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Abstract. – The Langevin method for the calculation of the shot noise in correlated single-
electron tunneling is developed. Its equivalence to the existing Fokker-Plank-type approach
is shown in the “orthodox” framework. The advantage of the Langevin method is a natural
possibility to describe also the fluctuations in the high (“quantum”) frequency range.

Correlated single-electron tunneling [1] has remained an attractive topic during last decade.
Because in the systems of small-capacitance high-resistance tunnel junctions electrons tunnel
almost as the classical particles, most experiments are well described within the framework of
“orthodox” theory [1] based on the classical master equation.

The shot noise in single-electron tunneling is due to the randomness of tunneling events
(for general review on the shot noise in mesoscopic physics see ref. [2]). The basic theory of
the shot noise in single-electron transistor has been developed in refs. [3,4] and independently
in ref. [5]. Despite the classical description of the system, the current in this theory is treated
as a kind of an operator because it is caused by tunneling events which change the charge
state of the system. The shot noise in single-electron tunneling has been studied theoretically
in a number of publications — see, e.g., refs. [6-12] (while there is only one experiment [13]
so far). For example, the case of Andreev reflection has been considered in ref. [9]. The shot
noise in single-electron transistor with discrete energy levels has been studied in ref. [10]. The
shot noise theory has also been applied to single-electron systems other than single-electron
transistors [11, 12]. Besides the noise in the “orthodox” frequency range ω ∼ W/e2R (where
W is a typical energy and R is a typical resistance), the noise in the “quantum” frequency
range ω ∼ W/h̄ has been studied for a particular system [11] and the matching of two limits
has been proven; however, an approach unifying both frequency ranges in one formalism has
not been found.

The existing formalism for the shot noise in single-electron tunneling is of the Fokker-Plank
type and is based on the deterministic master equation. In the present letter we show that
the alternative Langevin approach, in which the random term is introduced into the evolution
equation, can also be applied (the method used is similar to that developed in ref. [14]).
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Let us start with the generalization of the existing Fokker-Plank–type method to an arbi-
trary system consisting of voltage sources, capacitances and tunnel junctions with sufficiently
large resistances (Rj � RK = h/e2 ' 26 kΩ). In this case the dynamics is Markovian and is
governed by the matrix master equation

σ̇ = Γσ , (1)

where the element σn of the vector σ is the probability to find the system in the charge state
n ≡ {n1, ...nL} (which is characterized by the numbers ni of excess electrons in each of L
internal nodes of the system) and

Γmn = Γm←n − δmn
∑
k

Γk←n, Γm←n =
∑
j

Γjm←n, (2)

where Γjm←n are the corresponding tunneling rates and the summation over the junction
number j is necessary when an electron can tunnel to (from) an internal node from (to)
different external electrodes.

To find the mutual spectral density for two processes X(t) and Y (t) we can calculate first
the correlation function KXY (τ) = 〈X(t + τ)Y (t)〉 − 〈X〉〈Y 〉 (brackets denote the averaging

over time) and then take the Fourier transform SXY (ω) = 2
∫ +∞
−∞ KXY (τ) exp[iωτ ] dτ . If both

X and Y are functions of the charge state n (for example, potential of a node) then the
correlation function is given by the simple expression

KXY (τ) = θ(τ)
∑
m,n

X(m)σ(τ,m|n)Y (n)σst
n +

+θ(−τ)
∑
m,n

Y (m)σ(m,−τ |n)X(n)σst
n − 〈X〉〈Y 〉, (3)

where σ(τ,m|n) is the retarded Green’s function of eq. (1) being the probability to find the
system in the state m at t = τ > 0 if at t = 0 it was in the state n, 〈X〉 =

∑
nX(n)σst

n , and
σst
n is the stationary distribution, Γσst = 0,

∑
n σ

st
n = 1. (Notice that X and Y are classical

variables, and their commutator is zero.)
However, if X and/or Y represent the current through a tunnel junction or in an external

lead, eq. (3) should be modified. For example, if X(t) is the current contribution corresponding

to tunneling events Γjm←n while Y (t) corresponds to Γj
′

m′←n′ , then (similar to refs. [3, 4])

