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Intrinsic noise of the single-electron transistor
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The paper is devoted to calculation of the "classical" (thermal and/or shot) intrinsic noise of the
single-electron transistor (SET) caused by the stochastic character of electron tunneling. Exact solution
of the master equation describing the dynamics of the SET is obtained in the frequency representation.
The low-frequency limit for the spectral calculations is considered in detail.

I. INTRODUCTION

RI &&R& =srttl/2e (2)

then the tunneling events become correlated. These
correlations result in several remarkable features of the
dc I-V curve. ' In particular, it is sensitive to fractional
variations (in units of the electron charge e} of the back-
ground charge Qo of the central electrode (Fig. 2).

One can control the current through the SET by varia-
tion of the charge Qo. Figure 1(b) shows an equivalent
circuit of the SET coupled via the capacitance Co to a
signal source (with finite internal capacitance C, ) gen-
erating the charge Q, . In the case of large internal inter-
nal capacitance, C, ))Co, it is possible to describe the

The progress of modern nanotechnology allows the ob-
servation of several effects associated with charging of
small tunnel structures by single electrons. ' These
single-electron effects are of considerable interest not only
because of their physics, but also because of the possibili-
ty to create various analog and digital "single-electron"
devices. '

The most simple, but very promising, device is the so-
called single-electron transistor (SET}. Its basic circuit
consists of two small-area tunnel junctions connected in
series and biased by a dc voltage source [Fig. 1(a)]. If the
temperature T and the junction capacitances C& (j = 1,2 }
are small enough,

T «e'/C, ,

while the tunnel resistances R are well above the quan-
tum unit R&,

signal source solely in terms of its voltage U, =Q, /C, .
Another way to control the SET is to couple it resis-

tively to the signal source. However, it is much more
dif6cult to realize this idea experimentally.

The most important feature of the SET is its very high
sensitivity to variation of the charge Qo. The best
achieved experimental charge sensitivity of a SET, limit-
ed by the noise of the system as a whole, is on the order
of 10 e/Hz' . ' ' The ultimate sensitivity is limited
only by the intrinsic noise of the SET, caused by the sto-
chastic character of the tunneling process.

This paper is devoted to the calculation of the "classi-
cal" part of the intrinsic noise, which can be described by
the "orthodox" theory of the SET. ' The classical
noise includes the thermal and shot noises; however,
these two components cannot generally be separated
from one another. Vfe calculate the spectral density of
the current through the transistor, the spectral density of
the central-electrode potential, and their mutual spectral
density. The expressions obtained are simplified using
the exact solution of the master equation for the SET in
the frequency representation. The low-frequency limit
(coRC «1) is the most interesting case in practice; it is
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FIG. 1. (a) Basic SET transistor: two tunnel junctions in
series. (bl Equivalent circuit of the capacitively coupled SET.

FIG. 2. I-V curve of the SET for different subelectron
charges Qo on the central electrode. C =C& +C2, R +=R I +R2.
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considered in more detail. All the final expressions are
convenient for numerical calculations.

Extensive numerical calculations of the classical noise
were performed in Ref. 17 for optimization of the sensi-
tivity of the SET. The present paper contains a detailed
explanation of the calculation method used there and the
derivation of the basic equations.

Besides the classical noise, some other noise processes
can be important. For small temperatures, at voltages
below or near the Coulomb-blockade threshold, cotunnel-
ing processes become essential. ' ' Using the estimation
of the corresponding quantum noise, ' one can find the
validity range of the classical noise theory. The sensitivi-
ty of the SET in present-day experiments is limited by
I /f noise. ' ' The most probable source of this noise is
the fluctuations of the impurity charge
configurations. ' ' ' One can hope that progress in fa-
brication technology could reduce the excess noise to
values less than or of the order of the intrinsic noise of
the SET.

The paper is organized as follows. The next section
contains a brief review of the orthodox theory of the
SET. The general formalism for the classical noise in the
SET is presented in the third section [Eqs. (12), (13),
(18)—(22)]. A simple matrix expression for the exact solu-
tion of the master equation [Sec. IV, Eq. (26)] allows us to
obtain much more convenient equations for the classical
noise [Sec. V, Eqs. (27)—(31)]. The low-frequency limit
for these calculations is considered in Sec. VI. In particu-
lar, in this limit Eqs. (27)—(31) should be replaced with
Eqs. (34)—(36). An alternative method of low-frequency
noise calculation is presented in Sec. VII. This method is
based on the idea of division of the random process into
independent elementary segments (this idea can be ap-
plied also for calculations of some other single-electron
processes). In the last section, several results for the ulti-
mate sensitivity of SET are presented.

II. ORTHODOX THEORY OF THE
SINGLE-ELECTRON TRANSISTOR

Let us consider two small-area metal tunnel junctions
connected in series and biased by a voltage source V [Fig.
1(a)]. We follow the orthodox theory of this device
and consider the electron transport as a sequence of in-
stantaneous tunneling events. The rates I +—

, z(n) of elec-
tron tunneling to (+) or from (

—
) the central electrode

through the first or second junction depend on the num-
ber n of excess electrons in the central electrode (charge
state n)

Q eV
U(n „nz ) = — (C, nz+ C~n, )+const,

2C C

y(t) = VC, /C++ [en(t)+ Qo]/C+,

1(t)=I,(t) C~ /C +I~(t)C, /C

I, (t)=e ri&(t), I&=eri&(t) .

(6)

(7)

Here I, (t) and Iz(t) are the currents through the junc-
tions and I (t) is the total current [see Fig. 1(a)].

The dynamics of electron tunneling in single-electron
circuits can be described in orthodox theory by two
different approaches. In the Langevin approach we con-
sider random jumps between the different charge states of
the system. This method is useful for long arrays of small
tunnel junctions and other complicated systems. We
will use this approach below for derivation of Eqs. (18),
(19), and in Sec. VII. In the second, somewhat simpler
approach based on a Fokker-Planck-type equation, one
considers the deterministic dynamics of the values aver-
aged over the statistical ensemble.

