structure period). Recently,
these oscillations were observed directly. The Bloch os-
cillations are obviously a quantum phenomenon and re-
flect wave properties of electrons.

A very natural question is whether these two types of
oscillations can exist simultaneously. An apparent an-
swer is no, because Heisenberg's uncertainty principle
forbids the electron to behave simultaneously as a wave
and as a particle. The goal of this work was to show
that, surprisingly enough, this apparent answer is wrong.
Specifically, we calculate the spectral density Sr(f) of the
current through a semiconductor superlattice and show
that under certain conditions it exhibits simultaneously
peaks at frequencies (1) and (2) corresponding to both
types of oscillations.

We have considered the following simple model of the
semiconductor superlattice which consists of N+1 similar
thin conducting layers ("quantum wells" ) separated by
N tunnel barriers (Fig. 1). Quantization of electron mo-
tion perpendicular to the layers leads to formation of the
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FIG. 1. Semiconductor superlattice: (a) scheme of the
structure and (b) sketch of its band edge diagram. Shown
energy levels in the conducting layers (quantum wells) cor-
respond to vanishing transversal momentum p; however, due
to conservation of p during the tunneling, the energy e the
electron gains at tunneling does not depend on p.
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I(U) = CU/[I + (U/U )'] (6)

where U = V/N, Up ——hl'/e, and G = 2et2mS/(xh Up).
At U ) Up the I Vcurve (6)-has a negative slope
dI/dU see the ins—et in Fig. 2. (Account of weak tunnel-
ing without momentum conservation and, od,~or tunneling
between mini an s ea s'b ds leads to small additional contribu-
tion to the current, rising with the voltage U and leading
to positive slope at larger voltages. We will disregar

I I I I I I I I I0.4

The term in the parentheses describes tunneiing between
neighboring ayers whb l with conservation of the transversa
momentum p. At E g 0 this tunneling alone cannot pro-
vide a finite dc current through the superlattice. uc
a dc transport is provided by elastic scattering on impu-

rities described by the term with V, ~ y~and b the im-
plicit assump ion o e et f the electron energy relaxation a ter
the tunne ing, ueh t l' due to weak inelastic interactions . We

V([ )assumed that the net rate I' = (2x/h) P, ] V„„,
b(eg —

eA, „)of the scattering is within the range9P 7P

t « hI' « 2 0,

so that all calculations can be carried out using the per-
turbation theory with respect to t. Terms HL, and H~
describe tunneling through the edge barriers I. and R
(Fig. 1). Without considering these terms explicitly we

have assumed that the edge barriers are much more trans-
parent than the internal barriers, so that the tunne ing

X internal barriers to be equal to the applie g

For superlattices of large cross-section S, where the
charge Q[, of each layer can be considered as a con-
tinuous varia e, mo e s s'' bl, d l similar to ours were discussed
repeate y—see, e.g. , e .dl —,. Ref. 7. For relatively small volt-
ages V ( AiN/e, and in the regime when the electric
field is distributed uniformly along the superlattice, t e
model yields the following simple expression for the dc
I-V curve of the structure:

these processes, because the charge quantization effects
we are going o iscusst d' ss are rather insensitive to t em. )
The negative slope leads to charge accumulation efI'ects
which result in low-frequency instability of the uniform
state of the system and formation of high-Geld domains

In contrast to the standard approach we have consid-
ered t e case w en eh h n the superlattice cross-section is so
small and temperature T so low that capacitances C an
conductances G of t,he barriers satisfy the conditions '

e

k TB

2

G« —.
h

(4p);„, = ) n[, (N —k)k'
k/=i

1V

) n[, (N —k')k
k'=k+1

Due to the second of conditions (7) the system has
two uite diferent time scales, ~i —— anand7 =h e

hC e « wi. On the longer time scale, t 7i, y

woqui e i
d namics

con gura ions nkfi t ~ ~ which change due to single-e ec ron
tunne ing even s. e ral' t Th rates I'. of the electron tunnehng
to the right/left chrection through the jth barrier can
be found using the standard theory of the single-electron
tunneling:

