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In this article we review the use of the tunnel junction arrays for primary 
thermometry. In addition to our basic experimental and theoretical results we 
stress the insensitivity of this method to the fluctuating background charges, 
to nonidealities in the array and to magnetic field. Important new results 
of this article are the low temperature corrections to the half width and 
depth of the measured conductance dip beyond the linear approximation. We 
also point ou that short arrays, single tunnel junctions in particular, show 
interesting deviations from the universal behaviour of the long arrays. 

1. INTRODUCTION 

Single electron tunnelling (SET) effects have been intensively studied for 
the past few years. ~ The properties of SET components, in particular of 1 D 
arrays, in the low temperature regime, kBT~  Ec, where E c is the charging 
energy of the system, have been widely discussed, 2"3 whereas the opposite 
limit ksT>> E~. has been largely overlooked. Yet one dimensional arrays of 
normal metal tunnel junctions exhibit properties which are very suitable for 
primary and secondary thermometry in a lithographically adjustable tem- 
perature range which extends over two decades in the k s T > E  c regime. 
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The thermometer is remarkably insensitive to nonuniformities in the actual 
pattern and to even strong magnetic fields. We discuss the behaviour of 
this device at low temperatures where the hot electron effect due to poor  
electron phonon coupling ultimately takes over at T ~  1 K, and at high 
temperatures, T > 5 0  K, where the barrier suppression limits the use of 
AIOx based junctions. Short arrays, and especially single tunnel junctions 
show interesting deviations from the universal behaviour of the long array. 
Our work on tunnel junctions in the weak Coulomb blockade regime is 
mostly based on the orthodox theory of tunnelling of Ref. 1, and it has 
been reported in Refs. 4, 5, 6, 7, and 8. 

2. THEORY OF C H A R G I N G  EFFECTS IN THE H I G H  
T E M P E R A T U R E  LIMIT 

A. The First Order Results for Weak Coulomb Blockade 

We start with a brief theoretical description of a 1D array of N normal 
metal tunnel junctions, which is schematically shown in Fig. 1. The 
resistance of the ith junction is denoted by Rr.~, and its capacitance by Ci. 
The stray (ground) capacitance of the ith island, between the ith and 
( i+  1)th junctions, is Co.~. In general, we may allow non-equal values for 
Rr,~, C~, and Co,~ at difl'erent i, i.e., inhomogenities in the array, biased at 
+_ V/2 at its ends. 

Simple tbrmulae for the/V-curve and its easily measurable derivative, 
i.e., the differential conductance, G, in the case of an arbitrary N-junction 
array were obtained in Ref. 5 with a result 

G/Gr=I-2 ~ Rr.i Ai (Rr.~eV/knT) 
i=, Rz ~sTg \ Ez 

(1) 

using a high temperature expansion with A i <{ k 8 T up to the first order. A t, 
the Coulomb blockade threshold for the ith junction, originates from the 

RT, D Cl iT,2, C2 RT,i.D Ci.I aT, i, Ci RT,N. D CN.l iT,N, CN 

Fig. 1. A one dimensional tunnel junction array. The divided rectangles repre- 
sent normal metal based junctions. 
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inverse capacitance matrix, C i, of the array5: Ai=(Cj l l .~_ t  + C i )  l -  
2 C ~  i)e2/2. The function g was introduced in Ref. 4 and defined by 

g(x) = [x  sinh(x) - 4 sinh2(x/2)]/8 sinh4(x/2) (2) 

and we denote the total tunnel resistance by R~, i.e., R~-=Zy=~ Rr.~. 
Gr is the asymptotic value of G when V ~  + ~ .  

In the fully symmetric case with Rr .~-Rr ,  C~=-C and Co.i=O we 
obtain 

G/Gr= 1 - UN g(UN) (3) 

with UN=--2[(N - 1)/N](e2/2C/ksT) and VN=-eV/NkRT. This represents a 
nearly bell shaped dip in conductance and the full width at half minimum, 
Vi/2, depends only on N and T: 

Vi/2 ~_ 5.44Nk ~ Tie (4) 

The depth depends on capacitances through UN as 

AG/Gr = (1/6) ~l N (5) 

Equations (4) and (5) are our central results on primary and secondary 
thermometry, respectively. 

B. Higher Order Corrections 

Higher order terms in the expansion yield corrections to the results of 
Eqs. (3-5) of a symmetric array. To obtain these we use a slightly different 
approach. Instead of calculating the probabilities of different electron con- 
figurations on the island, and writing current as a sum of tunnelling rates 
weighted by these probabilities, we calculate the probabilities of the 
configurations {Vi}, where Pi is a fluctuation from the average voltage 
drop V/N of the ith junction. From these configuration probabilities we 
then can obtain probabilities for the ith junction to have a fluctuation ~'~. 
To find the configuration probabilities a we need a master equation which 
can be written for N junctions as 

0({ny) ) = ~ {a(..., n j -  1, ny+~ + 1,...) 1"7( .... n y -  1, nj+l + 1,...) 
J 

+ a (  .... n j+  1, nj+l - 1,...) Ff(. . . ,  n j+  1, n j + l -  1,...) 

