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The existing theory of correlated single-electron tunneling in the double normal- 
metal tunnel junction is extended to the case of an ultrasmall central electrode 
of the structure. It is shown that the form of the I-V curve of such a system 
depends on the energy relaxation rate in this electrode. For realistic values of 
the relaxation rate, the large-scale shape of the dc I-V curve, which is associated 
with Coulomb correlations, is close to that following from the earlier theory. 
However, the I-V curve should also exhibit small-scale singularities reflecting 
the structure of the energy spectrum of the central electrode. 

1. INTRODUCTION 

The Coulomb interaction of the tunneling electrons in small tunnel 
junctions gives rise to correlations between different tunneling events (for 
reviews, see Refs. 1 and 2). These correlations show up in the dc I-V curves 
of  small tunnel junctions and systems of  such junctions. Specifically, in the 
case of  two junctions connected in series, the correlation between events 
of  tunneling through different junctions results in the "Coulomb staircase," 
a periodic modulation of  the dc I-V curve of the system reflecting the 
stepwise increase of an electric charge Q of its middle electrode. Such 
modulation has been observed in several experiments. 3-7 

Existing "or thodox"  theory of  correlated single electron tunneling 1'2 
assumes that the energy spectra of the junction electrodes are continuous, 
an assumption that is valid for not too small particles (~>10 nm or so). The 
energy spectra of  the smaller electrodes are discrete due to the quantum-size 
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effect. It seems important to extend the orthodox theory to the case of such 
junctions, particularly in view of possible applications of the single-electron 
tunneling in molecular electronics. 1"2'8 In the present work we make this 
extension for the simplest case of the double junction formed by an ultra- 
small normal metal particle and two bulk external electrodes. This case is 
realistic from an experimental point of view, since such a system is quite 
feasible using the scanning tunnel microscope technique. 5-7 

The work is organized as follows. In the next section the master equation 
is written down, which describes electron tunneling through the junctions 
with an appropriate account of the energy spectrum discreteness of the 
middle electrode of the system. Starting from this master equation, we study 
the large-scale form of the I-V curve of the double-junction system (Sec. 
3) and its fine structure (Sec. 4). In the last section we discuss some practical 
consequences of our calculations. 

2. MASTER EQUATION 

Let us consider the double tunnel junction formed by a small, normal 
metal particle placed between two bulk external electrodes. We shall assume 
that although the particle is small, it is still mesoscopic, i.e., contains a large 
number of atoms ( N ~  > 102-103). The average spacing A between energy 
levels of such a particle can be estimated as (~(0)r3) -1, where 9(0) is a 
density of states at the Fermi level of the metal the particle is made of and 
r is its radius. In the mesoscopic particle, the spacing A is much less than 
the characteristic charging energy Ec ~- e2/47rFeor (here F is the dielectric 
constant of the tunneling barriers), since these energies are comparable for 
a single atom, and with increasing N, A decreases much faster (ccN -1) than 
the charging energy (cx2N-1/3). 

The condition A<< Ec ensures that the penetration depth A~ of the 
static electric field AF = (e2u(0)/Co)-1/2 is small in comparison to the particle 
radius, so that the usual formula 1,2,9 can be used to calculate the electrostatic 
energy U of the double-junction system 

Q2 eV 
U(nl, n2) 2C~ -~ (Clrt2q - C2nl) (la) 

where 

Q=en+Qo, n=nl -n2  (lb) 

Here, Cj is the capacitance of the j th  junction, nj is the number of electrons 
that have tunneled through it, V is a total voltage across the system, and 
Cz ~ C1 + C2. (In the considered case of the junctions formed by the small 
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particle, the total capacitance C~ should not differ much from the capacit- 
ance 4~rgeor of the particle itself). In Eq. (lb), Qo is a noninteger part of 
the electric charge of the particle (measured in the e units) that can be 
induced, for example, by an external electric field.a'2 

The total Hamiltonian of the double junction includes the electrostatic 
energy U, the internal energies of the electrodes /-/j, the particle Hp, and 
the standard tunnel Hamiltonians H~ (j = 1, 2) 

H =  U + HI + H2 + Hp + Hr, + Hr2 (2) 

All the parts of the Hamiltonian can be expressed via operators c ÷, c of 
creation and annihilation of electrons in the electrodes kj, and the particle 
m. In particular 

Hrj = ~ Tkj.~c~jc,. + h.c. (3) 
kj, m 

lip =~. + + H' (4) 'fiR C m Cm 
m 

where {em} is the energy spectrum of the particle, and H '  describes electron 
energy relaxation in it. 

