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We describe a new and efficient method for the numerical study of the dynamics and statistics of 
single electron systems presenting arbitrary combinations of small tunnel junctions, capacitances, 
and voltage sources. The method is based on numerical solution of a linear matrix equation for the 
vector of probabilities of various electric charge states of the system, with iterative refining of the 
operational set of states. The method is able to describe very small deviations from the “classical” 
behavior of a system, due to the finite speed of applied signals, thermal activation, and macroscopic 
quantum tunneling of charge (cotunneling). As an illustration, probability of dynamic and static 
errors in two single electron memory cells with 6 and 8 tunnel junctions have been calculated as a 
function of bias voltage, temperature, and switching speed. 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

During the past decade several devices using correlated 
tunneling of single electrons have been suggested and 
tested.le3 These devices consist of one or several small con- 
ducting electrodes (“islands”), separated from each other 
and from external electrodes by tunnel junctions. Despite 
their very small (submicron) size, each island typically con- 
tains billions of background electrons. The electric charge of 
those eIectrons is, however, completely compensated by that 
of crystal lattice nuclei. As a result of the very small capaci- 
tance of the islands and junctions, if one more electron tun- 
nels into (out of) an island, the electrostatic potential of the 
island may change considerably, affecting the tunneling of 
the following electrons. Such a single electron charging 
makes it possible, by proper manipulation of the potentials of 
the external electrodes, to control the motion of single 
electrons/holes. These single electron devices may be used in 
various analog and digital systems, in particular in circuits of 
the so-called Single Electron Logic (SEL),4-7 where infor- 
mation bits are coded by the presence/absence of extra single 
electrons in particular islands. The implementation of this 
idea may open a way to “ultimate” electronics with previ- 
ously unattainable circuit density (and hence integration 
scale). 

A major problem in the design of single electron circuits 
is an accurate determination of the digital error probability. 
Such an error (a misplacement of a single electron in the 
circuit), may be due to several factors, including thermal 
activation, finite speed of externally applied signals, and 
macroscopic quantum tunneling of charge (cotunneling).‘.” 
For a circuit of any reasonable complexity, these factors are 
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intractable analytically. This is why several computer algo- 
rithms have been developed to analyze complex single elec- 
tron circuits numerically. 

MOSiXS, developed by Chen et al.,* is based on a Monte 
Carlo method’ and can simulate electron propagation. Its 
ability to analyze arbitrary circuits consisting of tunnel junc- 
tions, capacitances, resistors, and signal sources makes 
MOSES a convenient tool in the study of the dynamics of 
single electron systems where rare events are not important. 
As far as rare events (such as errors) are concerned, two 
programs have been mentioned in the literature. Pothier” has 
developed a code to calculate rare errors due to cotunneling 
in a specific device (“the single electron pump”) at zero dc 
voltage and zero temperature. Another program, due to 
Jensen and Martinis,‘* has been designed to handle more 
general circuits. Although the results described in that paper 
are in good agreement with analytic calculations for simple 
circuits, a detailed analysis of the algorithm has not been 
provided, making it impossible to reproduce the results and 
understand the limitations of the program. Besides, several 
restrictions on the set of states imposed in that work (e.g. 
exclusion of “shake-up” transitions”), can hardIy be justi- 
fied a priori. 

The purpose of this paper is to introduce SENECA (stand- 
ing for Single Electron NanoElectronic Circuit Analyzer), a 
new computer algorithm suitable for studies of the dynamics 
and statistics of single electron devices, including order-of- 
magnitude calculation of rare errors due to all the phenom- 
ena listed above. SENECA can handle single electron circuits 
consisting of an arbitrary combination of lumped compo- 
nents (excluding resistors at this stage of development), at 
arbitrary temperature and time dependence of externally ap- 
plied signals, as long as sufficient computer resource is avail- 
able. 

The paper is organized as follows. In Sec. II we discuss 
expressions for the single electron tunneling rates and the 
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approximations used for their evaluation. In Sec. III we de- 
scribe our algorithm in detail. In Sec. IV we present the 
analysis of an important SEL device, the single electron trap 
(memory cell with nondestructive readout). Conclusions and 
discussion of possible improvements are presented in Sec. V. 

II. BASIC EQUATIONS 

Single electron tunneling is a stochastic phenomenon 
and its theory can only predict probability rates r of the 
possible tunneling events.‘-3 Hence, two numerical routes 
are possible in the analysis of single electron devices and 
circuits. In a Langevin-like route, the rates are used in a 
Monte Carlo scheme’ to simulate possible scenarios of elec- 
tron tunneling between the islands. This is a very convenient 
method for studying the typical behavior of the electrons in a 
device. However, incases when very rare tunneling events of 
some type (say, those leading to digital errors in SEL de- 
vices) take place against the background of much more fre- 
quent events of another kind (say, regular operation of these 
devices), the Monte Carlo method becomes impractical as far 
as computation time is concerned. 

In a Fokker-Planck-like route, probabilities Pi of all 
possible states of the system (each characterized by a par- 
ticular charge configuration) are calculated by the master 
equation,’ which may be written in either scalar or matrix 
form: 

2=X IYjiPj-x TijPi or g=W, 
j i 

(1) 

where I”ij is the rate of transition between states i and j, 
r’ij=rdi and I’ii= - Z,+JYij. Using this approach, it is POS- 

sible to handle cases when the rates rij of various tunneling 
events differ drastically, and therefore it is our method of 
choice. Its apparent drawback, the necessity to store informa- 
tion about all states of the system, can be rectified to a large 
extent by taking into account the hierarchy of the tunneling 
rates rij, where only rates higher than a certain threshold 
value are considered at a time. This approach will be the 
subject of detailed discussion in the next section; before that, 
we shall concentrate on the rates rv. 

Consider an arbitrary circuit consisting of conducting is- 
lands, connected to each other and to external electrodes by 
tunnel junctions and/or capacitances. Each junction i is char- 
acterized by its capacitance Ci and tunnel conductance Gi . 
Provided that 

Gi4Ri’ 9 (2) 

where Rp=d12e2-6.5 kKl is the resistance quantum, the 
instant state of the circuit is completely characterized by a 
particular configuration of extra charges on the islands. In the 
limit (2), the quasiclassical “orthodox” theory%f single elec- 
tron tunneling5 says that an electron can only tunnel through 
one junction at a time, and that tunneling of an electron 
through junction n has the probability rate 
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(3) 

where a)i= GiRQ/rr24 1, and AE is the difference between 
the final and initial values of the electrostatic energy of the 
system. According to this formula, at zero temperature the 
tunneling is only possible if AE<O, i.e., electrons only travel 
in the direction of lower potential energy. At finite tempera- 
tures, tunneling in the reverse direction is also possible due 
to thermal activation, but at kBT4AE the rate of these ther- 
mally induced events is exponentially low. 