- r r T (  .... nj ,  n j + l  .... ) + r 7 (  .... n j + l , . . . ) ]  o( .... nj, j+, .... )} (6) 
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In steady state we have 4({nj})=0 and Eq. (6) can be written in a 
linearised approximations as a differential equation 

N~' (0~j.+ 0_0ns)I 1 ~nj) ] 
j = 0  I . 1 

(7) 

with h(x) = x coth(x/2). Here V is the voltage applied over the whole array 
and Vj. is the (fluctuating) voltage drop across the j th junction. Since 
e V/ can be expressed in terms of the energy of the symmetric array, 
W({nj})=~_vua-=ll e2/(2CN).j(N--k)njnk, we can solve Eq. (7) and obtain 

a({ns}) oc exp [ 2W({ni}) ] 
h(vN) kBTJ 

(8) 

Since each occupation configuration {n~} corresponds to a certain 
voltage configuration { V~} across the junctions in the array, we can make 
a change of variables from n~ to Ve. Furthermore, we may write each 
voltage drop as V~= V/N+ ~'~. Making use of the fact that W({ ~'i})= 
(C/Z) Z ,  ~'~- we can express probabilities a({n~}) using { ~'~}:s. The prob- 
ability for the ith junction to have a fluctuation ~'~, a(~'~), can then be 
calculated using these. After normalization, i.e., by setting ~'2o~ a(g~)dg~= 
kgT/e with fi=eP'i/kBT, we finally obtain 

a ( g i ) = ~  UNrCh(vN ) exp UNh(VN)J (9) 

Note that we assume ~ to be a continuous variable. 
We can write the current as 

I = k . T  f~-o~ ~(O')[Fi+(VN' ffi)- F[-(VN, g,)] dg, (10) 

where the tunnelling rates forwards and backwards in the ith junction, 
F+(VN, Vi), can be obtained from the change of the free energy, AF +, in the 
corresponding tunnelling event. 4 Thus one obtains for the two tunnelling 
rates, e.g., in the first junction 

k B T  q-VN-I-Ot--UN/2 

F~ =eZRr 1--exp[-T-vN-T-~+uN/2} 
(11) 
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Using the high temperature expansion with UN ~ 1 we obtain the same 
first order result as in Eq. (3), but now we can proceed to higher order 
corrections as well: 

G / G T =  1 - I.,INg(VN) --  lt,,t2N[ g"(tJN) h(VN)  -I-g ' (VN) h'(VN) ] 

1 ..3 F I . . . . . . .  1 . . . .  (o, ~ h , ( V x )  h ( v N ) ]  __ - -  g U N k ~ g  tVN) h ( V N ) -  + I g " (VN )  nt- 5,g teN] "'" 

(12) 

From this we can obtain the linear correction to the full width at half 
minimum in Eq. (4): 

A V I / 2  ~- 0.39211 A G  
V~/~_,o G r  

13) 

where V~/2, o is full width at half minimum from Eq. (4) and the numerical 
factor 0.39211 originates from the functions h, g and their derivates at VN = 
(1/2)(eV~/2,o/kRT).  In the same way we obtain corrections to the depth of 
the conductance curve beyond Eq. (5): 

A G / G T  = (1/6)  t/N - -  (1/60) U ~V + (1/630) U N +. . .  (14) 

The effect of these corrections is to flatten and to broaden the conductance 
dip. 

To check the validity of the analytic method, and to investigate the 
effect of non-zero background charges (See Ch. 2C), we also performed 
stochastic Monte-Carlo (MC) calculations. 6 This basic method could, 
however, be accelerated significantly at higher temperatures over the 
method used, e.g., in Ref. 9, by a "hybrid" like method, where just the 
charge configuration is obtained by means of MC, but the current through 
the array is calculated as a sum of tunnelling rates weighted by the corre- 
sponding probabilities of configurations. The linear correction to the full 
width at half minimum obtained by this method agrees well with the 
analytic correction (13) as shown in Fig. 2. 

C. Nonidealities of the Arrays 

Equation (1) yields a quadratic dependence for V I / 2  in the case of 
small variations in junction parameters such that 

V,/2/ (5 .44Nk ~ T/e  ) ~- 1 - k [ fi R / R o  ] 2rm s ( 15 ) 
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Fig. 2. Low temperature corrections to temperature obtained from Eq. 4. The 
solid line is from Eq. (13) and the data points are obtained by the Monte Carlo- 
method of Rel: 6. 

where [fiR~R()] ....... is the rms deviation of the junction resistances from their 
mean value Ro=-R,z /N in the array, and we have made the natural 
assumption that Rr.~Ci= constant throughout the array (see Sec. 4C). The 
numerical factor k has a value k "-~ 0.73 + ( N -  1 )/N. 

In calculations above we assumed that the ends of an array were 
ideally biased at -4- V/2, i.e., the potentials at the ends did not change due 
to tunnelling. In practice this is not true. When electron tunnels through 
the first or the last junction to or from the end of the array it changes the 
potential in there. This voltage fluctuation then recovers within a time deter- 
mined by the impedance of the environment, i.e., the connecting wires and 
capacitances. This is the reason for the observed charging peaks on single 
junctions discussed in Sec. 5. In an array with large N the effect due to its 
ends is negligible compared to the charging effects of the N -  1 islands. 