Coulomb correlations of the electron tunneling can take place only in 
the junctions with small tunnel conductances Gj, Gj << R~ 1 , R e =-~rh/2e 2. 
This condition implies that the electron tunneling rates Fj(em), Fj(em)= 
2zr(ITkj.ml)2Nj(O)/h, are small enough, hFj(em)<< A. Hence, at not too low 
temperatures, T >> hFj, one can treat the terms H77 in Hamiltonian (2) as 
a perturbation and describe the tunneling by a simple master equation for 
the probaiblity density p.(em). ~'2 If the energy relaxation rate ~-1 is also 
small, h/r .  << A, this equation takes the form 

[)n(em, t ) = S n - S . _ , +  E (Fj(e~)[(r._,g(em-Ej(n))(1-f._l(em)) 
j=l,2 

- o-.(1 - g(em - Ej(n)))f. (era)]) + F~ (5a) 

S~=~ Y. Fj(em,){tr.+l[1-g(e~,-Ej(n+l))]f~+l(e,.,)f~+l(e,.) 
j rn'=rtl 

- trng(em,- Ej(n + 1))(1 -f.(em,))f.(em)} (5b) 

p.(em)=tr.f.(em), Y t r . = l ,  f .(em)-~l when em~-oo  (5c) 
n 

where g(s)  is the Fermi distribution function, Ej(n) are the changes of 
electrostatic energy (1) at electron tunneling from the particle to the j th 
external electrode, tr~ and f.(em) are the probabilities to find exactly n 
"excess" electrons on the particle and the corresponding energy distribution 
functions, respectively, and the term F. describes the energy relaxation. 
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The matrix elements Tkj, m can be calculated according to the usual 
formula 1° 

Tk~,, = const( U - e,,) 

x e x p { - a A ( l + ~ A 2 ) }  fvdr~b, ,(r)exp{iKp-z(h2+K2)l/2},  (6) 

k={K,  kz}, r={p , z} ,  A = [ 2 m ( U - e , . ) ] ' / 2 / h  

where the z axis is perpendicular to the tunnel barrier plane, a and U are 
its width and height, respectively, ~bm(r) is a wavefunction of  the ruth energy 
level, and integration in the first of  Eqs. (6) is carried out over the volume 
of  the particle. Since the mesoscopic particle has inevitable irregularities 
of  shape at least on the atomic level, the electron motion in it can be treated 
as ergodic. In this case the energy spectrum {e,.} of  the particle is random 
(see, e.g., Ref. 11), and the amplitude I~b,, (r)l of  the wave functions averaged 
over distances of the order of  kv ~ (kF is the Fermi-level wavenumber) is 
constant. 12 As a consequence, under the assumptions A << kF and e,, << U, 
the matrix elements Tkj,,, and, hence, the tunneling rates Fj, are independent 
of  m. In what follows we shall accept these assumptions, although the main 
results should remain qualitatively valid also in the case of  m-dependent Fj. 

Solving Eq. (5) for the stationary probability density p,(e,) ,  one can 
find the dc I- V curve of  the double junction. The form of  the curve on the 
voltage scale E c / e  (Ec =-- e2/2C~) is determined by the Coulomb correla- 
tions between tunneling electrons, while on the voltage scale A/e it reflects 
the structure of  the particle energy spectrum. Since in our case of mesoscopic 
particles Ec >> A, we can discuss features of  these two characteristic scales 
separately. 

3. GLOBAL STRUCTURE OF THE I-V CURVE 

We begin with a discussion of the large-scale features arising due to 
the Coulomb correlations. In order to calculate them, it is convenient to 
transform the master equation (5) into two equations, one for the prob- 
abilities or, and another for the energy distribution function f (  e,, ) averaged 
over or., f ( e )  =- Y.. O',,fn(em) 

S .  - S . - 1  (7a )  

S" = E Fj{tr.+l[1 - g(e,. - Ej(n + 1))]f~+l(em) 
j ,m 

- tr.g(em - Ej(n + 1))(1 - f~  (era))} (7b) 
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f(em) = E Fj E o'.{g(e,,, - E2(n + 1))(1 - f . ( em))  
j n 

- (1 - g(e,,, - Ej(n)))f.(em)} + F~ (8) 