In the latter approach the dynamics of tunneling in the
SET is described by the master equation for the probabili-
ty o(n) of the charge state n of the double junction sys-
tern:

+I (n +1)o(n + l, t)

—[I,+(n)+I, (n))o( , n)}t. (8)

Q =en+Qo, n =n& —n&,

sed to the particular tunneling event. In this last expres-
sion, n „nz are the number of electrons passed through
the first and second junctions (the positive direction is
chosen from the first to second junction). The electron
charge is considered as positive for simplicity (then the
directions of the current and electron motion coincide);
this choice does not change any final result. Note that
for semiconductor-based SET's, all general expressions
for the noise derived in this paper remain valid, except
that tunneling rates I

~

—(n) are given by expressions more
complicated than Eq. (3). '

Because the tunneling events are considered as instan-
taneous, the current I(t) consists of 5-like peaks, and the
potential of the central electrode y(t) is steplike:

I J
—(n) =[W' —(n)/(e R )]/[1 —exp( —8' —(n)/T)], (3)

The stationary probability distribution o„(n) satisfies
the equations

. VC)C~
+( —IV

eC
Qo——+n+

2 e

Here C& z,R, z are the capacitance and resistances of the
junctions, C+ =C, +Cz, Qo is the background charge,
and T is the temperature. The energy gain IV—(n) is the
decrease of the Gibbs energy of the system

o.„(n)[I,+(n)+I ~+(n)]

go„(n)=1 .

(on +1)[I, (n +1)+I z (n +1)],
(9)

In stationary state the average currents through the
junctions are equal to each other:
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(I,(t)) =(I,(t) & =(I(t) & =I .

I=e g [I,+(n) —I i+(n)]0„(n) (10)

=e g [I z (n) —I z+(n)]o„(n),

and the average potential (q(t) ) is given by the expres-
sion

( p(t) ) =g q&(n)o „(n) .

n' at the moment t =7. (v~0) if the charge state n was
realized at t =0. It is the solution of Eq. (8) satisfying the
initial condition cr(n', 0~n )=5„„.

It is important that for the autocorrelation function of
the current Kli(r), an expression similar to Eq. (13) is not
valid. The reason for this difference is that the current
I (t) is not a function of n, but depends on the derivatives
of n i z(t} [see Eq. (7)]. In order to derive the correct ex-
pression for Ktt(~) we should use the Langevin approach.

The only nonvanishing contributions to the tunneling
currents I (j =1,2) in orthodox theory come from mo-
ments t; corresponding to the tunneling through the jth
function:

III. GENERAL FORMALISM
FOR THE CLASSICAL NOISE I,(t) =( —1)J+'e g s, 5(t t, ), — (14)

In this section we calculate the spectral density of the
current Stt(co }, the spectral density of the central-
electrode potential S (co), and their mutual spectral
density St (co). It is well known that the mutual spectral
density S~„(co) for two arbitrary (possibly identical) sta-
tionary random real processes X(t) and Y(t) can be cal-
culated as the Fourier transform of the correlation func-
tion Kx„(r):

Sxr(~)=2 f '
K,r(r)cos(cor)dr
+ oo

2i — Kx„(r)sin(co~)d r,
K,( )=(X(t+ )Y(t)) —(X&(Y) .

(12)

Note that for X(t)= Y(t) the imaginary part of Sxr(to) is
absent.

The autocorrelation function K (r) for the central-
electrode potential can be easily calculated using Eq. (8):

K (r)= —(y) + g gr(n')cr(n', r~n)y(n)o„(n),
n, n'

r~O (13}
K ( r)=K (r) .—

Here o (n ', r
~
n ) means the probability of the charge state

I

where s; =1 for the process increasing the internal charge
state n by unity and s; = —1 when n is decreased. Thus,
the product dQJ( t, ) dQ~( tz):IJ(t, )d—t, IJ(tz)dtz is non-
vanishing only if we have tunneling events inside each of
the infinitesimal time intervals dt „dtz. In this case,

dQ (t, )dQ (tz)=e s, sz .

The probability of such a double event is

P, , (ti, tz) =I J*(nz)dtzo(nz, tz ti ln, +—s, )

X I *(n, )dt, o „(n,),

(15)

(16)

where n(t, }=n,, n(t, +dt, )=n, +s„n(tz}=nz,
n (tz+dtz }=nz+sz, and the choice of the upper indices
+ corresponds to the signs of s&, s2. Now, summing all
the contributions to the product

(dQJ(ti )dQJ(tz) )
(I,(t, )I,(t, })= (17)

I tz

i.e., summing over the different n&, n2, s&, s2 with the
corresponding probabilities (16), one obtains the follow-
ing expression for the autocorrelation function for the
current I:

Kt t (r}= I + Q e[I J
(—n') —I 1

(n')][o'(n', r(n + 1)eIJ+(n}—o (n', r)n —1)eI
~

(n}]o„(n)+AJ5(r), v~0,
J J

(18)
Kt t ( r)=Kt I (r)—.

J J J J

The last singular term in Eq. (18) is the consequence of the consideration of tunneling events as instantaneous. At
~=0 the derivation above fails, and the constants A. should be calculated independently (see below).

Let us emphasize that in Eq. (18) the initial state for the evolution (during time ~) is not n but n+1 One can sa.y that
the current at t =0 behaves as an operator which changes the charge state by +1.