Quantum tunneling through N> 1 junctions at a time, or 
“cotunneling,” is also possible,13 though typically at a much 
lower rate than that of the “classical” tunneling through one 
junction. For finite temperature, the rate of an Nth-order “in- 
elastic” cotunneling processt4 is given by the expression’3**5 

r(N)=- “h” i ai i- 11 
mS21WI,...,02;) 

0 s 

x8( AEN+~~ -i)ij ~1-.f~4~~~i. (4) 

In expression (4), AEN= EN-E0 is the change in the elec- 
trostatic energy during cotunneling from the initial state 0 to 
the final state N, f is the Fermi function, and the function S 
is deiined as 

N-l 

St01 9**** @2N) = F...,kNl p, ; 3 
pedkl 

(5) 

where sk are increments in the total energy of the system, 
k 

%=A&+& (021-1+021).. (6) 

In relation (6), AEk= Ek- E. is the change in the electro- 
static energy during cotunneling from initial state 0 to inter- 
mediate state k, o21-1 f w2[ is the energy of one of the k 
electron-hole excitations created between states 0 and k, and 
the permutation is taken over all possible sequences of inter- 
mediate states. Equation (4) expresses the fact that the 
quantum-mechanical amplitudes of all the cotunneling se- 
quences with the same initial and final states should be added 
coherently to give the total rate of the resulting cotunneling 
process (which will be called a “transition”). 

In most cases, a final state of practical interest can only 
be accessed by transitions in order higher than a certain num- 
ber N, because all the lower order transitions would raise the 
energy of the system. Moreover, due to the smallness of ai 
(2), the rate of the transition of the lowest possible order 
usually dominates. In some cases, however, the coexistence 
of transitions of different orders leading to the same final 
state must be considered as their probability rates may be 
comparable (we will return to this issue later). 

The multi-dimensional integral (4) can be calculated 
analytically for a very limited number of cases.13’16 In gen- 
eral, only a numerical calculation is possible, which may be 
extremely time consuming since it is a (2N)th order integra- 
tion. An approximation can be obtained in the limit when the 
final energy difference [AEN/’ is much smaller than some 
threshold value 1 AE&] (if 1 AEN] > 1 bEti/, a lower order tran- 
sition is possible even at T=O). In this case, the excitation 
energies wzI- r + ozz may be taken to be zero, and expression 
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FIG. 1. A typical distribution of electrostatic energies Ek (solid lines) and 
their singularity levels E:+ kAE, IN (dashed lines) for an Nth order cotun- 
neling between states 0 and N. Within the framework of the exclusion prin- 
ciple, such a process is forbidden because the level ER (k<N) is between 
E. and EN, and hence the kth order cotunneImg from state 0 to state k is 
possible. In order to make a better approximation, we take the Nth order 
process into account as well, but shift Ek (arrow) beyond the nearest border 
of the interval [EO+RBT,EN-ICsT] to avoid the divergence. 

(4) can be  integrated anaIytically.‘3  A better approximation 
(due to Jensen and Martinis”) is to replace arbitrary 
electron-hole excitation energies by fixed values equidistant 
on  the interval [O,AEN], i.e. 

A EN 
021-1+ w21= - - 

Iv * 

Using relation (7). the expression for lYCN) can be  calculated 
analytically and the result is:t’ 

(8) 

where 

(9) 

FN(AEN, Tj 
nfZl’[(2akBTi)2+(AEN)2] AEN = 

(2N- I)! AEN . 
exp i i 

W-N 
m  - 1  

Formally, the perturbative result (4) diverges if there are 
states with energies Ek in the window E,,FSE~GE~, 
of which the divergence of (9) for bEk=(klN) AEN is a  
consequence (Fig. 1). According to the earlier 
approximation,“-” cotunneling processes with intermediate 
energies in that window should not be  considered at all. W e  
will call this assumption the “exclusion principle.” 

In the lim it (~6 1, the exclusion principle is valid for 
almost all parameter values. The  width of the coexistence 
region, where the rates of transitions of different orders are 
comparable, goes to zero as a  does. For real systems, how- 
ever, (Y is finite and the width of the coexistence region 
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FIG. 2. Direct current I-V curves of a single electron transistor (inset) with 
C2=2C1, a,=2ar=O.S, and zero background charge, at ?‘=O. Solid line: 
calculation using the exact formula (Ref. 17). Dashed line: calculation using 
the Jensen-Martinis approximation with the exclusion of cotunneling at the 
threshold voltage. Dotted line: the similar approximation with the energy 
shift at the threshold. 

scales as CX~‘(~~-~), growing rapidly with the order of tran- 
sition N. Disregard of the higher order transitions at finite 
c~ may result in unphysical jumps of the rates (by many 
orders of magn itude) at the transition thresholds. For ex- 
amp le, F igure 2  shows the dc I-V curves of a  simple system, 
the single electron transistor,‘-3 where transitions can only 
have orders N = 1  (classical tunneling) and N = 2  (cotunnel- 
ing) for a  particular choice of parameters. One can see that 
the exclusion of the cotunnelmg beyond the threshold for the 
classical transition leads to a  jump in the current down to 
zero, while in reality it grows monotonically. 

Presently, there is no  complete theoretical description for 
the behavior of an  arbitrary single electron system in the 
coexistence region, despite some recent progress in this 
direction.‘7-20 Under these circumstances, we have accepted 
what we believe to be  the most natural assumption, i.e. the 
independent coexistence of incoherent transitions of different 
orders, with rates calculated in the Jensen-Martinis approxi- 
mation (8)-(10). W e  call this assumption the “coexistence 
principle.” In order to avoid the singularities discussed 
above, each electrostatic energy level E,= E. -t hEk which 
falls inside interval ENsEk6Ea is formahy shifted to the 
nearest border of this interval (Fig. 1  j. This shift circumvents 
divergencies and produces a  smooth transition from one 
dominating order to the next. However, a  divergence of a  
different kind may appear  when EN+ E. and the temperature 
is finite. In this case, Eq. (10) gives a  finite result, 

2N-1 FN(O,T> cc T  but S in Eq. (9) diverges as soon as the 
three energies Eo , ‘Ek and EN become aligned (this situation 
resembles the resonant tunneling divergence). In order to 
avoid this divergence, we add two “buffer zones” of width 
k$l to the interval CEO, EN], as shown in F ig. 1: if any 
Ek E [Eo , EN], then Ek is formally shifted to the top of the 
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(a) (b) 
FIG. 3. “Shake-up” processes Eo-tEN via an intermediate state Ek , which 
are possible at (a) T=O and (b) D-0. 

upper buffer zone or to the bottom of the lower buffer zone, 
whichever is closest. As a result, l?‘)(AE,,T=O) 
=- AEN and rcm(AEN=O,T) m T. 

Figure 2 compares the current calculated using the coex- 
istence and exclusion principles with the exact current for the 
single electron transistori at T= 0. The improvement in the 
ratio I exaGt/lcalc is quite good: at the threshold it changes from 
infinity to - 2 as we switch from the exclusion principle to 
our approach. Although the difference between our result and 
the exact calculation still seems considerable, the reader 
should remember that, in most cases, the probabilities of rare 
events in typical circuits (see Sec. IV) change by orders of 
magnitude due to a small change of parameters. In those 
cases, the accuracy of our approach corresponds to a negli- 
gible change of parameters, and it seems sufficient for all 
present-day applications. 