Further calculations are simplified considerably by the condition Ec >> 
A. First of all, it allows one to neglect the n-dependence of the distribution 
functions f,(em), since particular events of electron tunneling cannot 
influence f,(em) considerably while changing n significantly in this case. 
(The distribution functions can be changed only by the large number, 
=Ec/A,  of the tunneling events.) Then the probabilities crn reach their 
stationary values much faster than f(em), so that solving Eq. (8) for f(em), 
one can use the stationary values of o', corresponding to the instantaneous 
distribution function f(em). Lastly, the summation over m in Eq. (7b) can 
be replaced by an integration. As a result of these transformations, we arrive 
at the following set of equations 

×Y (GJe2)  I d e g ( e -  E;(n + 1 ) ) (1 - f (e ) ) ,  
J 

(9a) 

f (e,  t) = ~, Fj ~ o'n[g(e - Ej(n + 1))(1 - f ( e ) )  
j n 

- (1 - g(e - E~(n)))f(e)] + F~ (9b) 

where Gj = ce2Fj/A, and c =2  for small magnetic field H (H  < - z,/#, where 
z, is the width of the energy levels and/.~ is the Bohr magneton) when all 
energy levels are twofold degenerate, and c -- 1 otherwise. Equations in (9) 
are reasonably simple and can be readily solved numerically. Before that, 
one needs to specify the energy relaxation term F~, which generally depends 
on the energy in a complicated way. We shall adopt the simplest model 
that makes possible a qualitative discussion of the energy relaxation: F~ -- 
[g(e) - f (e)] /r~,  re = const. 

Figure 1 shows results of the numerical solution of Eqs. (9) in the two 
limiting cases of negligibly small- and large-energy relaxation rate. If  the 
relaxation rate is large, z~-~ >>Fj, i.e., ~.~-1 >> z;~A/Ec, where z; ~-- Gj/Cx, 
the current flow through the system does not disturb the equilibrium of 
electrons in the particle, and Eq. (9a) coincides with the corresponding 
equation of the orthodox theory. ~'2 Thus in this case the energy spectrum 
discreteness (or, it is better to say, the finite density of energy states) does 
not influence the large-scale form of the dc I-V curve. 
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Fig. 1. Large-scale form of  the I-V curve of two junctions connected in series at large 
(~'~~ >> ~'~A/Ec) and small energy relaxation rates for the middle electrode of  this system for 
(a) not very strong and (b) very strong difference between junction conductances. 

When the relaxation rate is small, z~-~<< Fj, the electron distribution 
function can fall into non-equilibrium. Such an "overheating" suppresses 
the Coulomb correlations and, hence, the large-scale singularities of the 
loV curve (Fig. la). In the case of strong inequality of the junction conduct- 
ances, however, the tunneling through the junction with the higher conduct- 
ance serves as an energy relaxation mechanism, and this effect vanishes 
(Fig. lb). 
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At large voltages, B >~ (e/Cx)(G1/G2) (for definiteness we shall assume 
that G1 > G2), the I -V curve reaches its linear asymptote, I = ( V -  Vof)/Rx, 
Rz = (Gl1+ GEl) -1, with the voltage offset Vol depending on ~.13 (see also 
Fig. 1) 

Vol = ( e/2C~)(1 + [1 + A%/ ce2R:~] -1) (10) 

Thus, for z~-l<< Fj (A%/ce2Rx >> 1), the offset is two times smaller than in 
the usual case when A%/ceERx << 1 (large energy level density or relaxation 
rate). 

4. FINE STRUCTURE OF THE I-V CURVE 

We shall now discuss the small-scale singularities of the I -V curve, 
which is directly related to the discreteness of the energy spectrum of the 
particle. In fact, due to such discreteness, the current flowing through the 
junctions should increase stepwise with increasing voltage. Each step is 
located at voltages at which the Fermi level in one of the external electrodes 
coincides with one of the energy levels of the particle. The fine structure 
of the I -V  curve should be most pronounced at medium-energy relaxation 
rates, A/h >> ./.~-1 >:> r j ,  when the particle energy spectrum is still discrete, but 
on the other hand electrons in the particle are in thermodynamic equilibrium. 
In this case, at low temperatures, T<< A, the energy distribution function 
has a sharp edge on the energy scale of A. Below we shall discuss exactly 
this range of the relaxation rates. 