In order to calculate the autocorrelation function Ktz(w) for the total current one should take into account tunneling
events in both junctions. The expression below can be derived in a similar way to Eq. (18), and this result is quite clear
if we consider the current as an operator:

Kit(1)= I + P e [[I i+(n') —I i
—(n')]C /Cz++[I' (nz') —I z(n')]C i/C+]

n, n'

X [a(n', ~~n +1)[I i+(n)Cz/C+ —I (n)zC /C+i]

+cr(n', rjn —1)[l z (n}C,/C~ I, (n)C —Cz/~]]o. „( }nA+5(r), ~~0,
Kit( r) =Kll(~) . —
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Constants A, A~ in Eqs. (18), (19}can be calculated from the high-frequency limit for spectral densities. Taking into ac-

count that for coRC)&1, four noise processes (two junctions, two directions) can be considered as uncorrelated, let us

use the shot-noise formula:

lim Sll(co)=2A, lim SI I (co)=2A
Q7~ 00 ~~co J J

A =(Cz/C~ ) A, +(C) /C~ ) A z, (20)

A =e(I++I. ), I =—eg 0„(n)r*.(n) .

Here A /e is the sum of the components of the current fiowing through the jth junction in opposite directions.
For completeness, let us consider the correlation between currents I& (t) and Iz(t). Using the same method of consid-

ering the current as an operator, one can write the following equation (r & 0):

KI I (r)= I +—g e[l &+(n') —I
&

(n')][a(n', r~n —1)eI z (n) —a(n', r~n+1)erz+(n)]o„(n) .
n, n'

(21)

The expression for KI I (r) can be readily obtained from Eq. (21) by exchanging indices 1~2. The case r 0 is covered
2 1

by the equation KI z (r) =K& I ( —r). Note that Kl I (r) shows a jump at v =0 but has no singularity because the prob-
1 2 2 1 1 2

ability of simultaneous tunneling events is equal to zero in orthodox theory.
Deriving the expression for the mutual correlation function KI (r) [which is the linear combination of functions

KI (r)], one should consider two cases. If the current is taken at the moment after the potential (r) 0), then the evo-
J

lution during time interval v. starts from the same charge state n as just before the earlier moment and the expression is
similar to Eq. (13). However, if r(0, the "operator of current" changes the charge state before the evolution, which
now starts from the state n+1 and lasts during time r In —this. case the expression is similar to Eq. (18). Taking into
account both cases, one obtains

KI (r) (Cz/C~—)KI (r)+(C) IC~)KI (r),

KI (r)= I(y)+ g—e( —1)J+'[I +(n') —I (n')]o(n', r~n)p(n)cr„(n) for r) 0,
J 1

n, n

KI = I(g)+e(——1)~+' g y(n')[o(n', —r~n+1)I +(n) —0(n', —r~n —l)I (n)]cr„(n) for r(0 .
J

n, n'

(22)

This correlation function is not symmetrical and shows
a jump at i=0 [the singularity is absent because g(t) is
finite]. As a consequence, the mutual spectral density

Sl~(co) is complex.
Equations (12), (13), (18)—(22) give the complete

method for calculation of the classical noise described by
the orthodox theory of the SET. However, it requires
solution of the master equation (8), which is a set of linear
differential equations. In the next two sections we de-
scribe a simple matrix method to solve this problem. A
similar matrix method for solution of the master equation
can be useful for calculations of some other single-
electron circuits, for example, for calculation of the spec-
trum of the current in an array of junctions.

IV. MATRIX METHOD FOR THE MASTER EQUATION

Let us introduce a new function, which is a kind of re-
tarded Green's function for the master equation:

0(n, r~m) —0„(n), r&0,
+nm(r)

Q r&0 (24)

Note that g„cr„(r)=0, and o „~0at r +oo. —
For this function one can write the following

differential equation

der„(r) =g 1 „kcrk (r)+[5„—o„(n)]5(r} .
k

(25)

The Fourier transforms cr „(co) of the functions
cr„(r}satisfy a linear algebraic equation which has the
solution

Let us solve the master equation (8) in the frequency
representation, following Ref. 25. Equation (8) has the
following matrix form:

do(n) =Jr„o(m),
dt

(co) =g 1

i~1 —I

j.

i col —I nm

[5k —o „(k)]

o„(n)
(26)

+5 „+,[I, (m)+I z (m)]

„[r&+(~)+r& (m)+I z (m}+I z (m)] .

(23) where 1 is the unit matrix, and I has matrix elements I,
(23). This equation is the exact solution of the master
equation (8) in the frequency representation.

It is possible to use another dehtion of o.„where the
term —o,„(n) is removed from Eqs. (24)—(26). However,
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we use the definition above because it provides Fourier
transforms without singularity at zero frequency.

For the potential y, one obtains the following spectral
density:

V. MATRIX FORM FOR THE SPECTRAL DENSITIES

Now we can considerably simplify the method of cal-
culation of S~~(co), S +(co), and S~ (co) described in Sec
III. Let us substitute a„,„(~)+a„(n') for o(n', r~n) in

Eqs. (13), (18), (19), (21), and (22). The terms containing
o „(n') exactly cancel the terms I a—nd I( c—p). Using

Eq. (12) it is possible to express the spectral densities in

terms of o „„(co}.

S (co}=4g p(n'}[RecT„.„(co)]y(n)a„(n)
n, n'

=4 g y(n')B„„y(n)a„(n),
n, n'

(27)

where B=Re(1/(ico1 —I )).
In the same manner using Eqs. (12), (18), (19), (21), (26)

for the spectral densities of the currents, one obtains

Sz ~ (co)=2AJ+4e g [I ~+(n') —I . (n')]B„.„[I~+(n —1)a„(n —1)—I'. (n +1)a,(n +1)]
J J

n, n'
(28)

SJ,J,(co)=2e y [I $
(n') —I

$
(n')]

ic01 —I n' n

[I'z (n + 1)a„(n + 1)—I z (n —1)a„(n —1)]

+2e g [I'z (n'}—I z+(n')]
n, n'

[I'&+(n —1)a„(n —1)—I'~ (n + 1}a„(n+ 1)],—i col —I n'n

(29)

Szz(co)=2A+4(e/C ) g [[I',+(n') —I', (n')]Cz+[I z (n') —I z+(n')]C, ]
n, n'

XB„.„[[I',+(n —1)Cz —I'z+(n —1)C, ]a„(n —1}

+ [I z (n + l)C, —I', (n +1)Cz]a„(n +1)] .