As a result, single-electron charging efI'ects become im-
portant, i.e. , the electrostatic potentials Ck of the con-

fi t &~ &~ where nk is the number of electronsconiigura ion nk
in the k'th layer (Q[, = en[„.). In order to simp i y is
de endence we have assumed that the number (N+ 1) of
the layers is much less than (C/Cp, w ere p is e
depen ence we ave as

s ray ct capacitance of one layer, so tt at the stray field

can be readily solved to give the following result:

kV
C'[ = (C'i) t —
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I'+. = I(s+. /e) [1 —exp( s+/k~T)]—
2 2

where (—s+) is the change of the electrostatic energy of'2
the system,

s(n[, ) = s;„,(n[, ) —eV ) kn[, —eVny. ,

s;.t(rid) = (e/2) ) rti (~'~) t,
0.0
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FIG. 2. A typical dc I-V curve of the "shm' superlattice,
which exhibits the Coulomb staircase ..eThe inset shows the
"seed" I Vcurve I(U) used in t-he calculations. Temperature

/
J[[lis assumed to be much lower than eUO//

due to the tunneling event. ereHere n is the total num-

b of electrons passed through t y, Ues stem, and IUer o
is the "seed" I Vcur~e (6). Know-ledge oof I'. allo~s
one to calculate both the average current flowing along

current. 11

t e struc-Figure 2 shows a typical dc I-V curve o t e s ruc-
ture calcu ate in is wl l d th' way. The initial horizontal part
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[at V ( Vt
——e(N —1)/2C] is a manifestation of the

Coulomb blockade of tunneling. The current steps (the
"Coulomb staircase") are also a result of the quantiza-
tion of the charge Qt, . For example, if the applied field
corresponds to the first current step (as indicated by the
star in Fig. 2), and e/CN Uo, each new electron pass-
ing through the superlattice tunnels rapidly through the
first barrier, because for this process s'+/e is very small

( Uo), and the rate I'+ (9) is high. For each following
tunneling event s+ increases by e/NC, so that s+/e be-
comes larger than Uo, and the electron passes through
the superlattice with a gradually decreasing speed. At
the first Coulomb-staircase step, the next electron can
start moving inside the superlattice only when the first
one leaves it. This process repeats again and again with
the average frequency given by Eq. (1).

The spectral density SI(f) at low frequencies can be
found by the method described in Ref. 11. Calculating
SI(f) one should make a clear distinction between the
tunneling current I~(t) through the jth junction and the
current I(t) flowing through the external contacts [Fig.
1(a)]. For our simple case of small stray capacitances and
similar junctions,

SI, (f) = .e) ] I'(U~+ hf/e) i,

where

I(U —Ut) for U ) Ut
I'(U) = t I(U+ Ut) for U ( —Ut

0 for —Ug & U(Ug.
(i4)

16-

and Eq. (13) is reduced to the usual expression for the
"fluctuations" of a tunnel junction biased by dc volt-
age U~. In fact, with our shape (6) of the "seed" I V-
curve, this formula describes a peak in the spectral den-
sity SI.(f) with a center at fgy = s~/h (where sz ——eU~)
and linewidth bf I', corresponding to the Bloch oscil-
lations (2). Note that at Uz )) Uo the linewidth is much
less than f~, so that the oscillations are nearly monochro-
matic, despite the fact that contributions of individual
electrons to the process are incoherent.

In the low-temperature limit (7), Eq. (13) is reduced
to

14-

Figure 3(a) shows a typical result of the calculations
of SI(f) The na.rrow spectral peak corresponds to the
SET oscillations (1). At larger observation frequencies

(f )) fs) the single-electron tunneling events are prac-
tically uncorrelated and the spectral density approaches
a constant value described (at low temperatures) by the
modified Schottky formula

(12)

The factor 1/N in this equation is due to the fact that the
electron passes the system in N leaps, each corresponding
to transfer of the charge e/N through the external circuit.