A technically more complicated problem is that of the background 
charges in the array. Those are highly uncontrollable in the experiment and 
produce nonidealities to the charging effects. To find out the influence of 
the background charges we used the Monte Carlo-method mentioned 
earlier. 6 In these simulation runs we introduced on each island a random 
offsett charge qo, i drawn from a uniform distribution within the interval 
[ - e / 2 ,  +e /2 ]  since the effect of qo, i is e periodic. The uniform distribution 
reflects that fact that no particular configuration of q0,~ is preferred in 
experiment. Some runs were performed with uniform nonzero background 
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charges with results equal to those in any other configurations in high tem- 
perature regime. 

The effect of the background charges on V~/2 and the dip height are 
shown in Fig. 3 for 10 and 40 junction arrays. The two junction case was 
studied in Ref. 4. It is seen from Fig. 3 that correction to the analytic first 
order half width, V~/2.o obtained from Eq. (4), is linear at high T and that 
background charges do not affect V~/2 and A G / G r  until UN ~--3. The two 
junction case starts to show sensitivity to background charges from UN ~-- 2 
upwards. 4 A qualitative explanation for this insensitivity to background 
charges at higher temperatures originates from the temperature dependence 
of the probabilities cr({ni}). The probability of configurations with ni 
electrons on a particular island, a ( n i ) =  ~ , , j . / ~ i a ( n l ,  n2 ..... ni ..... nN i), is 
peaked around ni = 0 and normally distributed. The square of the width of 
this gaussian distribution is lineary dependent on temperature. Obviously, 
background charges qo.i start to have a noticeable effect only when the 
spread in charge drops down to that of qo.[S, i.e., at low temperatures. 

3. FABRICATION OF THE SENSORS AND 
EXPERIMENTAL TECHNIQUES 

We fabricate samples by electron beam lithography and standard 
shadow evaporation of aluminium on oxidized silicon substrates. The tunnel 
barrier is formed in pure oxygen at room temperature. Figure 4 shows 
thermometers (a) for low temperatures with large junctions and islands and 
with cooling fins attached, and (b) for high temperatures with ultra small 
junctions and islands, respectively. In the experiments we have investigated 
samples with capacitances ranging from C,-=0.2 fF up to C,. = 15 fF. The 
areas of the tunnel junctions are varied in the range 6 x 10-3 _ 1.5 (pm) 2. 
The resistances are on the order of 100 kf~. 

For  cross checking the CBT thermometers we employ calibrated Cernox 
resistors from Lake Shore, superconducting transition temperatures at zero 
magnetic field of pure Pb at 7.19 K, A1 at 1.18 K, and Ti at 0.39 K, and 
4.215 K of boiling 4He at 760 mmHg, and most recently 77 K of boiling Nz 
at 760 mmHg. The conductance vs. bias voltage has been measured with a 
linear DC voltage sweep typically in ~ 3 minutes across the full bias range 
with a sufficiently low amplitude AC modulation (V~c.4~ V,/2) typically at 
10 Hz. Very recently a prototype of a compact measuring bridge for CBT- 
thermometers has been constructed. Measurements are carried out either in 
our home made plastic dilution refrigerators ~~ down to 50 inK, or inside a 
variable temperature insert between 4.2 K and 77 K. 
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Fig. 4. Electron beam patterned aluminium based arrays of tunnel junctions for CBT 
thermometry. Array in (a) is for 5 0 m K < T < 4 K ,  and array in (b) is for 1 K < T < 5 0 K .  
Overlapping, brighter areas between the islands form the junctions in each case. Note that 
high temperature requires ultra small junctions, whereas low temperatures can be measured 
by large area junctions and islands. 
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4. EXPERIMENTAL RESULTS 

A. Basic Results 

Measured conductances follow the expression of Eq. (3) very closely. 
As an example we show in Fig. 5 data of a sample with N =  20 junctions 
at T=4.2 K. The best fit to the data of Fig. 5 yields VI/2 = 39.56 mV, 
whereas the value calculated from Eq. (3) is 39.36 inV. In Fig. 6 we see data 
on the experimental N dependence of Vj/2 at T= 4.2 K for various samples 
with AG/Gr< 0.05. The line has the theoretical slope 5.44ksT/e of Eq. (4). 
There is a slight deviation from the simple theoretical behaviour at low N, 
which we will discuss in Sec. 5. In Fig. 7 we show the experimental tem- 
perature dependence of (a) the width, V~/2, and (b) the inverse height, 
(AG/Gr) -~ of a few samples with different values of N, together with 
5.44Nk,T/e by the solid line in (a). V~/2 does not involve any fit 
parameters making our thermometer a primary one, whereas in (b) AG/Gr 
at one temperature gives Us, whereby the rest of the line for each array is 
determined. 