Let us consider the situation when the Fermi level in one of the external 
electrodes approaches the energy level em of the particle with p excess 
electrons in it (taking into account the shift of the particle Fermi level due 
to electron tunneling), that is, e,, = Ej(p). Such coincidence takes place at 
V= Vo, where Vo=(-1)J+l[Cxem/e+ep+Qo-e /2] /Cj ,  , j , j '=  1,2, j # j ' ,  
and results in the differential conductance peak centered to Vo. According 
to Eq. (8) the shape of the peak is given by the expression 

G(V)  = bcrj(em)e2( Q,/ C:z)g'(e( V -  Vo) Cj,/ C~.) 

g'(z) = (1/4T)ch-2(z /2T) ,  b = (OI/OIi.p) [ V=Vo, (11) 

where the constant b can be determined from Eqs. (7) (in the case considered 
(v~ -1 >> Fj) these equations coincide with those of the orthodox theory);/j.p 
is a current flowing through the j th junction at n = p. 

Equation ( l l )  shows that the width of the peak is determined by the 
temperature smoothing of the edges of the energy distribution functions in 
the external electrodes, ~, -~ T. This is true only for not-too-low temperatures 
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T>> hl~'~, F s. At T<_ hiT's, F s the master equation (5) and Eq. (11) are not 
valid, and v is determined by the width of the energy level itself, v = 
h ('r7 1 + FI + F2) 14,15. 

The constant b in Eq. (11) can be calculated from Eqs. (7) explicitly 
in several cases. When GI >> (32, b = 1 forj  = 2, p = Int[(C2 V -  Qo+ e/2)/e],  
and b = 0 for any other values of (j, p). In the voltage region just above the 
Coulomb blockade threshold, in which the Coulomb blockade is lifted only 
in one of the junctions (say, the first one), ( e / 2 + Q o ) / C 2 < V <  
min{(e/2-  Qo)/C1, (3 e/2 + Qo)/C2} there are only two nonvanishing prob- 
abilities 0-0, 0-1 

-G2E2 GIE1 
0-0- GIEI - G2E2' 0-1 - G1EI - G2E2 

E 1 = e( VC2-  e/2 - Qo)/C~, E 2 = - e ( V C I + e / 2 + Q o ) / C r .  (12) 

and b = 0-o 2 = bl, b = 0-2_= b2 for the conductance peak arising due to the 
"resonance" in the first (era = El) and the second (e,, = E2) junction, respec- 
tively. 

If one of the junction conductances is much greater than another, say 
G1 >> G2 (this case is most frequently encountered in experiments), the 
conductance peaks arise due to resonances at one set of (j, p) values. In 
this case the system of peaks reflects directly the structure of the particle 
energy spectrum. 

The energy spectrum of the particle with irregular shape can be 
described (see, e.g., Ref. 11) by the random matrix theory, and for GI >> G2 
the well-known results of this theory immediately yield the distribution of 
the voltage intervals 8V between nearest-neighbor conductance peaks 

fo (x)  = Aox  ~ exp(-B0x2), x = 8V/ (SV) ,  (81/) = cCzA/2C1e (13) 

Here/3 = 1, 2, 4, Ao = ~r/2, 32/~ 2, (64/9~) 3, B/3 = ~/4, 4/7r, 64/9zr for the 
following cases, respectively: 1) weak spin-orbit interaction Hso in the 
particle and weak magnetic field H, I(H~o>l, ~ H  << A (orthogonal ensemble 
of the random matrices); 2) strong spin-orbit interaction and strong mag- 
netic field (unitary ensemble); 3) strong spin-orbit interaction and weak 
magnetic field (symplectic ensemble). 

A characteristic feature of the distributions (13) is the "repulsion" of 
peaks, fo(x)-*  0 for x--> 0. For weak spin-orbit interaction and strong mag- 
netic field, there is no correlation between the energy levels for opposite 
spins, so that the repulsion of the level and, accordingly, that of the 
conductance peak, vanishes. The nearest-neighbor spacing distribution in 
this c a s e  is  given approximately by f2(x)--see Eq. (18b) below. 
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The repulsion of energy levels results also in characteristic oscillations 
of two-level correlation function R(X) 16 

s~(x)+(as/ax)  s(t) at, ~ = 1, 

1 - R ( x )  = ~ s E ( x ) ,  fl = 2, (14)  

|[ s2(2x)-(ds(2x)/dx) IoX s(Et) dt, /3=4, 

s(x) = sin(Irx)/~rx 

If the conductance peaks are sufficiently narrow, t, << A, and Fj(em)= 
(F/)=const ,  the conductance correlation function (G(V')G(V'+ V))= 
(GG(V)), G~ G-(G), for V>> v/e is directly related to R(x): 

(Gd(V))=(G)2(R(x)-I), (G)= G2CI/C~, x -  V/(~V) (15) 