Due to the strong relation ~2 (& ~q, dynamics of the
system on a shorter time scale bt 72 can be considered
under the assumption that the charge configuration is
fixed. It means that analyzing tunneling through the
jth tunnel barrier, all other charges Qz (j' g j) can
be assumed constant, so that the only relevant tunneling
terms in the Hamiltonian are those with j' = j. But
for such a truncated Hamiltonian, the spectral density
of I~.(t) can be found following, e.g. , Ref. 12. Taking
into account Eq. (7), the spectral density of I~ (t) can be
written as
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SI (f) = e ) I([E:++hf]/e).
x [1 —exp( —(s,+ + hf)/k~T})

where s+. = +e(U~ p U&), U~ = 4~ —C'~+i. For our
simple electrostatic model, U& ——e(N —1)/2CN.

In the high-temperature limit, k~T )) e /C, and/or
for high voltage across the barrier (U~ )) Ut), one can ne-
glect the threshold voltage Uq, so that c+. = —e - = eU~,

FiG. 3. Spectral power density of the current I(t) in exter-
nal electrodes of a "slim" superlattice: (a) at low frequencies
(f fs) aud (b) high frequencies (f fa) for»f N = 30
successive charge configurations (from left to right, after elec-
tron tunueliug through 1, 5, 10, 15, 20, 25, and 30 barriers).
iu (a) the densify is averaged over the SET oscillation period.
Both pictures correspond to the same set of parameters, in-
cluding the dc bias point (showu by the star in Fig. 2).
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One can see that at Uz )& Uo the spectral density ex-
hibits two narrow peaks at the Bloch frequencies (2)
with e = e

] Us 4 Uq ]. These two values correspond to
two possible directions of the electron tunneling through
the jth barrier (&om the same initial charge configura-
tion). One should remember, however, that Eqs. (13)
and (14) include contribution of the zero-point quan-
tum fluctuations, So(f) = 2hf coth(hf/2k~T)ReG(f),
where ReG(f) is the active conductance of the barrier,
ReG(f) = (e/2hf)[I'(U~ + hf/e) —I'(U~ —hf/e)j In.

order to obtain the real (available) power density, this
contribution should be subtracted from SI (f). At low

temperature this subtraction is completely canceling the
peak corresponding to tunneling with increase of the elec-
trostatic energy (e & 0), so that only the peak with

& 0 remains in the spectrum.
Figure 3(b) shows a typical result of such a calculation

of the real power density of the net current I(t) for several
sequential charge configurations (k is the number of the
single-election event within the SET oscillation period).
One can see that for each particular charge configuration
the system exhibits the narrow-band Bloch oscillations,
but their frequency (and amplitude) changes as a result of
each single-electron tunneling event, because the charge
distribution in general affects the energy change c.

An important feature of SI(f) given by Eq. (14) is that
in low-frequency limit f ~ 0 (i.e. , f && f~) it coincides

(after averaging over the period of the SET oscillations)
with the high-frequency limit (12) of SI(f) calculated
assuming classical dynamics of electrons. This means
that our theory determines SI(f) consistently for all fre-
quencies, and shows that SI(f) may contain simultane-
ously peaks corresponding to SET and Bloch oscillations.
Hence, the process of electron transfer as a whole can be

considered as fast Bloch oscillations with frequency (2)
modulated by much slower SET oscillation frequency (1).

To summarize, we have calculated the spectral den-
sity of the current in "slim" 1D arrays of tunnel barri-
ers separating conductors with quantized electron mo-
tion and low scattering rates. The results show that
electron transport in such a system may take a form
of high-frequency quantum Bloch oscillations modulated
by low-frequency classical SET oscillations. In order to
comprehend why this result is consistent with the general
principles of quantum mechanics, one can note that the
process resembles very closely the textbook description
of an electron as a packet with wavelike carrier and parti-
clelike envelope. Due to the two very different frequency
scales (in our case fs « f~), such a coexistence of the
particle and wave properties of electrons does not violate
Heisenberg's uncertainty relation.
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