Here the shift of the variable n ~n+1 was made for convenience.
Finally we get the following expressions for the mutual spectral density:

(30)

Sqq(co)=Cz/C~Sq (co)+C)/C~Sq (co),

Sr (co)=2e( —1)J+' g [I'+(n') —I (n'}] 1

n, n' i~1-r „,„
q(n)a„(n)

+2e( —1)J+' g qr(n')
n, n' —ical —I

[I'J+(n —1)a„(n —1)—I'1 (n +1)a„(n +1)] . (31)

Note that in Eqs. (27)—(31) the contribution of the term
—a„(n)/ico from Eq. (26) is equal to zero. It is the obvi-
ous consequence of the possibility of defining o„ in
different ways. Expressions (27)—(31) are convenient for
numerical calculations, because the inverse to the three-
diagonal matrix i col —I can be calculated very rapidly.

The numerical results for Szz(co), Sz z (co },and Sz z (co)
I I 2 2

in one particular case are shown in Fig. 3. It is interest-
ing that Sz z (co) grow with frequency, because the corre-

1 J
sponding correlation functions are negative (such an an-
ticorrelation is the consequence of the Coulomb repulsion
of the electrons, which reduces the probability of a
definite tunneling event after tunneling through the same
junction in the same direction). At high frequency the
curves satisfy Eq. (20). They do not tend to zero at
co~ ~ because of the assumption of instantaneous tun-
neling events accepted in the orthodox theory. One can
see that the spectral densities of the currents do not have
peaks, in contrast to the case of a single tunnel junction
biased by the current, where single-electron oscillations
take place. '

0.25

v =27rI/e
I I)~ I I I I I I I I I I I I I I I I I I I

eI
~ 0.20Q

~ 0.15

~ 0.10

92

0.05

0.00

2
0.3e-

- eI

TC~/e =0.03

V=0.5e/Cg
I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4

~C~R~

FIG. 3. Spectral densities of the currents I&,I2 through tun-
nel junctions and spectral density of the total current I as func-
tions of the frequency co.
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To conclude this section, let us discuss the possibility
of calculating spectral densities of fluctuations by Monte
Carlo simulation of the random tunneling process. ' '

The spectral density of the current through a SET was
calculated by this method in Ref. 12. However, the re-
sults obtained there were not very accurate (the standard
deviation of the calculations was about 20%). The reason
for this inaccuracy is that the spectral density was calcu-
lated in Ref. 12 (as well as in Ref. 23 where fluctuations
in an array of junctions were considered) using Eq. (12),
and this is not the best choice for numerical calculations.
Let us discuss briefly a different method (it was developed
for arrays of junctions, but it is valid for any single-
electron circuit, and, as a simple example, for a SET).

From Eq. (12) it is easy to derive the following equa-
tion:

achieve a comparable accuracy. Thus, Monte Carlo
simulations is not the best choice for calculation of the
fluctuations in a SET; however, it is the only practical
method for more complicated single-electron circuits.

VL LOW-FREQUENCY LIMIT

In most applications one needs only the low-frequency
limit (coRC«1) of the noise intensity, because the
characteristic frequency in the master equation,
(RC) ' —10 —10" Hz, is much higher than the typical
frequency of the signal which controls the SET. Let us
consider this limit in more detail.

At co~0 the spectral densities for the currents I(t),
I&(t), and I2(t) coincide (see Fig. 3). This is a conse-
quence of the equation

f Sxr(co+0) dQ
00 n.TQ

I+T=2 f X(r, )exp(icor, )d r,
t

t+Tx f Y(r2)exp( i cor2—)d r2] (32)

One can see that in the limit T~ (x) the left side of this
equation transforms to the spectral density Szr(co). Even
for finite T this is a good approximation of Sxr(co). In
the numerical calculations one should divide the simula-
tion process into segments with time duration T
( t = tk =kT, k = 1,2, . . . ) and then average the right side
of Eq. (32) over different segments. It is convenient to
calculate spectral densities simultaneously at many
equidistant frequency points co&

=
igloo, i = 1,2, . . . . To

avoid inaccurate results at low frequencies [when the
point co=0 can give an essential contribution to the left
side of Eq. (32)], one should take coo/2n. equal to an in-

teger multiple (the best choice is 1) of T
This method decreases the computer time needed for

achievement of the desired accuracy by a factor of about
10. As a consequence, it becomes possible to obtain
more accurate results.

We have compared the numerical results of exact cal-
culations [Eqs. (27)—(30)] and Monte Carlo simulations
for the spectral density of the current and the central-
electrode potential of the SET. The results coincide, but
the latter method required much more computer time to

(33)

and the finite dispersion of n. The mutual spectral densi-
ty St (0) is real, in accordance with Eq. (12).

It is important that Eqs. (27}—(31) cannot be applied at
co =0 directly because the matrix I' is singular
(Q„I'„=0} and cannot be inverted. However,
modification of these equations and the correct use of the
matrix I ' can solve the problem.

If some column X has a zero sum of elements, then the
expression I X has mathematical sense, i.e., it is possi-
ble to find a column Y which satisfies the equation
X=I Y. However, the infinite number of columns Y
which have diff'erent additional terms constXO„(n) can
be regarded as I 'X because I 0.„=0. So, to avoid the
difficulty in Eqs. (27)—(31) at co=0, one should modify
these equations in such a way that I ' acts on a column
which has a zero sum of elements, and the arbitrary term
const Xa „(n) after the matrix operation I' is unimpor-
tant.