In addition to the usual transitions where all the interme- 
diate energies Ek lie above max{Ea ,EN}, our approach also 
allows a natural account of the so-called “shakeup” 
transitions,‘2 where E,<min{E,,E,} (Fig. 3). The interme- 
diate states of the shake-ups are accessible via lower order 
transitions starting from the initial state, and hence they are 
neglected in schemes using the exclusion principle. 

Even in the approximation (8), the exact calculation of 
the cotunneling rates is a time consuming task, because the 
number of parameters (intermediate energies) necessary to 
evaluate I’(@ scales as N!. Since we sometimes need fast 
estimates of the cotunneling rates (before their exact calcu- 
lation), we use the following definition: 

]rL;& 2g A’ 2 x ff S~N(AEN >T)> 

where 

(12) 

Expression (12) is exactly valid” for cotunneling 
through a simple 1D array of N similar tunnel junctions, if 
the only capacitances taken into account are those between 
the closest neighbor islands: Ci,i+ 15 C. It also presents a 
reasonable order-of-magnitude approximation for most 
single electron circuits of interest, which typically include 
one or several 1D arrays as their major components (see Sec. 
IV below). If this is not the case, C should be considered as 
a free parameter used for tuning the algorithm. 

III. THE ALGORITHM 

A. Introductory remarks 

In principle, an algorithm based on solution of Eq. (1) 
should take into account all possible charge states resulting 
from both classical and cotunneling transitions in some range 
of the involved parameters. For single electron devices and 
systems of current interest (with the number M of islands 
ranging from 5-6 to 20-30), handling of all possible states 
and paths between them is impossibIe. Indeed, if we consider 
only charge configurations consisting of islands with one 
electron or one hole or none of these (an empty island), 
which is the usual case at a moderate voltage and tempera- 
ture, the number of states scales as 23M”, while the number 
of paths connecting these states scales as 23M. 

Nevertheless, when the temperature and the tunnel con- 
ductances are small (2), most of the possible transitions (ei- 
ther those leading to an increase in the electrostatic energy, 
or those of high cotunneling order) have very low rates. As a 
consequence, a large number of charge states have very low 
probabilities P (below a certain threshold Pth) and may be 
ignored. Hence, we chose an iterative approach which con- 
siders only a limited number of states in each iteration, add- 
ing to the list of states only new ones which have an esti- 
mated probability P,,, that satisfies the condition 

Pes?Pth(~>* (13) 
Those states may lead to new generations of states, but our 
experience shows that the iterations rapidly converge in all 
cases of interest. 

An algorithm developed to analyze real circuits should 
describe the time evolution of the system. In fact, the prob- 
lems we want to address always involve a certain time inter- 
val 5. For example, if we want to determine the probability 
of error during storage of information in a single electron 
memory cell, we may start the calculation with a certain 
charge state (one extra electron inside the cell) at t=O and 
observe how error probability grows with time. In this case, 
the externally applied voltages are usually constant. Another 
example involves errors created when the memory cell is 
switched from one state to another by an external signal. If 
the switching signal speed is too high, the electron may stay 
in the initial state, and we should calculate the probability of 
such an outcome which is regarded as an error. 

In either case, the description of the system should be 
uniform in time, meaning that the selection rule defined by 
Eq. (13) should be used with the same P&n) throughout the 
time interval 5. 

We will now describe the algorithm level by level, in the 
direction of increasing detail. 

B. The iterative procedure 

As was already mentioned, the basic idea of the method 
is to refine the description of the process by successive itera- 
tions n = 0,1,2 ,..., nmax . Each iteration corresponds to a pas- 
sage along the total time interval 5, subdivided in a number 
of time steps (Fig. 4). The length At of the time step (se- 
lected by the user) should be small enough, so that variations 
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Iteration # pth tn) tdt At 2At (k-l) At r, T kAt 

0 
(classical trans. 
with AE < 0) 

1 

2 

I-+-~---------+~--J 

. . 
. --- . . --< 

” 
max 

FIG. 4. Schematic description of our algorithm. The solid horizontal arrows 
represent the program sequence at each iteration, starting with the initial 
state at t=O and finishing at t=c. The dashed lines show that the new 
iteration starts if no state of interest has been found at the end of the previ- 
ous iteration. The vertical arrows represent the information transferred be- 
tween correspondent time steps of adjacent iterations. 

of the external potentials during the step are negligible. The  
user should also specify the threshold probability Pa, which 
is the smallest probability of interest. 

In order to reach Pm iteratively, we define partial thresh- 
olds P&(n), which are the lower bound for the probabilities 
of the states considered in the nth iteration-see Eq. (13). A 
natural choice of P&(n) is such that each new iteration 
roughly corresponds to one more order of cotunneling. Thus 
P&(n) is defined by the relation 

P*(n) = PC est. 7  (14) 

where i$t is defined by Eq. (11). Equation (11) requires 
knowledge of AE, . In order to estimate BE,, we consider a  
subset {SS} of the charge states of the system obtained from 
the addition to the initial charge configuration (determined 
by the user), of a  single electron in some island, plus a  single 
hole in a  different island. AE, is defined as one half of the 
maximum energy difference between all states of this subset. 
Our numerous experiments with the algorithm have shown 
that this value of AE, is a  good representative of the energy 
differences between initial and final states, and the above 
definition of P,(n) allows a  reasonable trade-off between 
the required computer speed and memory to be  reached. 

Each iteration consists of sequential analyses of the time  
steps which constitute the time  interval 5. At each time  step, 
the program finds new charge states of the system satisfying 
Eq. (13) and calculates these probabilities (for details, see 
below). At the end of each iteration, the program determines 
if one (or more) of the states with probability above Pth at 
t = 5  is the rare event of interest. 

In the initial passage along the time  period (n = 0), only 
classical transitions that decrease the energy of the initial 
state are allowed. In other words, the fist passage considers 
only the classical evolution of the system at zero tempera- 
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FIG. 5. Block diagram of a time step. The vertical dashed lines separate 
adjacent time steps considered at the same iteration, while the horizontal 
dashed lines separate analyses of the same time step in adjacent iterations. 

ture. Thus, a  crude description of the system dynamics is 
achieved. Classic transitions at finite temperature and cotun- 
neling are considered in the next iterations. 

The  iterative procedure is stopped if one of the following 
conditions, checked after each iteration, is fulfilled: 

(0 

(2) 

(3) 

the relative difference between the values of the prob- 
ability of the state under  search, which were found in 
two consecutive iterations, is less than the accuracy se- 
lected by the user (search is completed with a  “positive” 
result); 
the current threshold P*(n) drops below21 the finite 
threshold Pth and no  state of interest is f6und (search 
with a  “negative” result); 
the iteration number  n  exceeds some threshold nmax 
specified by the user (search with an  inconclusive result). 

An important feature of our implementation is that some 
information about each time  step is conserved from iteration 
to iteration (represented by the vertical arrows in F ig. 4). The  
information includes transition rates, charge configurations, 
energies and “parent-child” links. Thus, each new iteration 
adds new transitions to the list created in the previous itera- 
tions, and does not recalculate what has already been done. 

C. The time step 

Each time  step starts with the state list update (Fig. 5). 
At tk, the list of active charge states contains two parts: the 
set {T} of all states found at the same time  step of the pre- 
vious iteration, and the set (S) of states promoted from the 
previous time  step of the current iteration. 