On the premise of the theoretical results in Sec. 2, our thermometer is 
self-calibrating, and thus primry, at any temperature. The two quantities, 
Vi i  2 and (AG/GT)-~, are fairly linear in T, respectively, over a wide tem- 
perature interval. The dynamic temperature range is determined on one 
hand by the signal to noise ratio to detect small changes of G at the high 
temperature end, and, on the other hand, by the approach of full Coulomb 
blockade at the low temperature end. By lock-in techniques we can 

i i i 

1.00 - 
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0.98 

0.97 

, I , i , 5tO 
-1 O 0  - 5 0  0 1 O0 

V (mY) 

Fig. 5. An example of a measurement  of an array of N = 20 junctions 
at T = 4 . 2  K. The solid line shows the analytical result by Eq. (3). 
Parameters V m and AG/Gr are introduced in the figure. 
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Fig. 6. Dependence of V~I z at T=4.21 K on the number of junctions 
N in the array for a set of samples where AG/Gr4~ 1. The straight line 
through the measured points corresponds to V,/2 = 1.98 mV x N by 
Eq. (4). 

measure conductance minima with 5 % precision at u~v = 0.01 ( A G / G r  ~- 0.2 
per cent) at the high temperature end, and the full Coulomb blockade limit 
is not yet approach when u N = 1. This gives the ratio of the maximum and 
the minimum measurable tempratures, T,  ....... /T,,,i , ,  ~ 100, by just one array. 
The mean of the temperature range can be tailored by the size of the junc- 
tions, i.e., by Uu.  ,~ . . . . . . . . .  

0.1 1 10 
. . . . . .  

1 lO 
T(K) 

Fig. 7. The temperature dependence of (a) the width at half mini- 
mum,  Vii 2, and (b) the inverse height, (AG/Gr) -1 of conductance 
curves of various samples. The solid line in (a) is form Eq. (3) and 
those in (b) are linear in T. 
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B. Tolerance to Magnetic Field 

Low temperature thermometers insensitive to magnetic field are fairly 
rare'~; Coulomb blockade might provide one. Features in Coulomb block- 
ade should supposedly not depend on magnetic field when E F ~1~8B. This 
inequality is always satisfied in practice. Here, E F is the Fermi energy of the 
metal,/x e is the Bohr magneton and B is the magnetic flux density. Figure 8 
shows measurements of magnetic field dependence of V,/2 at three different 
temperatures. To within the 2% reproducibility of temperature no field 
dependence at any of the three temperatures of 4.2, 1.6, and 0.7 K can be 
observed. The only limitation as to magnetic field when using aluminium 
junctions seems to be the required suppression of superconductivity at 
T < I K .  

C. Inhomogeneous Arrays 

One of the more important factors affecting the applicability of junc- 
tion arrays for precise measurements of absolute temperature is the 
tolerance of V~/2 to inhomogeneities in the junction parameters as already 
discussed theoretically in Sec. 2. Figure 9 shows a set of measurements 
where arrays of varying deviations from a uniform chain were intentionally 
fabricated; experimental data are shown in open circles. The measurement 
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Fig. 8. Magnetic field dependence of V~/2 divided by its mean value 
(V~/2) within each set of data. The data are for T=4.2  K, N =  10 
(solid circles); T=  1.6 K, N =  10 (solid triangles); T=0.7  K, N =  10 
(open circles); and T =  1.6 K, N - 4 0  (crosses). The different values 
at the same field and with the same symbol reflect the scatter in 
measuring Vi/2. At T =  0.7 K a field of ~0.5 T was necessary to sup- 
press superconductivity of aluminium. 
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Fig. 9. The width of the conductance curve VL/2, as scaled by the 
calculated width of a homogeneous array, 5.44NkxT/e .  The data in 
open circles represent experiments as a function of the width in the 
distribution of junction areas. For further definition of A ........ /A,,,i,,, see 
text. The solid and dashed lines are the corresponding theoretical 
lines, with assumptions explained in the text. The inset with a solid 
line shows the magnification of the upper left hand corner, as given 
by Eq. (6). 

was taken at T =  4.2 K with arrays where AG/Gr varied between 0.8 % and 
1.6%. A random type of distribution of junction areas in a chain of N- -  10 
was generated. All the chains possessed a similar distribution, but with a 
varying amplitude characterized by the parameter A ........ /A,,,,,, which is the 
ratio of the maximum and minimum areas of junctions within a chain. The 
geometrical width of each junction in the chain was nominally 0.2/~m, and, 
as an example, their lengths from one end of the chain to the other were 
1, 1.4, 0.9, 1.1, 1.2, 0.75, 1, 1.3, 1.5, and 0.8/.tm, respectively, for the case 
A . . . . .  /Ami n = 2. Up to A ...... /A,,i, = 10 we observe a drop of VI/2 by a factor 
of two, at most, which already demonstrates weak dependence of this 
thermometric parameter on fabrication errors. 