Note that the arbitrary constant can be added to the
terms at the left side of the matrix [ico1 I ]

' in E—qs.
(27)—(31) because g I' „=0. Also, any constant multi-
plied by 0 „(n ) can be added to the terms at the right side
of this matrix because I e„=O. It is easy to prove that
the expressions below are equivalent to Eqs. (27), (28),
(31) at co~0; on the other hand, they are appropriate for
the numerical calculations:

S~~(0)=4 g [q&(n') —(q&)]( —1 ')„„[y(n)—(y)]o„(n),
n, n'

Stt(0) =23, +4e g [I i+(n') I (
(n') I—/e]( —I ')„„—

n, n'

X [I',+(n —1)cr„(n —1)—I, (n +1)cr„(n +1)—(I e/) cr(n)], (35)

St (0)=2e g [[I,+(n') —1, (n') I/e]( —I )„„[y(—n) —(y)]cr„(n)
n, n'

+[y(n') —(p) ]( —I ')„„[1
&

(n —1)cr„(n —1)—I, (n +1)o„(n +1)—(I/e)o„(n)]] . (36)
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The only consequence of the singularity of matrix F in

these equations is that one should not try to find I ' nu-

merically. Instead, one has to calculate immediately the
result of the summation over n (the usual numerical pro-
cedure for a three-diagonal matrix can be used).

The typical numerical results of calculations using Eqs.
(34)—(36) are shown in Fig. 4 for the symmetric SET
(C&=C2,R, =R2). Instead of the value S& (0), the
correlation factor Siz(0)/[SII(0)S (0)]' is shown.
One can see that SII(0) and S (0) increase with voltage.
Asymptotic values at V~ 00 can be calculated analytical-
ly as the shot noise in a system with two noise sources:

SII(0)=2eI(R f +R 2 )/(R & +R2)

S (0)=4eI/(R, '+R~ ')

Si~(0)/[Sir (0)Sqq (0 ) ]
'

(37}

(40)

If T «e /C (the most interesting case), at low voltages

the tunneling events are strongly correlated. If the volt-

age is well below the Coulomb-blockade threshold, then
the current is practically zero (in the orthodox theory we
ignore the cotunneling processes' ' }, so SII(0},S (0},
and SI (0) vanish. There is not much reason to calculate
the correlation factor between I (t) and y(t) in this range
(the curve in Fig. 4 is cut o8), although it is not equal to

=(R, —R2)/[2(R +R )]' (39)

The low-voltage case can be treated analytically when the
temperature is very large or very small in comparison
with the energy e /C+.

If T»e /C and eV « T, the single-electron effects

are negligible and the noise is described by the Nyquist
formula

SII(0)=, S~(0)=, Si~(0)=0 .
4z" 4TR )R2

(42)

Siq(0) /[Sir (0)Sqq (0)]
'

An expression similar to Eq. (42) was derived for the ran-
dom process with two time constants in Ref. 26, and Eq.
(41) coincides with the results of Ref. 27 [in these papers,
spectral densities for arbitrary frequency were derived;
the expressions obtained there can be considered as spe-
cial cases of Eqs. (27), (30)].

The important case for calculation of the ultimate sen-
sitivity of the SET is when the temperature is small and
the voltage is very close to the blockade threshold. Then
I

&
» I 2 (or I'& « I'2) and Eq. (41) transforms to the usu-

al Schottky formula (since pairs of almost simultaneous
jumps in different junctions form a random Poisson pro-
cess):

SII(0)=2eI . (44)

The accuracy of this simple expression becomes poor
with temperature or voltage increase [see Fig. 4 and Eqs.
(37), (40)]; Eq. (44} cannot be used for numerical calcula-
tions of the noise intensity. ' '

VII. ALTERNATIVE METHOD FOR THE
ZERO-FREQUENCY LIMIT

zero.
If the voltage is close to the Coulomb-blockade thresh-

old, then in the general case (excepting degenerate cases)
only two charge states are essential, and tunneling events
in different junctions can occur only in turn. Let the cor-
responding rates be I, and I z. For this simple particular
case, Eqs. (34)—(36) as well as Eqs. (47)—(49), (66)—(77)
give the following expressions:

S (0)=2eI(I,+I )/(I, +I' )

Cg

N 0

IX

1 I I I
/

I I 1 I i I I 1

2
VC~/e

FIG. 4. Low-frequency spectral densities of the current I and
electric potential y of the central electrode, and their correla-
tion factor as functions of the bias voltage. The dashed line
shows the dc I-V curve of the system (the unit of current is
e/R ~C }.

Along with the method described in Secs. III-VI, a
completely different method for calculation of the spec-
tral densities in the zero-frequency limit was also
developed. It is based on the idea of the path-integral ap-
proach to random walks. The method appeared to be a
little faster and was extensively used in Ref. 17 for optim-
ization of the theoretical sensitivity of SET as an elec-
trometer.

Instead of solutions of the master equation (8), one can
consider the process (Markov chain) as random sequen-
tial jumps between neighboring charge states (the
Langevin approach). The first step of the method is
division of such random process into elementary seg-
ments. The beginning and end of each segment are
defined by the moment of the system's transition into a
fixed charge state (in the case of the SET this means that
n equals some fixed no). After derivation of the final ex-
pressions, it will be clear that the most convenient no cor-
responds to the most probable state
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[o, t(n p} ~o „(nWn p}] . However, we assume below
n0=0 for simplicity, while one can modify any expres-
sion below for nonzero n0 by a shift of indices.