The  first operation (Fig. 5) is an  update of two integer 
numbers,  namely Nold and IV&,, prescribed to each state in 
1s) and -VI- Nmv is the maximum order of cotunneling in 
which state i will be  used to create new states (or new tran- 
sitions to old states) in the current time  step. Before the 
update, N,,,, is copied to NoId, which is the highest order 
already considered, and is updated as the largest integer N 
satisfying the following equation: 

Fonseca et al. 



Pest*Pth(,), P,= &l-‘$At, (15) 

where Fi is the state’s mean probability. I$? is again taken 
from Eq. (1 l), but in this case AEN is defined as the maxi- 
mum energy difference between the parent state and all states 
of the subset {SS) defined before. If Nnew>Nold, the state 
will be used for the generation of child states in orders 
NoId+ l,...,NneW. If, however, NnewdNold, the state will not 
be evolved. 

Next, using the complete set (T,S} of these “parent” 
states (Fig. 5), the algorithm generates a set of “child” states 
{C) (the details of this generation will be discussed below). 
In the process of generation of the child states, new transition 
rates lTij are calculated using Eq. (8) and added to the matrix 
I’ [see E@ (l)), which already contains the rates of transi- 
tions between the states in (2”). Note that the rates I’jj are 
evaluated assuming constant external potentials during each 
time step; we use the values of potentials calculated at the 
center point of the time step. 

After the list (T’}={T,S,C} is compIeted and matrix 
I’ is filled, the operation of probability evolution is per- 
formed. It consists of solving the master equation (1) in the 
interval [tk , tk + At], with initial condition P( tk) . The initial 
condition is different from zero only for the states belonging 
to {S), since for those states the vector 
P( tk) = P(tk- 1 f A t) was calculated at the end of the previ- 
ous time step. Equation (1) can be formally integrated: 

P(tk-t-At)=exp(I’At)P(tk). 06) 

The program uses the Padd approximant method” to calcu- 
late the matrix exp(rAt). 

We also calculate the mean probability of each state dur- 
ing the time step, 

- 1 
p= t 

P(t’)dt’. (17) 

The me% probability is needed because the change of exter- 
nal potentials at the beginning of thYtime step may give rise 
to new states with the probability rapidly disappearing (long 
before the end of the time step). These “flash” states may be 
quite important as a transition step to states of interest. Ac- 
cording to Eq. (l), their contribution at the kth time step is 
adequately described by the average p. In practice, 3 may be 
calculated faster not from Eq. (17), but as R(tG + A tj, where 
R is the solution of the mat&equation ‘_ 

JR 1 -=- dt AtP, R(h)=O. 

Technically, Eq. (18) is solved simultaneously 
by means of the 2m X 2m system of equations 

where 

(19) 

r O\ i+)=(;;;), i+,)=( ‘:))3 ‘=( ,-,At 01’ 

W 

with Eq. (1) 

- I 

I \ / 

F,l h)C kr kr+l .#. 
L--d I 

(C,,} -(No more classic transitions) 

FIG. 6. Different generations of states created during a time step. States of 
the last set (C,} do not lead to any new states (classically). 

and I is the identity matrix (r and I are both m X m matri- 
ces) . 

The last operation performed in each time step is filter- 
ing. It consists of selecting those states of the total set 
{T’}, for which the calculated probability P(t,+At) is 
larger than P,(n). Those filtered states form the set {S’} and 
are promoted to the next time step (Fig. 5). 

D. The state list update 

The description of a charge state in our program includes 
its identification number, its electrostatic energy E, current 
approximations for its probability P and mean probability 
F, and the numbers NO,* and N,,,. Each “active” state in- 
cluded in the current state list also carries its own list of 
“passive” states, which are child states that did not satisfy 
Eq; (13) in the the previous iterations, and thus are not yet 
included into the active state list (see below). The probabili- 
ties of passive states are estimated as Pest, using definition 
(15). Since P*(n) decreases with the iteration number, Ijas- 
sive states have a chance to become active states at each new 
iteration. This is why we store their charge configurations, 
energies, and the order of cotunneling in which they were 
generated. In the following text, “creating a state” means 
putting all that information together, and including the state 
into the list of active states.’ 

The state list update at some time step of the nth itera- 
tion starts with the parent state list {S,T} (Fig. 6), each state 
carrying its own labels N,,,, and NoId. First, old estimates of 
the probabilities of all passive states (ii any) carried by each 
parent are checked against condition (13). If this condition is 
satisfied, the passive state is promoted to the list of active 
states. Second, each parent state is used to create all possible 
new states accessible through transitions in orders 
No6N~Nnew. Since the determination of these cotunnel- 
ing orders is based on a crude estimate of the maximum 
energy decrease with relation to each initial state, the actual 
cotunneling rates may differ from their estimates by several 
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FJIG. 7. Three possible scenarios when a new state (k) is generated by a 
parent state (i): (1) the child state is a new one; (2) the child state coincides 
with another parent’s child state; (3) the child state coincides with an initial 
parent state i’ # i. 

orders of magnitude depending on the exact energy change. 
Because of that, once a candidate for a transition is found, its 
energy E and energy difference to the initial state AE, are 
calculated exactly, so that l?:.’ may be evaluated more accu- 
rately using Eq. (11). 

When a charge configuration is determined, one of the 
following three cases occurs (Fig. 7): 
(1) The charge configuration is a new one, i.e. it does not 
coincide with any parent state or state created previously 
during the same state list update. In this case, the state’s 
estimated probability P,, is obtained using Eq. (15). If Eq. 
(13) is satisfied, the state is generated and added to the active 
state list, and the rate is calculated using Eq. (8). Otherwise, 
the charge configuration (and the remaining information in- 
cluded in the description of a charge state) is stored as a 
passive state in its parent’s passive state list. 
(2) The charge configuration coincides with a state (k in Fig. 
7), which has been created by another parent state during the 
same list update. Then, as in the first case, the estimated 
probability of state k, Pat, resulting from the last transition, 
is calculated using Eq. (15). If relation (13) is satisfied, the 
exact rate is calculated. No new state is created in this case 
(since state k already exists), and only the new rate connect- 
ing the initial state and state k is recorded. If relation (13) is 
not satisfied, the charge configuration is stored as a passive 
state. 
(3) The charge configuration coincides with the charge con- 
figuration of one of the parent states belonging to {S,T}. In 
this case we estimate the correction A P& to the mean prob- 
abilities ps’ and p of the parent states due to the new transi- 
tion, using Eq. (15). If APd,,>ap or AP&,>czF, then the 
exact rate is calculated. The factor a, set to 0.01, is a safe- 
guard against a possibly inaccurate estimate A PA,. As in the 
previous case, there is no new state creation, but only the 
calculation and storage of the exact rate connecting the two 
states. If the above inequalities are not satisfied, the charge 
configuration is stored as a passive state, since p or P’ may 
change from iteration to iteration. 