We may compare the experiment in Fig. 9 with the general high T 
expression of Eq. (1). Assuming uniform thickness of the aluminium oxide 
barrier throughout, we may suppose that Rr.iC~=constant for all junc- 
tions, because Rr.~ oc A71 and C; oc A;, where Ai is the tunnelling area of 
junction i. Using this approximation and the distribution of junction 
parameters as set in the experimental layout we obtain the solid line in 
Fig. 9 in fair agreement with the experiment. We believe that the slight 
deviation is due to the fact that the real areas of the junctions deviate by 
a constant additional value from that of the lithographic pattern. The 
dashed line is the theoretical result assuming that there is an additional 
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area in each junction, which is 10% as compared to the area of the 
first one. An important conclusion involves the left hand upper corner of 
the figure, shown also by an inset, and given by Eq. (6). The numerical 
factor k =  1.63 for N--10.  In Fig. 9 this means that a 10% deviation, 
i.e., A ....... /A,,,,,= 1.1 induces a drop of 0.2% in V~/2, only. With junction 
areas of nominally 0.2/zm 2 we can easily reach such a homogeneity, as sup- 
ported by the small variation in the experimental values at A ...... /A,,,,, = 1 
in Fig. 9. 

D. Hot  Electron Effects 

Thermalisation of single electron devices is of considerable interest 
because of its fundamental and practical consequences. Heat transport 
between the conduction electrons and the lattice in a metal is believed to 
be well known and to obey a familiar ~ T,~-  T~ law at low electron and 
lattice temperatures T~. and T o, respectively. This law has been proven to 
be valid in thin films with uniform heating over a considerable surface 
area.~2 ~4 We have carried out an experimental investigation of the ther- 
malisation of lithographically patterned tunnel junction arrays with thin 
film micron and submicron size metallic islands. 7 Such a study is vitally 
important, since in practical thermometry one is typically interested in the 
temperature of the surrounding lattice rather than the electronic system. 

Consider a linear array of N tunnel junctions connected together by 
normal metal island electrodes. When biased at a voltage V across the ends 
of the chain, we have a power generated in junction i which equals 
V2Rr,  i /R~.  This power is evenly shared by the two neighbouring islands. 
We have shown that this heat can hardly be transported away along the 
chain because of the high thermal resistance of the junctions, but it is, 
instead, leaking out from each island to the substrate via electron-phonon 
(el-ph) coupling and Kapitza resistance between the metal lattice and the 
silicon substrate, as depicted by the scheme in Fig. 10. 

Assume an array perfectly thermalised at the (constant) temperature of 
the refrigerator at any bias voltage. If uN< 1, Eq. (3) is very well obeyed 
in experiment by any symmetric array. Suppose this is not true due to 
either an extremely low temperature and/or insufficient volume and surface 
area of the island electrodes to thermalise. In this case the electronic tem- 
perature increases upon increasing bias due to the power dissipated. The 
shape of the conductance curve is thus distorted from that of Eq. (3). 

We identify three island geometries in the following as: A--straight  
lines, 11 x 0.25 (/zm) 2, connecting the junctions; B- -an  extension of 22 x 1.2 
(/zm) 2 added orthogonally to the geometry of A; C- -an  extension of 40 x 5 
(/zm) 2 further added to one end of the cooling fins of the geometry B. 
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Fig. 10. A schematic thermal model of the array including the elec- 
tronic thermal resistance of the junctions, Rj j the el-ph resistance, 
R,,/.ph, and the Kapitza resistance to the substrate, RE. 

(The low T samples in Fig. 13a) are the type C.) The junctions in each case 
had a nominal  overalp area of  0.25 x 3 (pm) 2. 

Da ta  of  samples of  types A and C are shown in Fig. 11 at T = 200 mK. 
Those of  type B lie between these two extremes but they have been omitted 
for clarity. The solid line represents the analytic form of Eq. (3) with UN 
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Fig. 11. Differential conductance G/Gr of two samples with N=40 of types 
A and C at T=200mK. The values of e,.~-uukz~T for these samples are 
0.090 K and 0.064 K, respectively. The corresponding volumes ~ are indi- 
cated for each sample in the figure. The dependence with constant tempera- 
ture (Eq. (3)) is shown by the solid line. The depth of the drop of the sample 
of type C has been scaled by 1.42, to allow direct comparison between the 
two samples and the constant temperature model. The inset shows the 
dependence of the electronic temperature of the small sample (type A) as 
plotted against bias voltage. 
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parameter chosen to fit the experimental depth. The data of the sample 
with increased volume of the island closely follow the constant temperature 
curve but those of the array with small islands strongly deviate from this. 
We take this deviation as a quantitative measure of the thermal contact  of 
the electrons on the islands to their surrounding lattice. 

At low temperatures, where the shape of Eq. (3) is not anymore 
followed due to the heating by the bias current, we analysed the el-ph 
coupling at small temperature differences, i.e., near the minimum of  the 
conductance dip. Assume first that the heating at zero bias is negligible, 
implying that T,. = To at V = 0; in other words, we apply a sufficiently small 
AC-voltage to measure the differential conductance. 

Secondly, we assume that heating on each island equals V2/NRr .  
Thirdly, the coupling between the electrons to the phonons is such that the 
power P of the heat transfer out of the electron system equals 

P = Zf~( T~" - To) (16) 

where fl  is the volume of the electrode, and Z and n are the parameters 
of coupling. Literatures gives Y.~ l n W / K S / ( p m )  ~ and n = 5  for unitbrm 
heating in a metal. '2 ,5 Using the three arguments above we obtain Z and 
n for a given sample. Four typical examples are shown in Fig. 12 of samples 
of types A and B where n = 5 has been applied to find Z as a function of 
To. We note that for the nonextended samples of type A the el-ph coupling 

1 . , . . . .  , . . . .  , . . . .  