Because the process is Markovian, two different seg-
ments (for example, neighboring segments) are indepen-
dent. So we can assemble the whole process of the seg-
ments, taking them from the set of all possible segments.
In this case each choice should be random and indepen-
dent of previous choices. Each segment can be character-
ized by a specific path through charge states (for exam-
ple, 0—+1~2~1~2—+1~0) and by the specific choice
of time intervals spent by the system in each state of this
sequence. Note that for the SET any charge-state change
can occur in two ways (tunneling through diff'erent junc-
tions), so, in addition to the path, information about the
sequence of jump directions should also be taken into ac-
count. The number of all possible segments is infinite
(the number of possible paths is infinite, and the time in-
tervals are continuous variables).

We will need the following characteristics for each pos-
sible segment g:

The probability of the segment (more precisely the
probability density) P(g); it is the frequency of the seg-
ment appearance in the sequence of segments;

The duration of the segment as a whole, r(g);
The number k(g} of electrons which pass through the

SET during the segment g;
The quantity

instead of Eq. (10). This fact can be used in numerical
calculations as a criterion of their accuracy.

We should be able to calculate all necessary average
values using the weight function P(g). We need both
linear expressions ( k, r ) and quadratic ones
(P,k, kr, bb, kb, rb).

The path of any segment can be either "positive, " i.e.,
containing only charge states with n & 0, or "negative"
containing only states n (0 (remember that the segment
starts from n = np =0). Let us consider first the segments
with positive paths.

A positive path can be characterized by a sequence of
numbers which correspond to the pairs of transitions be-
tween neighboring charge states:

0~1—+0, 1 time

1~2~1, i, times

2~3~2, i2 times

The sequence (i~, iz, i&, . . . ) is finite, i.e., i„=0 above
some n

The averaging procedure can be carried out in two
steps. First let us calculate averages for a fixed sequence
(i„i2, . . . ) and then take into account the probability of
different sequences. The mean time spent in the charge
state n is I'(n) ', where

a(g):ek(g) Ir—(g) =f—[I(t) I]dt, — (45)
I (n)=I +(n)+I (n), I (n)=—I'~ (n)+I i (n) . (51)

lim Sxr(tp)= lim — f [X(t)—(X)]dt2
'

T

67~0 T~oo T . 0

X f [ Y(t) (Y) ]dt—
0

(46)

Because of the independence of the segments compos-
ing the process, any such average can be expressed by
averaging over the segments:

Slt(0)=2aa/r=(2/V)(e k +I r 2eIk~), —

St (0}=2ab/r=(2/r)(ekb Irb ), —

S (0)=2bb /r,

(47)

(49)

where the overbar means the average value, with use of
the probability P (g) as the weight function, for example
ab = f a ( g )b(g)P (g)d g.

Note that the average current can be calculated as

I=k/w (50)

where the current I(t) is defined by Eq. (7), the average
current I is given by Eq. (10), and the integration is car-
ried out through the segment duration;

The variable b(g)= f (y(t) —(p))dt, where the

central-electrode potential q(t) is defined by Eq. (6), its
average value is given by Eq. (11), and the integration is
also carried out through the segment duration.

Let us use Eq. (32) at the limit T~ ~ as the definition
of the mutual spectral density of two random processes
X ( t), Y( t). For the zero-frequency limit, it gives

The mean square of this time is 2I (n) (as for any Pois-
son process). For the fixed sequence (i &, i2, . . . ) the aver-

age segment duration and then average square of this
time are the sum of the corresponding values for all steps
in the path:

(52)

where the bold angular brackets mean the average for the
fixed sequence Ii„i2, . . . j, and r8„c rroesp ndoto the
pair of jumps between charge states n and n + 1:

r„=l (n) '+1 (n +1) ', 0„=1(n) +I (n +1)
(53)

(k ) = kpi+, +ki~ki+. . .

(k )=(k) +lp+i, l, +i~le+
(54)

For calculation of the average number ( k ) of elec-
trons passing through and its mean square ( k ) for the
fixed sequence [i, ,i2, . . . ], one should take into account
the possibility of tunneling through different junctions for
the same change of charge state. For example, the transi-
tion n ~n + 1 corresponds to tunneling through the first
junction with probability I,+(n)/I +(n) and it also corre-
sponds to the tunneling through the second junction with
probability I'i (n)/I +(n). Summing over the pairs of
jumps n ~n + 1, one obtains
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where

I i+(n) I'z (n + 1) I z+(n) I'i (n + 1)

I +(n) I' (n + 1) I +(n) I' (n + 1)

1„=r,+(n)rz+(n)/[r+(n)]
(55)

where

a„=p„+p„+„p„+=I +(n)/r(n),

C~= .
i!

jl(l —j)(

(62)

+I i (n +1)I z (n +1)/[I (n +1)]
A similar averaging procedure for k~ results in the ex-
pression

(kT)=(kp+liki+lzkz+ }(Tp+liTi+izTz+ ) .

(56)

Now let us write expressions for averages containing
b(g) for a fixed sequence {i„iz,. . . j [their derivation is
similar to that of Eqs. (52)-(56)]:

(bb ) (Bp +i,8, +iz@z+ ) z+f p+i, g, + izpz+

(kb ) =(kp+iik, +lzkz+ )(8Q+ll4 i+lzgz+ ),
(Tb ) =(Tp+l iTi+lzTz+ ' ' ' )(Bp+ li8 i+lz@z+ ' ' ' )

+ 'go+ l ) 'g ) + l 2 'g 2 + (57)

where

8„=[p(n ) —( p ) ]/r(n )

+ [p(n +1)—(y) ]/r(n +1),
g„={[y(ii) —(q ) ]/r(li) j'

+ {[qr(n +1)—(y) ]/r(n +1)j

z}„=[y(n)—(qr) ]/[r(n)]

+ [p(n + 1)—(lp)]/[r(n + 1)]

(58)

(59}

(60)

Finally, we have to calculate average values of
(7), (7 ), (k), (k ), (kT), (bb), (kb ), (Tb ) taking
into account the probability of different sequences
{i,, iz, . . . j. Because the values 7„,8„,k„,l„,@„,P„,Ti„
are constant, we have to calculate only two types of aver-
ages: i„and i„i (the weight function is the probability
of a sequence {i, , iz, . . . j ).