The new states generated by the parent set {S,T} are 
written into the set {C,} (Fig. 6). After all the states in 
{S,T} have concluded their generation procedure, the states 
in Co become the new parent states. The generation proce- 
dure is now repeated for the states in (Co}, resulting in the 

TABLE I. Dependence of a typical SENECA’s result on the tuning parameter 
C (g-junction single electron trap, T=O): (A) lifetime of state 0 at 
V= - 0.8 mV; (B) the same in a point close to the threshold lifetime 
rti=~/P,=10L6 9 (V= -1.2 mV). 

LA) (B) 
C(10-16 Farad) 7i104 s) 7(lo’s s) 

1 6.3970 5.4543 
2 6.3968 5.4543 
3 6.3968 3.2794 
4 6.3956 3.2794 
5 6.3956 3.2794 
6 6.3956 3.2794 
7 6.3956 3.2794 

set {C,}, and so on. However, transitions from {Ce} to 
{C,}, from { Ct} to {C,}, etc., are only allowed in first order, 
and only if they decrease the energy of the initial state. The 
reason is that those classic transitions are, in general, much 
faster (i.e. have higher rates) than cotunneling transitions or 
classic transitions to states of higher energy-see Eq. (3) and 
its discussion. In addition, their rates can be calculated very 
quickly. Higher order processes are left to the next iteration, 
when N,,, will be known (for each new state, Nold is initial- 
ized as zero). Eventually, the classic evolution generates an 
empty set {C,,,}, meaning that all states which may result 
from {S,T} in the present iteration have been found, and the 
state list update is complete. 

E. Adjustable parameters 

The only adjustable parameter we actively use is C (see 
Eq. (ll)), the effective capacitance value of some homoge- 
neous circuit, somewhat related to the one under analysis. A 
value of C larger than some optimal C,, means overestimat- 
ing I’,,,. It implies accepting unnecessary transitions that do 
not substantially change the final result. 4s a result, com- 
puter time is wasted calculating the exact rates of those tran- 
sitions and solving the master equation (1) with a larger ma- 
trix I?, and memory is overloaded with useless information. 
On the other hand, a value of C smaller than Copt means 
underestimating rest. In this case, important transitions may 
be missed, causing the program to converge to -a wrong re 
sult. 

The optimum value Copt may be obtained by trial and 
error, but our experience has shown that the performance is 
close to optimal within a relatively broad range around 
C opt. However, as the order of cotunneling increases, the rate 
estimate becomes more sensitive to the choice of C and the 
range narrows down. For example, in the “trap” device de- 
scribed in the next section, the range of optimal values of C 
includes the average over all closest neighbor capacitances 
C, up to some cotunneling order. For higher orders, c is no 
longer included in the optimal range, and C, may be as 
high as 2c. Nevertheless, within the optimal range the final 
result does not change with C by more than a few percent. 
Table I shows the effect of changing C on the calculated 
lifetime of state 0. At a typical bias point (T=O,V, = -0.8 
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Above we have mentioned other parameters (such as 
u = 0.01 in the previous section) which in principle may also 
be altered by the user. Although some of those adjustable 
parameters can have a strong influence on computer time, 
memory requirements, and even some influence on the final. 
answer, we have kept them fixed. The reason is that they are 
all related to C. Thus, the program may be tuned by only 
changing C, a very convenient feature in practice. 

IV. RESULTS 

A. The single electron trap 

In order to demonstrate tbe capabilities of SENECA, we 
analyzed two versions of the simplest SEL circuit, the so- 
called “single electron trap.“5*23-26 Figure S(a) shows sche- 
matics of the &junction trap, together with a single-electron 
electrometer used for measurement of the charge which may 
be trapped in the last island of the array. In the particular 
experimental implementation we are going to di~cuss,~ the 
role of the trap is in fact played by two larger and strongly 
coupled islands 12 and 13. The other islands of the array 
create an energy barrier which may keep the electron trapped 
for a long period of time (for more than 12 hours in recent 
experiments26). The barrier may be suppressed by the appli- 
cation of a voltage bias between the external electrodes 1 and 
2: if VI exceeds a threshold V+ (which depends on V2), a 
single electron is injected into the trap: its removal requires 
VI to go below another threshold V- < V+ . In the region 
V- < VI < V+ the circuit is bistable: the additional electron 

FIG. 8. The g-junction single electron trap and the monitoring SET elec- 
trometer: (a) schematics; (b) geometry used for the calculation of the ca- 
pacitance matrix. 

rnV; see Fig. 13), the result is very stable and the optimal 
range is wide. However, as VI decreases and the result ap- 
proaches the threshold lifetime TV= [/Pth (T= O,V= - 1.18 
mV), the choice of a small C may yield a wrong result. 

:y 

may be either in or out of the trap, depending on its history. 
A description of the electrometer can be found in Refs. 

l-3. In our examples, the trap-electrometer coupling is weak 
(5 - 7 %  ), hence the influence of the electrometer on the trap 
can be neglected. In our calculations we took 
V3 = V, = V, = 0 to disable the electrometer, but we took into 
account its passive capacitive coupling to the trap (in particu- 
lar, via the isolated island 15), in order to be closer to the real 
system.25,‘6 With the same purpose, we used the capacitance 

TABLE II. Capacitance matrix of the g-junction trap. The capacitances (in units of lO-“j Farad) are between the electrodes/islands (left column) and the 
islands (top rowj. The symmetric part of the matrix is omitted. Electrode 0 means the common ground (a distant conducting environment). 

EIecJ Island number 
Isl. # 6 I 8 9 10 11 12 13 14 15 

0 4.54x10-~ 1.37x10-2 4.52X lo-’ 1.63X1O-2 4.38x lo-” 1.24X10-* 1.53x10-' 1.0.5x10-’ 1.44x 10-I 1.47x10- 
1 1.90x 1o+c 231X10-’ 2.76X10-' 9.72X 10-s 1.76X1O-2 6.61x10-3 3.11x10-~ 2.13x10-2 1.31x10-~ 1.51x10-~ 
2 6.32XlO-3 3.23x10-3 8.15X1O-3 - 4.21X1O-3 1.09x lo-* 5.8Ox1O-3 5.97x 10-Z 1.16X10-’ 2.32X 1O-2 4.04x10-2 
3 2.19x10-2 9.63X1O-3 2.00x10-2 8.45X 10-s 1.71x10-2 6.91xlO-3 4.94x 10-s 3.O6X1O-2 2.77x10+" 9.76X10-’ 
4 9.01x10-’ 4.11x1o-3 9.O8X1O-3 4.01x10-3 8.61 x  10-s 3.71x10-3 2.64X1O-2 2.07x10-2 2.93X10+' 1.27X10-' 
5 5.11x10-s 2.52x10-3 5.94x10-3 2.92x10-3 6.92x1O-3 3.35x 10-s 3.13x10-2 3.85X10-’ 5.51x10-2 1.45x 10-t 
6 1.9oxlo+0 2.05x 10-s 3.21x10-3 5.12~ 1O-3 1.38~ 1O-3 5.59x 10-s 2.93x10-3 1.75x10-3 1.73xlo-3 
7 1.90X10co 8.95X1O-3 3.24x1O-3 1.13x1O-3 3.18X1O-3 1.71X1O-3 8.89X1O-4 8.91X10-’ 
8 1.90x10+a 2.O7XlO-2 3.20~10-~ 1.O6X1O-2 4.67X1O-3 2.37X1O-3 2.26X1O-3 
9 1.9Ox1O+o 8.94X1O-3 6.37X1O-3 2.97X10L3 1.19X1O-3 1.16X1O-3 
10 1.9oxlo+o 3.12X 1O-2 8.65X1O-3 3.09x10-s 2.9OX1O-3 
11 1.90x 1o+c 123x10- 1.46X10-3 1.44x10-s 
12 4.28X1O+o 2.87X1O-2 2.53X10-* 
13 2.07x10-2 3.32X10-" 
14 2.75X 10-t 
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FIG. 9. Energy profiles of the g-junction trap for several values of VI and 
optimal V,= -8.57 mV: (a) one electron in the array; (b) one hole in the 
array and one electron in the trap. 