~o mm �9 

~ o.3 v 

II- 0.1 ~eO o 
C" �9 0 0 

0.03 o 
, r , , , , i , , , , f i , , , 

0.2 0.3 0.4 0.5 
T (K) 

Fig. 12. Thermal contact parameter  Z obtained for four different 
samples using the conventional n = 5 power law. Squares, open and 
filled, are for non-extended islands of type A with film thicknesses 
50 and 16 nm, respectively, whereas circles, open and filled, are for 
samples with extended islands of type B with film thickness of 13 nm 
in both cases. 
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can be presented in the form P =  El2( TS-e T(~), with Z---0.6 nW/KS/(ctm) 3. 
This applies for both thin (16nm) and thicker (50nm) films, indicating 
that increasing the thickness, and thus volume, improves the thermal 
contact. For extended samples of type B, the contact is effectively weaker, 
and the dependence on To is also weaker. The best fits in this in this case 

( a ) 1 . 0 0  
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, . . . . .  

,_ 1.001 [ 

1.000 [ 
; 2'0 4'0 
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Fig. 13. (a) Differential conductance curves of a junction array 
(N = 20) as measured at various temperatures: 2.6, 4.2, 8.6 and 38 K. 
The lowest temperature corresponds to the deepest minimum. The 
inset shows the conductance measured at 38 K on a more proper 
scale (in the same units). (b) Conductances alter the charging dips 
have been substracted. These sets of data were obtained by fitting the 
result of the Eq. (3) to the measured data with GT, VI/2 and G(O)/GT 
(or GT, C and T) as adjustable parameters. Triangles are data 
measured at 25 K, whereas circles, filled and open, are measured at 
38 and 43 K, respectively. 
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have n ~ 3.5. Type C samples closely follow Eq. (3), i.e., they behave well 
for thermometry, and thus do not allow us to extract Z. 

The result of samples of type A agrees with the common expectation 
qualitatively and quantitatively. We are, however, unable to give a quan- 
titative interpretation of the observation on the extended samples. We thus 
conclude that thermal coupling can be improved by increasing the volume 
of the island, but, upon increasing the surface area alone, the effective 
coupling constant is reduced possibly indicating the presence of local hot 
electrons. 

E. High Temperature Limitations Due to Barrier Suppression 

At the high temperature end CBT thermometry with aluminium based 
junctions is limited by the non infinite height of the tunnel barrier ( - 2  eV) 
of the insulating oxide layer between the electrodes. Because of this finite 
height the conductance depends on bias. This voltage dependence is present 
with no respect of charging effects. The Coulomb peak broadens and 
becomes lower toward higher temperatures and thus one cannot ultimately 
resolve this charging peak from the bias dependent background. We find 
agreement between the simple theory of Sec. 2 and measurements up to 
about 50 K, whereabove the effect due to the potential barrier becomes a 
dominating feature over the charging effect, unless the junctions are very 
small to enhance Coulomb blockade. Figure 13(a) shows conductance 
curves of a sample measured at various temperatures up to T =  38 K. We 
can see the influence of the barrier suppression in the highest temperature 
data, expanded in the inset. 

Figure 13(b) shows differential conductance of the same array measured 
against bias voltage various temperatures. The charging minima have been 
numerically subtracted to allow straight comparison of the backgrounds. 
We can roughly estimate the maximum measurable temperature as follows. 
The charging peak is distinguishable from the background if the full width 
at half minimum, V~/2, is less than half of the flat section of the back- 
ground, which is 20 mV in Fig. 13(b). From Eq. (3) this gives roughly 40 K 
as the upper limit. Up to this temperature no corrections are needed. By 
subtracting the non linear background induced by the finite barrier we 
have been able to measure up to 77 K so far. 

5. SHORT ARRAYS AND SOLITARY JUNCTIONS 

Unlike arrays, a solitary tunnel junction is believed to show no 
charging effects in the simplest picture with perfect voltage bias across. 
Experimentally, a significant zero bias anomaly in the form of a drop of 



Tunnel Junctions in the Weak Coulomb Blockade Regime 209 

conductance exists also in single junctions. 16.-19 This is reflected by our data 
in Fig. 14(a), where the normalised conductance, G/GT, against bias volt- 
age V at high temperature ( T = 4 . 2  K) is shown for a set of samples with 
N = 1, 2, 4 and 8 junctions in series separated by 3/.tm long islands. The 
insets show the values of V~/2 and AG/Gr for these data. One would not 
expect such a smooth dependence on N down to N =  1 in case the single 
junction peak would arise from a totally different origin as opposed to the 
case of N > 1. We can explain this behavior if we assume that the dominat- 
ing capacitance determining the charging anomaly is that of the junction 
and not the environment. 