KXY (τ)/ẽj±ẽ
j′

± = θ(τ) Γjm←n σ(τ, n|m′) Γj
′

m′←n′σ
st
n′ +

+θ(−τ) Γj
′

m′←n′σ(n′,−τ |m) Γjm←n σ
st
n −

−Γjm←nσ
st
n Γj

′

m′←n′σ
st
n′ + δmm′δnn′δjj′δ(τ) Γjm←nσ

st
n . (4)

Here the last term is responsible for the high-frequency limit. The effective charges ẽj± and

ẽj
′

± are determined by the direction of electron tunneling, ẽj+ = −ẽj−, and by the circuit
capacitances [3, 4] (so that ẽj = e only if the current through junction j is measured). Any
current-current correlation function can be written as a sum of KXY (τ) given by eq. (4) over
all possible transitions between charge states (such a sum is a counterpart of eq. (3) in which
the sum is written explicitly).

For the correlation functions when X is a current and Y is a function of the charge state
(or vice versa), the recipe is the “combination” of eqs. (3) and (4) while the term proportional
to δ(τ) is absent.

The expressions for spectral densities directly follow from eqs. (3) and (4) because the
Fourier transformation affects only the evolution operator σ(τ,m|n) and the corresponding
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Green’s function in the frequency representation is simply obtained from eq. (1): σ(ω,m|n) =
[(−iω1 − Γ)−1]mn, where 1 is the unity matrix. For example, eq. (4) leads to the following
spectral density:

SXY (ω)/ẽj±ẽ
j′

± = 2 Γjm←n
[
(−iω1− Γ)−1

]
nm′

Γj
′

m′←n′σ
st
n′ +

+ 2 Γj
′

m′←n′
[
(iω1− Γ)−1

]
n′m

Γjm←nσ
st
n +

+2 δnn′δmm′δjj′ Γ
j
m←n σ

st
n . (5)

This method allows to calculate all spectral densities within the framework of “ortho-
dox” theory, and at least for the single-electron transistor the numerical procedure is rather
trivial [3, 4] because the matrix Γ is three-diagonal and the matrix inversion is straightfor-
ward [15].

Now let us develop the Langevin-type approach. Because of the discrete nature of the charge
states, the random term cannot be simply added (in analogy with the standard Langevin
method) to some evolution equation for the “cordinate” n(t), but should be introduced into
the master equation (similar to ref. [14]). The derivation of the formalism can be understood
in the following way. Let us consider the ensemble of M (M � 1) independent similar circuits,
and let us average all magnitudes over this ensemble. Then the average (over time) currents
and voltages will not change (due to ergodicity), but the spectral densities of fluctuations
(second-order magnitudes) will decrease M times. Hence, to calculate the spectral densities
of the initial system, we can take the leading (∼M−1, M →∞) order of the spectral density
of magnitudes averaged over the ensemble.

In contrast to the single system, the dynamics of the large ensemble is easily described
using the Langevin approach. At any moment of time t the ensemble can be characterized by
“coordinates” Mσn(t) which represent the numbers of participants being in different charge
states n (notice that now σn(t) is not a probability but the fluctuating coordinate). While in
the stationary state the average number of transitions from state m to state n during small
time ∆t is given by MΓm←nσ

st
n ∆t, the r.m.s. of this number is obviously (MΓm←nσ

st
n ∆t)1/2.

Hence, the recipe is the following [14]: for each average flux MΓjm←nσ
st
n in the space of charge

states, we should add in the master equation the random δ-correlated (white) flux ξjm←n(t)
with the corresponding “seed” spectral density given by the Schottky-like formula

σ̇m(t) =
∑
n

Γmnσn(t) + ξm(t), ξm(t) =
∑
n,j

ξjm←n(t)− ξjn←m(t), (6)

S
ξjm←nξ

j′

m′←n′
(ω) = 2M−1δmm′δnn′δjj′Γ

j
m←nσ

st
n . (7)

For the fluxes in opposite directions (m ← n and n ← m) we should apply ξ(t) for each
direction, so that the random flux does not vanish even if the net average flux is zero.