matrix Cii calculated27 using a simplified geometrical model 
(Fig. 8(b)) of a real experimental device.25*26 Table II shows 
the matrix Cij (0 denotes ground) in the “engineering” no- 
tation: 

Qi=C Cij(Vi-Vj). 
j 

(20) 

The junctions’ conductances, taken to be proportional to the 
junction area S, have the same value 1.07X 10-%In-’ (ex- 
cept for the larger junction connecting islands 12 and 13, 
with conductance equal to 2.02X lo-%-‘). This is a typical 
experimental value (with the electrodes in the normal state), 
with the resulting parameters ~i=O.7X 10e3. 

B. Basic properties 

Figure 9(a) shows the profile of the energy barrier cre- 
ated by the array for a single electron entering/leaving the 
trap (at T=O). The change in the profile caused by increas- 

TABLE III. Possible scenarios for a single electron entering the trap: (A) 
electron (+ 1) moves in; (B) hole (- 1) moves out, leaving an electron in the 
trap. 

Island # 6 7 8 9 10 11 12 13 
. 

0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

. . . 1.. . . . . . . . . . ..l . . . . . . 
0‘0 0 0 0 0 1 0 
0 0 0 (11 0 0 0 1 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 -1 1 
0 0 0 0 0 -1 0 I 

. . . . . . . . . . . . . . . . . . . . . . . . 
-1 0 0 0 0 0 0 1 
0 0 0 0 0 0’ 0 1 

(B) 

ing the potential VI leads eventually to the suppression of the 
barrier, allowing the entrance of an electron into the array at 
v1=v+. It is important to note that such an event may 
occur in various ways. For example, it may be just a sequen- 
tial tunneling of an electron from the external electrode 
through the neighboring junctions, as shown in Table III(A). 
The top curve in Fig. 9(a) corresponds to that scenario. An- 
other possibility for an electron entrance is the creation of an 
electron-hole pair in the trap, followed by the gradual retreat 
of the hole; as in Table III(B). Other scenarios are also pos- 
sible, e.g., the creation of an electron-hole pair in the middle 
of the array rather than near the trap, though in most cases 
these scenarios do not provide the lowest energy barrier, at 
least for the cases we have studied. 

If VI is decreased, the barrier for the electron exit be- 
comes lower. An expected scenario would be for the electron 
to exit only aftenthe barrier is completely suppressed (at 
T=O). It turns out, however, that the charge state of the trap 
is destroyed even before the electron barrier is suppressed, 
by the entrance of a hole from wire 1 to island 6, and its 
sequential tunneling into the trap. Figure 9(b) shows the en- 
ergy barrier for this scenario; it can be seen that the hole 
barrier is suppressed at VI = V- , when the electron barrier 
(Fig. 9(a)) still holds. 

One more special value of VI is the “equilibrium” po- 
tential Ves, where the energies of the system with and with- 
out an electron in the trap coincide. From the point of view 
of possible applications, spontaneous transitions of the sys- 
tem in either direction (empty trap to filled trap and vice 
versa), are errors. In order to minimize the error rate, the 
lowest of the barriers (.U+ and U- ; see Fig. 9(a)) for those 
transitions should be maximized. Since it happens exactly at 
VI = Vq , where U + = U _ = U, we have given special atten- 
tion to this point in our numerical experiments. For this par- 
ticular circuit, the maximum energy barrier (in temperature 
units) is U = S. 1 K. 
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FIG. 10. Phase diagram of the g-junction trap at the optimal potential 
Vz= Vopt= -8.57 mV, which maximizes the bistability loop width 
AV=V+- V- and the energy barrier height at the equilibrium point 
V, = Vcs. The dashed line shows the next bistable loop schematically; in 
fact, it has a complex fine structure corresponding to several charge states. 
Numbers in parentheses show electron configurations of the states (island 6 
an the left, island 13 on the right). 

Due to the stray capacitances-of the islands, the energy 
profiles are not only dependent  on  the potential difference 
V, - V2, but also on  V,. In particular, the energy barrier 
height U in the equilibrium point Ves is maximum at a  cer- 
tain optimal value V2 = Vopt (Fig. 9(a) shows the energy pro- 
files obtained using this optimal value). The  voltage width of 
the bistable region A V= V+ - T/.- is maximum in the vicinity 
of the same V,= V opt * 

Figure 10  shows the phase diagram of the system, i.e. 
the boundaries of its possible stationary charge states (for a  
fixed voltage V2 = V,,J. Notice that, at VI - Veq , there are 
only two possible states (we will refer to them as 0  and 1  for 
the sake of simplicity). Closer to the boundaries of ‘tie ma in 
bistable loop, other states are also possible, though they have 
larger energies and are rather metastable. 

6. State lifetimes 

Even within the bistable loop [V- , V,], thermal fluc- 
tuations and cotunneling may result in spontaneous switch- 
ings 0-s 1  and 1  -+O. Our first goal was to use SENECA to 
find the rates lyre of these switching events (i.e. the corre- 
sponding lifetimes T?= l/r *). The  results of such calcula- 
tion are shown in F ig. 11. It can be  seen, first of all, that at 
relatively high temperatures (- 100 n-X and above), the 
results of calculations with and without account of cotunnel- 
ing virtually coincide. This means that the ma in mechanism 
of spontaneous switching at those temperatures is the classi- 
cal thermally activated hopping over the energy barrier. If the 
lifetime is relatively l&ge (+-CC/G, where C and G  are 
typical scales for capacitances and conductances of the sys- 
tem, respectively), it may be  determined using the “discrete” 
version” of the usual Kramers formula: 
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10’4- 

1o12- 

1  

g  ::LO; 

j 106, 
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PIG. 11. Lifetimes of the static states of the g-junction trap for different 
temperatures. The curves with negative (positive) slope describe the lifetime 
of the empty (full) ceI1. Solid lines: classic approximation for T= 0 (vertical 
lines), 50, 100, and 150 mK. Dotted lines: cohmneling included, T=O. 
Dashed lines: cohmneling included, 50 mK. At’100 mK and 150 mK, the 
results including cotunneling practically coincide with the classic ones. Ar- 
rows pointing down mark the voltages at which transitions at different co- 
tunneling orders (indicated by the numbers surrounding the arrows) have the 
same rates. Arrows pointing up mark the voltage at which the lowest of 
these cotunneling orders becomes possible. 

e2 AU,+AU- 
‘= ??  AUcAU- exp( UIW), (21) 

where AU+ and AU- characterize the shape of the top of 
the energy barrier (Fig. 9(a)). Because the barrier height U is 
an  almost linear function of the potential VI, in semilog plot 
the T%( V,) dependencies are also almost linear. Small devia- 
tions from linearity are mostly due to the discreteness of the 
barrier. Indeed, the barrier maximum switches from island to 
island as VI changes, resulting not in an  exactly straight line, 
but in a  piecewise linear curve (Fig. 11). 