Let us first discuss the IV characteristics of a solitary tunnel junction in 
the general case with capacitances C,,~ and C,.2 at this terminals (Fig. 14(b)). 
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Fig. 14. (a) Differential conductance scaled by its asymptotic value at 
e V> kn T of various samples with identical tunnel junctions fabricated in 
one batch. The data are for different lengths, N, of arrays: circles, N =  1; 
solid circles, N = 2 ;  squares, N = 4 ;  filled squares, N = 8 .  The measure- 
ment was taken at T =  4.2 K. The insets show V~/2 and AG/G r of these 
data against N together with the theoretical "thermometer formula": 
eVi l  2 ~- 5 .44NkHT shown by a continuous line. Note that the depth is 
practically constant down to N = 1. (b) A schematic representation of a 
single junction including the environment with capacitances C~.j. 
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These two capacitances arise from the sections of electrodes attached to the 
junction, contributing to the charging energy, and this way they define the 
so called "horizon." Suppose that the bias across the junction equals V 
prior to the tunnelling event. Due to the shortness of the tunnelling time 
and the remoteness of  the voltage source we may assume that the bias 
across the junction drops at the very instant of the electron tunnelling 
event by an amount  AV=e / (C+ CS2), and we set Ce2 = C,.t =- C~. for sim- 
plicity. This drop and the initial bias determine the two tunnelling rates in 
the forward and backward directions, respectively. Denoting v , = e V / k ~ T  
and u~=(e2/C,:zf)/k~T, we obtain a similar result as for the arrays 
(Eq. (3)), but now for N =  1: The differential conductance scaled by its 
asymptotic values at large V, G/Gr, reads 

G/Gr = 1 - u,. g(v,.) (17) 

in a linear expansion in u.,., i.e., at high temperature. The depth of  the 
conductance dip, AG/Gr, is given by AG/G-r=U,./6. Furthermore,  its full 
width at half minimum, V~/z, is V~/z ", 5.44k~T/e. 

We can treat this problem also directly based on the microscopic 
theory reviewed in Ref. 20. From this theory we obtain an equat ion for 
tunnelling rates, which can be written as 

f,5r 1 7,( + e V -  E) P(E) dE (18) F • (V) = e2R---Tr .... 

where 7 ( x ) = x / ( 1 - e x p ( - x / k ~ T ) ) ,  and P(E) is the probability for an 
electron to exchange energy E with the environment in a tunnelling event. 
The current can now be calculated from I =  e [F  +( V ) -  F (V)]. 

Because P(E) is peaked around E = 0  and vanishes as E tends to 4-oo, 
we can expand the 7 ( + _ e V - E )  around +eV. By substituting this expan- 
sion to the formulae of current up to the first order and using the facts that 

P(E) dE = 1 and ~ EP(E) dE= e2/2C we obtain Eq. (17) again. This result 
also explains the conductance curves in Fig. 14(a), in particular for N =  1. 

Upon lowering T, C,.zf increases, and the single junction peak becomes 
practically negligible. This behaviour is very interesting fundamentally, and 
important  for the accuracy of the CBT thermometers with short arrays. To 
be a bit more specific, let us find a proper distance of the horizon. We 
adopt  the idea that there is an uncertainty time for tunnelling, r, given by 
r ~ h / A E  with AE<max(eV, koT)~5"2t; this gives a consistent time scale 
with the environment theory 2~ but we would like to stress that uncertainty 
time z defined here is not the traversal time of tunnelling nor the uncer- 
tainty time associated with the Coulomb energy. We take l ~  cr, where c 
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is the propagation velocity of the electromagnetic signals. At zero bias 
(V=0) ,  with A E = k B T ,  this yields a geometrical relation 

C,, = c L [  ~ cLcz  ~ c L c h / k u  T (19) 

where cL is the capacitance per unit length of the conductor strip attached 
to the junction given by cL = 2rCeoe,:~r/ln(8d/w), where e,:// is the effective 
dielectric constant of the surrounding medium, d is the distance to the 
ground conductor, and w is the width of the strip. For a typical strip of 
w _  ~ 1/lm, d ~  1 mm, and/?~q),.~ 5, 19 we obtain c L - - 3 .  I0 ~l F/m. C~. drops 
as T ~, and ultimately it is just the geometrical junction capasitance C that 
determines the voltage drop AV= e / C  at high enough T. Using the relation 
A G / G T =  u,./6 we find 

(AG/GT)  - '  = 6/u,. = 6( C + C, , /2 )kR  Tie  2 (20) 

and combining this with Eq. (18) we finally obtain 

(AG/GT)  -~ = 6CkH Tie  2 + c~ (21) 

i.e., the inverse of height is linear in T (and C), but has a positive offset of 

(5 ~ 3c t ch/e 2 (22) 

due to the simultaneous decrease of charging and thermal energies upon 
cooling. This effect is beautifully demonstrated by the data in Fig. 15 where 
a well developed 6 -  ~ 15 ... 20 can be observed as an offset in both (a) 
and (b). 

A particularly clean environment of a single junction can be realised 
in experiment by nanoscale on chip resistors using a multiple angle shadow 
evaporation technique. In the first experiment we applied two thin film 
chromium resistors of 100 nm linewidth and 3/~m length symmetrically at 
a distance of 1 ~m from the junction producing resistances of about 1.5 kf~ 
each. The environment, unlike in the case of nonresistively connected 
solitary junctions, is now more spatially restricted, and the charging effects 
at low temperatures are enhanced due to a small effective capacitance. 