An arbitrary segment with positive path satisfies the
description {i, , iz, . . . j with probability

g C+ a'=(1 —a) l ' —1,

one can write the total probability of a positive path
(which is obviously equal to Pp+ ) as

Z =— g P {i,, iz, . . . j
=

l ] il2y ~ ~ ~ 1—

ao

a&

CX21—
~ ~ ~

(63)

The averages i„and i„i (over only positive paths) are
given by the derivatives of Z:

1 &n dZl„P{l„l,, . . . j=
Ii],i~, . . . I n

(64)

i i =— g i i P{i„iz,. . . j
Ii],i2, . . . I

~n d dZ
lzm

dZ de„

Using Eqs. (63) and (62) one obtains

r+(1) I +(2) I +(n)
(1) I' (2) I' (ll)

(65)

(66)

X 1+ +"'"
(1)

for m &n . (67)

The first part of Eq. (61) (containing a„) is the proba-
bility of one path, and the second part (containing C/) is
the number of different paths described by sequence
{i„iz,. . . j. Note that Eq. (61) consists of a finite num-
ber of terms because any sequence {i, , iz. . . . j contains a
finite number of nonzero elements.

Using Eq. (61) and the equation

P{i„iz,. ]=ap(lzi) '(lzz) ' ' ' ' C,'+.,—C,'+, —

(61)
I

The consideration of negative paths is quite similar to
that of positive paths. The final result for zero-frequency
spectral densities is given by Eqs. (47)—(49) with

7—Pp (Tp+liTi+lZTZ+ ' ' )+Pp (T i+l Z7 Z+l 37 3+ ' }

7=PQ [(Tp+ii Ti +izTz+. . . ) +8Q+l i 8i +iz8z+. . . ]

Pp [(7—i+i —z7—z+l —37—3+ ) +8—i+i —z8—z+l —38—3+ ]

=Pp ( p+i, kl+izkz+ . )+Pp (k, +i zk z+i 3k 3+ . },
k =pp+ [(kp+liki+lzkz+ ' ) 1+p+lili+izlz+ ]

pp [(k i+l zk z+l 3k 3+ ' ' ' } +i i+i zl z+l 3l 3+ ' ]

(68)

(69)

(70)

(71)
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P11 (kp+t1kl +t2k2+ )(rp+tI +1+12+2

+pp (k 1+1 2k 2+1 3k 3+ . )(r, +1 2r 2+1 3r 3+ ' ' )

bb=p11 [(t/p+i, t/, +i2t/2+ .
) +t/1p+i, g, +i2$2+ ]

(72)

+pp [(tl, +1 2tl 2+1 3tl 3+ ' ' ' ) +1// 1+1 21/J 2+1 31/ 3+ ' ' ' ]

kb=pp+(kp+11k1+i2k2+ ' ' ' )(t'/p+i181+1282+ .
)

pp (k 1+1 2k 2+1 3k —3+ )(t),+1 28 2+1,8 3+ )

rb =pp [(7p+1111+12r2+ ' ' ' )(8p+1181+12t/2+ ' ' ' )+7/p+11'$1+ 127/2+ ' ' '
]

pp [(r 1+1 2r 2+ )(~ 1+1 2& 2+ }+r/ 1+1 2r/ 2+ ]

(73)

(74)

(75)

In these expressions, the constants ~„,0„,k„,l„,8„,
$„,2/„are defined by Eqs. (53},(55), and (58)—(60), pp are
given by Eqs. (62) and (51). Averages i„are given by Eq.
(66}for n ~ 1 and by the expression

correct results for average currents and average poten-
tials; however, the convergence of this simulation pro-
cedure is much faster (up to ten or even hundred times)
than for the usual method.

I (
—1) r (

—2) I (n+1)
r+( —1) r'( —Z) r'(n+1) (76)

r (m+1) r (m+Z)
r'(m +1) r'(m +Z}

x 1+.. . +r (
—1)

r'( —1)

—2&n&m . (77)

Note that for zero temperature Eqs. (68)—(75) consist
of a finite number of terms because of zero tunneling
rates I +(n) and I' (n) outside the range of possible
charge states. For nonzero temperature, the number of
terms is infinite; however, the sum converges rapidly.
For the fastest convergence one should shift the charge-
state indices and count them from the most probable
charge state no,' then the averages i„,i„i decrease rapid-
ly with!n np! and!m —np!. —

The expressions (47)—(49) and (68)—(77) are convenient
for fast numerical calculations of spectral densities at
zero frequency. The method of dividing the process into
elementary segments (the division points corresponding
to definite charge states) can be useful also for analysis of
other single-electron devices. For example, it allows us
to write in a simple way the expressions for the dc
current in several single-electron circuits in particular
cases (when the number of possible paths in the charge
space is not large) without solution of the master equa-
tion. This method can also be used to substantiate a very
eScient acceleration method for Monte Carlo simulation
of an arbitrary single-electron circuit in the dc case. The
idea of this method is that one should not use random
time intervals between jumps. Instead, one should take
the average values b t =(Qr) ', which are exactly deter-
mined for each charge state. Such a simulation gives the

for n ~ —2. Averages i„i are given by Eq. (67) for posi-
tive n and m. For negative indices the corresponding ex-
pression has the form

VIII. DISCUSSION

'I O
2

i
Rs/Rg = 100 /I'

/ /

/

/~~

FIG. 5. Ultimate charge sensitive 5Q, (minimal detectable
charge) for the capacitively coupled SET in the case of negligi-
ble signal-source capacitance (or in the case of small coupling
capacitance, then 8Q, ~5Qo). R;„=min(R„R2).