At lower temperatures, cotunneling gradually becomes 
the ma in mechanism of spontaneous switching. An important 
feature is that lifetimes diverge at V= Ves as T-+0. This is a  
direct consequence of the fact that, at T=O, cotunneling be- 
tween two states with the same energy vanishes (as ex- 
pressed by Eqs. (4) and (8)). 

Another feature in F ig. 11  is the oscillatory behavior of 
the cotunneling curves at low temperatures. This results from 
the change of the dominating cotunneling order with VI, and 
the different dependencies of the rates on  VI for different 
orders of cotunneling. The  dominating cotunneling orders in 
each region of F ig. 11  are given by the numbers following 
the cohmnel ing curves at T= 0. The arrows pointing up  mark 
voltages VI at which cotunneling in lower order becomes 
possible. The  arrows pointing down mark voltages at which 
cotunneling in this lower order acquires a  rate equal to that in 
the previously dominating order. The  separation between 
corresponding up  and down arrows increases with the order 
of transition, confirming our earlier predictions (see Sec. II). 
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TABLE IV. Capacitance matrix of the 6-junction trap (in lo-t6 Farad). 

Island number 
ElecJ 
sl. # 6 I 8 9 10 11 12 13 

0 4.07x10-* 1.60x10-* 4.13~10-~ 1.19x10-* 1.55X10-t 1.09X10-’ 1.81X10- 1.71x10-’ 
1 l.YOXIOco 2.37x10-* 2.72X10-* 9.37X1O-3 4.O3X1O-2 2.60x10-* 1.51X10-* 1.76X10-* 
2 8.28X1O-3 4.16~10-~ 1.12X10-* 5.79X1O-3 5.77X10-* 1.13X10-' 2.17X10-* 3.88X10-' 
3 2.05x10-* 8.35~10-~ 1.75X10-* 6.96~10-~ 4.89X1O-2 2.95X10-" 2.77X10+' 8.43X10-* 
4 9.42X1O-3 4.08~10-~ 8.95X1O-3 3.85X1O-3 2.65X10-* 2.07X10-* 2.93X10+' 1.24X10-l 
5 6.14X1O-3 2.97X1O-3 7.17X1O-3 3.44XlO-3 3.10X10-' 3.79X10-* 5.13X10-' 1.39x10-' 
6 1.90x10+0 2.07X10-* 3.19X10-' 1.06x10-" 4.66X10s3 2.36X1O-3 2.25X10-' 
7 1.90x lo+” 8.Y3X1O-3 6.36X1O-3 2.97X1O-3 1.19X1O-3 1.16X10-’ 
8 1.90~10+~ 3.12XlO-2 8.65X1O-3 3.b9X10-3 2.9OX1O-3 
9 1.90x10+0 1.23x10-* 1.46X1O-3 l~I4xlO-~ 
10 4.28X10+’ 2.88X1O-2 2.53X1O-2 
11 2.07X10-* 3.32X10-* 
12 2.75X10-' 

The oscillations are quickly smoothed out as the temperature 
is raised (above - 50 mK in this particular case). 

Looking at the absolute numbers, we see that the rate of 
spontaneous switching in the g-junction trap may be ex- 
tremely low: lifetimes in excess of lOI s (i.e., 
r> 102’%YIG) are possible at achievable temperatures (- 50 
mK) within a relatively broad parameter window. While for 
digital devices such high stability may be necessary, for other 
applications it may be traded for the device simplicity. For 
example, a combination of two single electron traps gives 
another important device, the N-junction turnstile,’ which 
may serve as a dc current standard. For devices of this type, 
lifetimes of the order of lo4 s would be completely accept- 
able for present-day metrology, providing a relative error of 
the order of lo-‘u. Thus, we will not proceed in the analysis 
of the g-junction device, but instead we wih discuss the sec- 
ond device, a 6-junction trap. 

The 6-junction trap was obtained by merely short- 
circuiting two junctions of the g-junction system (see Table 
IV for the capacitance matrix). Figure 12(b) shows the phase 

6 
Vl (mV) 

FIG. 12. Phase diagram of the 6-junction trap at V,= V,,,= - 10.0 mV. 
Dashed line is a schematic description (see caption to Fig. 10). 

diagram of the trap at V2 = V,,,, ; the maximum barrier height 
is U=3.7 K. 

Figure 13 shows the lifetimes of the states 0 and 1 in the 
6-junction trap as a function of the applied voltage for dif- 
ferent temperatures. As in the g-junction device, oscillations 
due to the change in the dominating cotunneling order can be 
observed in the curves obtained at T=O and 50 mK, though 
the effect is somewhat smoothed in the latter case. Even 
though lifetime is completely determined by classic activa- 
tion at 100 mK and 150 mK, cotunneling is quite significant 
at 50 mK and below. 

The most important difference between the g-junction 
and the 6-junction traps is the order of magnitude of the 
lifetimes. Figure 14 shows that difference in more detail, as 
the lifetimes of both circuits at VI = Veq are plotted against 
the inverse temperature. As the temperature lowers, thermal 
activation is abruptly replaced by cotunneling as the main 
source of error. The inset, showing the crossover on a smaller 
scale, demonstrates that in fact the transition occurs 
smoothly, though within a very narrow range of tempera- 

10 2). .::. 1 . I::. / ;:’ * 
-2 

VP Cm+ 
0 

FIG. 13. Lifetimes of the static states of the 6-junction trap for different 
temperatures. The notation is similar to that in Fig. 11. 
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FIG. 14. Lifetime at VI = Vq and V2 = V,,,, as a function of temperature for 
the 6- and S-junction traps. Results of the 6-junction trap: solid line - 
cotunneling included; dashed line -classic. Results for the S-junction trap: 
dot-dash line - cotunneling included; dotted line - classic. The inset 
shows the split of the cohmneling and classic curves of the 6-junction trap. 

FIG. 15. Convergence of the error probability with the number of t ime 
steps, at [= 6 X  lo3 RC, A = 1.6 mV, and T= 100 mK, for the 0-r 1 switch- 
ing. 

tures. The comparison of the curves for the two traps shows 
that decreasing the number of junctions by two increases the 
error probability by approximately 6 orders of magnitude at 
100 mK, and by about 10 orders of magnitude at 50 mK. 
These curves agree in order of magnitude with the theoretical 
estimates of thermal activation (see Eq. (3)) at 100 mK, and 
cotunneling at 50 mK.5 

the vertical distances between neighboring curves in Fig. 16 
would be the same. In our curves these distances differ by 
- 60%, as a result of the cosine wave used. 