Figure 16 shows data taken of such a resistively surrounded single 
junction. This preliminary measurement was realised just in a simple two 
wire configuration, thus not discriminating between voltage drops, or 
resistances, of the chromium resistors and the junction itself. The junc- 
tion resistance was, however, about 60 kfl, i.e., more than an order of 
magnitude higher than that of the Cr leads, and the voltage drop in Fig. 16 
thus represents mostly that across the junction, and only about 5 % across 
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Fig. 15. (a) Temperature dependences of both V)I 2 (circles) and 
( A G / G r )  i (filled circles) as measured for a single junction with 
R r = 5 5  k ~  and A =0.28 (itm)'-. Both the quantities are linear in T 
but both of them, ( A G / G T ) -  ~ in particular, have a positive offset. To 
compare the temperature dependence of single junctions as opposed 
to one dimensional arrays with small islands in between the junctions, 
we show in Fig. (b) data of a series connection of eight single junc- 
tions with large contact pads of 500 x 500 (/tm) 2 in between, together 
with results on a one dimensional array of eight tunnel junctions with 
101tin long islands in between. In the two samples, fubricated within 
the same batch, all the t6 junctions were identical to within ~ 10% 
in RT or A. The offset of the "single junction" sample is close to that 
in (a) but the data of the eight junction chain behaves in a different 
way: the dependence is nonlinear because there is a crossover from 
the environment dominated behaviour at low temperatures to the 
junction dominated behaviour at higher temperatures. Because of a 
small islands the charging energy does not vanish even at low T and 
the data set threads through origin without offset in this case. The 
inset shows the differential conductance of the two samples against bias 
at T-~ 0.5 K. In each case the average value of R r was about  28 k,Q. 
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Fig. 16. Data of a single junction with Rr---60kf~ and an area of about 
0.2 llm x 0.1/tm, in a resistive environment (R,, • 3 kf2). The main figure dis- 
plays the conductance dip against bias voltage across the resistors and the junc- 
tion in series, at wtrious temperatures in the range of ().2 K 4. K. The insets 
show the corresponding inverse depth on the left, and the half width on the 
right as functions of temperature. The solid lines are linear tits to the data. 

the environment. The data display two drastic, although well expected, dif- 
ferences from those of the solitary nonresistively coupled single junctions. 
Firstly, the conductance dip is at all temperatures deeper than in the earlier 
measurements, reaching almost 50% at the lowest temperatures, in con- 
trast to 5 % of the nonresistively configured junctions, in accordance with 
the idea of local charging at the site of the junction. Secondly, which in fact 
is related to the first feature, the width of the peak is closer to being 
proportional to T than in the earlier measurements. This can also be 
understood with the model of a spatially restricted capacitor. 

6. SUMMARY 

In this article we have reviewed the use of tunnel junction arrays for 
primary thermometry which is based on the main result of Eq. 4 which 
shows that the half width of the conductance dip at zero bias, Vl/z.o, 
measured in an array, is proportional to temperature. Since the propor- 
tionality constant is determined by just the fundamental constants e and ke  
and N, the number of junctions in the array, it is evident that the thermo- 
meter is primary. Also the depth of the conductance dip, AG/GT, can be 
used as a secondary thermometer. 
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A new important result of this article is the linear correction to the 
half width Vt/2.o, shown in Eq. 13, which is needed in the low temperature 
regime; this temperature range is specific to each array. The correction 
arises from the higher order terms in the high temperature expansion used. 
We also obtain a similar correction to the depth of the conductance dip, 
and it is shown in Eq. 14. 

In practice, according to our experiments and calculations, the tunnel 
junction arrays can presently be used as a thermometer from a few mK up 
to about 77 K, using arrays of different sizes. The low temperature limit is 
due to the poor electron phonon coupling down there, which was discussed 
in Sec. 4D. The upper limit is brought about by the non infinite height of 
the tunnel barrier of aluminium based junctions (Sec. 4E). 

Experimentally, the CBT thermometer is insensitive to changes in the 
magnetic field and, what is fundamental to its operation in contrast to 
conventional single electron devices, it is also immune to the ever present 
fluctuations of the background charges. Inhomogenities in the array yield, 
however, a small quadratic correction to V~/2, given by Eq. 15. This 
dependence is nevertheless quite weak in standard arrays fabricated by 
electron beam lithography (Ch. 3). 

An interesting observation is that short arrays, single tunnel junctions 
in particular, show interesting deviations from the universal behaviour of 
the long arrays discussed above. This is due to the frequency dependent 
impedance of the connecting wires within what is often called a "horizon" 
of the junction. The distance of the horizon is determined by the uncer- 
tainty time for tunnelling v, determined by h/AE with AE = max(e V, k~ T). 
The problem can also be treated based on the microscopic theory reviewed 
in Ref. 20, which yields in our case the same result as the phenomenological 
horizon model. This behaviour of single tunnel junctions causes end effects 
in long arrays. However, their influence can be suppressed by increasing 
the number of junctions in the array. 

More detailed studies of certain aspects of our work have been 
reported earlier in Refs. 4, 5, 6, 7 and 8. 
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