A complete explanation of the calculation method for
classical intrinsic noise of the SET (described by the
orthodox theory) is presented in this paper. Calculation
of the intrinsic noise is necessary, for example, for deter-
mination of the ultimate charge sensitivity of a capaci-
tively coupled SET [Fig. 1(b)]. Let us emphasize that we
do not consider the response to a definite signal altera-
tion, but the minimal signal change which can be detect-
ed (for a definite frequency bandwidth). This problem
was considered in detail in Ref. 17, so let us discuss here
only the final results.

The minimal detectable charge 5Q, deternuned by the
classical noise (the bias V and the background charge Qp
are taken to be optimal), depends on the temperature T,
parameters C& C2 R

&
R p of the SET, the capacitance C,

of the signal source, and the measurement bandwidth b,f.
The case of negligible signal-source capacitance,
C, ((C+=C1+C2, is shown in Fig. 5. This limit de-



49 INTRINSIC NOISE OF THE SINGLE-ELECTRON TRANSISTOR 10 391

scribes also the usual experimental situation of small cou-
pling capacitance Cp «C+, but in this case 5Q, should

be substituted by the charge 5go injected into the central
electrode. One can see that at low temperatures the sen-
sitivity depends mainly on the lesser resistance
R;„=min(R„R2) and is almost independent of the
greater one. It is important that only the sum C of the

junction capacitances (not both values) is necessary for
determination of 5Q, .

If the capacitance C, is not negligible, one should find

the optimal value for the coupling capacitance Co (a large

Co can increase the central-electrode capacitance too
much, a small Co impedes charge injection). The opti-
mized sensitivity as a function of the signal-source capac-
itance is shown in Fig. 6 for the symmetric SET
(C, =C2=C, R&=R2=R). One can see that for large
enough C„ the dependence becomes linear (dashed
straight lines). ' In this case it is more convenient to cal-
culate the voltage sensitivity instead of the charge sensi-
tivity. The corresponding value 5U, =5Q, /C, is shown
in Fig. 7 for different resistance ratios.

It is important that the optimal coupling capacitance is
rather large even for infinitely large signal-source capaci-
tance (Fig. 8). Though it is not easy to fabricate SET's
with Co & C& 2, such structures are achievable now, and
they will be necessary for most practical applications of
single-electron effects.

In this paper only the classical intrinsic noise is con-
sidered. It is obvious that this approach fails when co-
tunneling (quantum) processes provide a current compa-
rable to the current calculated from the orthodox theory.
The corresponding estimate' ' shows that the ultimate
sensitivity calculation above becomes incorrect if
R&/R, z )TC+/e (when Qo is not close to e/2).

There are at least two ways to reduce the quantum
noise. The classical tunneling near the Coulomb-
blockade threshold V, depends mainly on the difference
V —V, whereas the cotunneling rates at V= V, decreases

I I I I I8

I 0 2
I I I I I IIII I I I I I Illa' I I I I I I I I

FIG. 7. Ultimate voltage sensitivity 5U, (for large C, ) of the
capacitively coupled SET as a function of the temperature. The
coupling capacitance is assumed to be optimal.
R;„=min(R i,R 2 ), C) =C2 =C.

when V, decreases. So, choosing Qo close to e/2, one

can reduce the contribution of quantum noise. '7 This
method can extend the validity range of the classical
theory of the sensitivity approximately' up to
R&/R, z &(TC+/e )'

Another method to decrease the quantum contribution
to the noise and to improve the sensitivity is the use of
very different resistances R

&
and Rz. Sensitivity restric-

tion by the classical noise depends mainly on the smaller
resistance (see Figs. 5 and 7), so increase of the other
resistance is not essential. However, the cotunneling
current is proportional to 1/R, R2, ' and it decreases
when the larger resistance increases.

Note that in Ref. 31 one can find a similar statement
that the use of different resistances improves the sensitivi-

ty of SET. However, this statement is completely
different from the suggestion above, because in contrast
to the present paper, in Ref. 31 the word "sensitivity"
means dI/dgo. Moreover, it seems that this statement of
Ref. 31 is not quite correct (in orthodox theory the op-
timal value for dI/dgo depends mainly on the smaller

7-

5-

100-

10=

Rs Rt ——1 10

0
0 2 3 4 5 6

Cs/C 0. 1

0.001
I I I I I I I

0. 'I

FKr. 6. Ultimate charge sensitivity 5Q, of the capacitively
coupled SET at various temperatures as a function of the
signal-source capacitance C, for CI =C2=C RI =R2=R. The
straight dashed lines show the asymptotes of 5Q for large C, .

FIG. 8. Optimal coupling capacitance Co in the case of large
source capacitance C„as a function of the temperature.
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resistance but not on the difference between the resis-
tances).

The main restriction on SET sensitivity in contem-
porary experiments is 1/f noise. ' ' Usually its intensity
exceeds classical noise by one or more orders of magni-
tude. For example, the sensitivity 1.5X10 e/Hz'r
was achieved in the experiment by Geerligs, Anderegg,
and Mooij. ' The theoretical ultimate sensitivity accord-
ing to the theory above is equal to 1.2X10 e/Hz'r for
corresponding experimental parameters (C&+Cz =2.6
fF, R, +R2=250kQ, T(C, +C2)/e =0.05).

The 1/f noise probably arises from stochastic occupa-
tion of the charge traps (impurities). ' ' ' By improving
the fabrication technology, it is possible to reduce 1/f

noise. Then one can hope to reach the theoretical limit
for sensitivity of the SET, which is of the order of 10
e/Hz' for experimental parameters available nowadays
(C, 2=10 ' F, R, 2=10 0, T=50 mK).
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