For V= v/e the conductance correlation function is determined by the 
shape of the peaks. Namely, for T>> h(Fj, r~-l), T<< A 

I+ ~ -- 1 2 / e V C l \ l  (GG(V))=(G)2c(A/16T) dxch (x)ch- x+=-~=--~| (16a) 
_ \ z i C.~l 

and, in particular, 

(G 2) = (G)2c(A/12 T). (16b) 

One can calculate (GG(V)) at V~- v/e and also for T = 0  and r~ -1 =0 
by making use of a result ~5 obtained for tunneling via an isolated energy 
level, according to which the conductance peak associated with this level 
has the Lorentzian shape with a width h(F~ + F2). This result can be applied 
to the case considered of tunneling via the metallic particle (in spite of the 
Coulomb correlations between different tunneling events in this case), since 
the condition Ec >> A ensures that a large number of energy levels participate 
in the tunneling, and the tunneling events via any two given levels can be 
treated as uncorrelated. In this way we obtain 

(2ce 2 (G)~ 2 f+~ dV' [(4e3V'C,~2~ 
( GG( V))= \ rrh -G--j1] J-~ (-8-V) L k A hG~C~] / 

x(l+(4e3(V-V')C,.~2~] -2 
\ AhGICE ] ].] 

=(G)2c--~GI[I+(2e3V~2q-E 
\A--h-~l] J (17) 

Equations (14)-(17) and similarly Eqs. (19) and (20) below describe the 
mesoscopic conductance fluctuations (see, e.g., Ref. 15 and references 
therein) in the system of  two tunnel junctions considered. 
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When the conductance peaks arise from resonances at several (j, p) 
values, they are related to the energy levels from several various parts of 
the particle energy spectrum, the energy difference between these parts 
being of the order of Ec (Ec >> A). Hence, the conductance peaks with 
different (j, p) values can be regarded as uncorrelated, and the "repulsion" 
of conductance peaks vanishes. 

In particular, if the junction conductances are of the same order of 
magnitude, G1 - G2, then, in the voltage region just above the Coulomb 
blockade threshold, the peaks arise at two sets of (j, p) values--see Eq. 
(12). If, for definiteness, C1 < (72, one can assume that the peaks related to 
resonances in the first junction divide at random part (C~/(72) of the intervals 
between nearest-neighbor peaks related to resonances in the second junction. 
Adopting this assumption, we arrive at the following expression for total 
nearest-neighbor spacing distribution 

u(x)=((C2-Cl)/Cx)f~(x)F(2Cl/Cx):t3(x) ,  x=2eVC2/cACx (18a) 

f~(x) =-- ~ dy(f~(y)/y) 

[(Ir/2) erfc(x/--~ x/2), /3 = 1, 
=~(4/¢r) exp{-(4/Tr)x2}, /3 =2, (18b) 

[(84//2) exp{-B4x2}(1 q- 84x2), /3 = 4. 

The average interval is cA/2e. 
Besides this effect, the coexistence of the two uncorrelated subsystems 

of the conductance peaks makes the characteristic oscillations of (GG(V)) 
less pronounced. For V >> v~ e (v << A) it has the form 

~ ~  [ R {2eVCIC2"~ ] :bjGjC1C2~ 2 (19) 
(GG(V))=(G)2j~,2Tj L ~ ~:-1 , 3,j=-\(G)CjCxl 

( G} = Y, bjG~C, C2/CjCx 
j=1,2 

For V~-- T/e, A>> T>> h(F~, r~ -1) 

G2) cA 1 _ _ ~  2 rj f -.  , ,  -2 2 / eVCIC2\ (GO(V))=(  

in particular, 

( G 2) = ( G)2 c( 3'1 + 3'2)(A/12 T) (20b) 

In small magnetic fields, H << v//z, the energy levels are at least twofold 
degenerate due to time-reversal symmetry of electron motion in the particle. 
Strong magnetic fields break this symmetry and lift the degeneracy 

em -~ e,, + (1 -p)I*H (21) 
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At small spin-orbit interactions, I(Hso)[ << A, the parameter p, which is gen- 
erally dependent on m, can be estimated n as [(Hso)I2/A 2. In the opposite 
limit, I(Hso)[ >> A, p ~ 1. (The field-induced splitting of energy levels in this 
limit can be crudely estimated as (i.LH)2/](Hso)[. Thus each conductance 
peak should bespl i t  by a magnetic field. The voltage interval between the 
arising two peaks and the shift of the middle of this interval equal 6V = 
2( C~/ C~)(1 - p )l~H / e and ( C~/ Cj)( 2p - p2)(tzH)2/ eA , respectively. 