D. Dynamic errors 

In order to analyze the induced switching between the 
stable states of the 6-junction trap, we have studied the re- 
sults of the application of a voltage pulse to a trap previously 
biased at the equilibrium point Vq. The pulse used was of 
the form 

Figure 17(a) shows the error probability of the 0-t 1 
switching at a fixed pulse amplitude A = 1.6 mV, as a func- 
tion of the pulse duration 6 for different temperatures. All 
four curves are straight lines, up to some value of 5. Indeed, 
the linear part results from the dynamic error of the trap 
which did not have time enough to switch, holding some 
probability of the initial state 0 at the end of the period. 
Numerical simulations show that, for our parameters, the 
dominating channel of decay of state 0 starts with a single 
electron moving from wire I to the first island of the array (6 
in our notation). This initial event is the bottleneck of the 
switching process, because it corresponds to the smallest en- 

V&)=V,+A/2(1-cos(2d~)), OGtGP, (22) 
where the pulse amplitude A should be larger than 
1 Vz - VI (see Fig. 12). The error in this type of operation is 
the conservation of the initial state (or any state on the same 
side of the energy barrier) at t = 5. We have studied the error 
probability as a function of the signal duration l, amplitude 
A of the applied pulse, and temperature. As we have men- 
tioned before, SENECA breaks the period b into a number of 
time steps. Figure* 15 shows a typical error probability (for 
5=6x 1O-7 s, A= 1.60 mV, T= 100 mK) as a function of 
the number of time steps. Based on that plot (and similar 
ones taken at different values of t), we have concluded that 
25 time steps are quite sufficient for the accuracy we need. 

, x I 1 
l( 

i .\ 

18 
\ '\ -A = 1.36 m V  
\, '\. ---A = 1.60 m V  

A  = 1.84 m V  ' 

T=O 

Figure 16 shows the error probability of the O-t 1 
switching at T=O, as a function of the pulse duration 5 for 
three different pulse amplitudes (see the three arrows point- 
ing down in Fig. 12, which show the maximum potential 
reached by each of the three pulses). The error rate would be 
an approximate exponential function of the difference 
(A + Veq- V,) if the pulse were a square wave. In this case, 
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FIG. 16. Error probability as a function of the switching pulse duration for 
different signal amplitudes (see arrows in Fig. 12), in the B-junction trap. 
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16’ 16’ lob 10d 10”’ la3 IO4 lod 10”’ la3 10-a 16’ 10-a 16’ loo loo 
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FIG. 17. Error probability vs pulse duration in the 6-junction trap, for dif- 
ferent temperatures at A = 1.6 mV: (a) linear scale of 5, showing the expo- 
nential behavior at small c; (b) logarithmic scale of 5, showing the linear 
behavior at large 5. 

ergy difference between islands. Hence, the decay dynamics 
may be fairly described by !3q. (1) with only one nonvanish- 
ing rate r r +6( t) . In this approximation, the error probability 
is an exactly exponential function of 5. In this exponential 
range, temperature accelerates the switching process, provid- 
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I --- 0 m, +cotunneling 1 

-100 mK, classic 
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FIG. 18. Effect of cotunneling on the dynamic error probability. The inset 
shows the region of the turning point of the 100 mK curve. 

ing energy for the electron to cross the barrier before it is 
completely lifted. 

As we move to longer periods, however, the probability 
of error starts to grow with the pulse duration (Fig. 17(b)). 
The reason for this behavior is the reverse switching 
( l-to) after the initial switching (04 1) has occurred. This 
process is specially probable during the tail of the pulse, 
when V,(t)+ V, and the energy barrier for the reverse 
switching is the lowest. Here the error probability grows lin- 
early with time because, since dV(t)ldt+O as t-+ 5, the rate 
of the reverse switching is almost constant in time. Due to 
the exponential character of the error probability at shorter 
periods, the transition from the temperature-assisted to the 
temperature-disturbed operation occnrs in a very narrow 
range of 5. 

Fiially, Fig. 18 shows the effect of cotunneling on the 
0-i 1 switching operati’on at T==O and 100 mK. Note that 
cotunneling speeds up the device operation and thus reduces 
the dynamic errors. This happens because cotunneling, like 
thermal activation, allows the electron to hop over the barrier 
before the classical O-+ 1 switching point VI = V+ is reached. 
After the error probability curve turns up at some [ (and 
T # 0), the cotunneling curve crosses the classic one, in- 
creasing the error probability. Note that although the pro- 
gram could capture cotunneling effects during the switching 

TABLE V. Memory and CPU time requirements for the calculation of lifetime for the 6- and g-junction traps 
in one bias point. The two numbers in each column are the minimum and maximum requirements over all points 
shown in Figs. 11 and 13. 

6 junctions 8 junctions 

0 mK 50 mK 1OOmK 150 mK OmK 50 mK 100 mK 150 mK 

3250 

CPU time (s) 1-2 2-6 15-40 25-570 70-280 loo-610 90-1200 6104200 
Memory (Mbytes) LO-I.1 LO-l.5 1.5-2.5 3.0-10.5 1.0-3.0 1.5-5.5 2.5.. -10.0 6.5-55.0 

J. Appl. Phys., Vol. 78, No. 5, 1 September 1995 Fonseca et al. 



TABLE VL Memory and CPU time requirements for the calculation of 
dynamic error of the 6junction trap. The two numbers in each column are 
the minimum and maximum requirements over all points, shown in Fig. 17. 
The columns marked by (*) include cotunneling. 

CPU time (s) 
Memory (Mbytes) 

0 mK (*I 50 mK 100 mK (*) 150 mK 

6-1800 30-120 60-9000 70-990 
1.5-12.0 2.5-3.0 3.5-90.0 4.0-8.5 

operation, their influence on the dynamic error probability is 
practically negligible. 

V. CONCLUSION 

We introduced SENECA, a new program for the calcula- 
tion of probabilities of rare events in single electron systems, 
capable of analysis of circuits with arbitrary topology and 
parameters. It can find states with probabilities as small sis 
desired, against the background of a large number of states 
with larger probabilities. The usefulness of the program has 
been demonstrated by a numerical study of single electron 
traps. 

SENECA is a C program written, currently, for use on 
UNIX-based workstations. In order to show the computer 
requirements, we made some measurements using a Silicon 
Graphics INDIGO 2. Table V shows the approximate maxi- 
mum and minimum CPU time and memory (per point) taken 
over several points of Figs. 11 and 13, required for the de- 
termination of lifetimes of the static states of the 6- and 
&junction traps. Notice that both time and memory grow 
rapidly with increasing temperature. Table.VI shows the re- 
sources required for the analysis of dynamic errors in the 
6-junction trap (see Figs. 17 and 18). Because the processes 
taken at T=O and 100 mK in Table VI include cotunneling, 
their corresponding computer requirements are much more 
demanding. The two tables show that, for simple devices in a 
considerable range of parameters (such as low temperature), 
personal computers can be successfully used to run this code. 
In the case of more complex geometries involving many de- 
vices and a wide range of parameters, workstations may not 
be powerful enough and supercomputers may become a ne- 
cessity. 

Our future plans are to use SENECA for the study of more 
complex single electron devices and circuits, such as dc cur- 
rent standards, as well as for the analysis of background 
charge fluctuation? which have been neglected so far. 
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