5. ESTIMATES AND CONCLUSIONS 

Now we shall discuss experimentally accessible values of the system 
parameters and evaluate the effects considered above. The most important 
parameters are the average level spacing A, charging energy Ec, and energy 
relaxation rate ~.~-1. A is not very sensitive to the material of the particle (at 
least for metallic particles) and ranges typically from -~10-4eV (1 K) to 
=0.1 eV for particle diameters in the experimentally feasible interval 100- 
10 A. 11 Within this interval the charging energy Ec changes from 0.05 eV 
to 0.5 eV (for the typical value of the dielectric constant of the tunnel 
barriers, g -  5). 

To our knowledge, there are no experimental or thoretical data concern- 
ing the electron energy relaxation rate ~.~-1 in small particles. For relatively 
large energies, e >> A, it seems reasonable to use as an estimate of ~.~-1 the 
bulk value of the relaxation rate, which in its turn can be estimated as 
e2/hev, where eF is the Fermi energy of the metal. 

From these estimates it follows that the energy levels with em = Ec 
should be considerably broadened (h/,r~ >-A) so that the spectrum of the 
particle in this energy range is quasicontinuous and the fine structure of 
the I-V curve is washed out. Since the conditions Gf  1 >> Ro, h/r~ > A imply 
that ~ >> (A/Ec)~'~, overheating effects also cannot take place, and the I-V 
curve of the junctions for voltages V - E c / e  should coincide with that 
derived from the orthodox theory.l"2 

Hence not only the general concept of correlated single-electron tunnel- 
ing, but also the quantitative picture of such tunneling as it is given by the 
orthodox theory, should be valid even for ultrasmall metal particles contain- 
ing =102 atoms. This conclusion should apparently hold not only for the 
system considered in the present work, but also for more complex multijunc- 
tions systems. (Although for smaller particles the theory 1'2 ceases to be 
quantitatively correct, the general concept of correlated tunneling should 
still remain intact.) 

In our present case of the double-junction system, the only difference 
with the predictions of the orthodox theory should be the fine structure of 
the I .V curve in the voltage region just above the Coulomb blockade 
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threshold V, ( V -  V~ -~ A/e).  In fact, at such voltages the energy levels lying 
not far from the Fermi level alone do participate in the tunneling. Although 
the direct estimate of  T~ -1 for these levels from the bulk value is not correct, 
it gives an upper  bound on ~.~-1, since the discreteness of  the electron and, 
perhaps, phonon spectra can, on an average, only make the relaxation rate 
smaller than the bulk value at the same energy e. The bulk inelastic relaxation 
rate equals 1011-1012 sec -1 at e = 10 K and increases a s  e 2 with increasing e. 17 

From this estimate one can conclude that the conductance peaks related 
to the energy levels near the Fermi level should be observable. Such observa- 
tion can be carried out, however, only in a double-junction system whose 
I - V  curve varies smoothly near Coulomb blockade threshold. In the most 
realistic case of  strongly unequal junctions conductances, GI >> G2, this 
requirement implies that the capacitance of  a poorly conducting junction 
is smaller than that of  a better conducting one, C1 < C2. The observation 
of  the conductance peaks would make it possible (for the first time, to our 
knowledge) to check directly the applicability of the random-matrix theory 
to small particles. 

As we discussed above, the behavior of  the conductance peaks in the 
magnetic field depends strongly on the magnitude of the spin-orbit interac- 
tion, which can be estimated from the bulk value of the shift 8g of  the g 
factor of the conduction electrons. Since the matrix elements of  the spin-orbit 
interaction H'so in the bulk samples are nonvanishing only for states in the 
different energy bands and is I(n'~o)l=SgE (where E is characteristic 
intraband energy interval), then Hso = I(H'so)12/E ~-(~g)2E. From this esti- 
mate it follows, for example, that for A= 10 K the conditions of  weak 
(l<Hso>l << A) and strong (l<nso>l >> A) spin-orbit  interaction should be met 
in aluminum and gold particles (Sg = - 5  x 10 -3  and 8g = 0.1 19), respectively. 
It means, in particular, that according To Eq. (15) a magnetic field of 10 T 
should cause the splitting of  the conductance peaks by 8 V =  100/xV in the 
first case, while in the second case such a splitting should be practically 
unobservable, 8 V < - 1 I.L V. 
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