Because of the linearity of eqs. (6)-(7) the final spectral densities of the averaged (over M)
magnitudes are obviously proportional to 1/M . Hence, rescaling to the single system can be
done formally assuming M = 1 in eqs. (6)-(7). So, instead of keeping M and rescaling at the
final stage, we will use M = 1 in all the equations below.

Using the standard procedure we find the Fourier transform

σm(ω) =
[
(−iω1− Γ)−1

]
mn

ξn(ω). (8)

Then for the occupation-occupation spectral density we obtain the expression

Sσmσn =
∑
m′n′

[
(−iω1− Γ)−1

]
mm′

[
(iω1− Γ)−1

]
nn′

Sξm′ξn′ =

= 2
[
(−iω1− Γ)−1

]
mn

σst
n + 2

[
(iω1− Γ)−1

]
nm

σst
m, (9)
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which coincides with the result of the Fokker-Plank approach (Fourier transform of eq. (3)
without X and Y factors).

The technique is similar for the current-current fluctuations. The case of eqs. (4) and (5)
corresponds to currents

X(t) = ẽj±
[
Γjm←nσn(t) + ξjm←n(t)

]
, Y (t) = ẽj

′

±

[
Γj
′

m′←n′σn′(t) + ξj
′

m′←n′(t)
]
, (10)

and the straightforward (though rather lengthy) calculations using eqs. (7) and (8) lead to
eq. (5). The final expression for the current-occupation spectral density is

SXσk(ω)/ẽj± = 2Γjm←n
[
(−iω1− Γ)−1

]
nk
σst
k + 2

[
(iω1− Γ)−1

]
km

Γjm←nσ
st
n , (11)

and it also coincides with the corresponding expression obtained in the Fokker-Plank technique.
Thus, we have proven that the Fokker-Plank method is equivalent to the Langevin method

within the “orthodox” framework. However, in contrast to the former approach, the Langevin
method easily allows phenomenological generalization for the fluctuations in the “quantum”
frequency range.

Let us remind that in “orthodox” theory [1] the tunneling rate Γ = I0(W/e)/e[1 −
exp[−W/T ]] is determined by the energy gain due to tunneling W = eVb − e2/2Ceff , where
I0(v) is the “seed” I-V curve of the junction (in the linear case I0(v) = v/Rj), Vb is the
voltage across the junction before the tunneling, and Ceff is the effective junction capacitance
(which also accounts for the environment). The generalization of the Langevin method is the
substitution of eq. (7) by the equation (see ref. [11])

S
ξjm←nξ

j′

m′←n′
(ω) = δmm′δnn′δjj′ [Γ̃

+ + Γ̃−]σst
n ,

Γ̃± =
I0,j(W

j
m←n/e± h̄ω/e)

e
[
1− exp

[
−(W j

m←n ± h̄ω)/T
]] , (12)

which is derived for the individual tunneling event within the standard tunneling Hamilto-
nian technique averaging the quantum current-current correlator and then taking the Fourier
transform. Equation (12) can be considered as a generalization of the fluctuation-dissipation
theorem and equations of ref. [16] for the case of single-electron tunneling. (Actually, the only
difference is that we separate fluctuations corresponding to two directions of tunneling. In
the absence of the Coulomb blockade they could be summed together leading to the standard
factor [16] coth((W ± h̄ω)/2T ) instead of the denominator of eq. (12).)

Equations (6) and (12) represent a phenomenological generalization in which the low-
frequency behavior is treated by the master equation while high-frequency properties are taken
into account for individual tunneling events. At high frequencies, ω � Γ, the occupation-
occupation and occupation-current spectral densities vanish, while for the current-current
spectral density instead of eq. (5) we get

SXY (ω) = ẽj±ẽ
j′

±Sξjm←nξj
′

m′←n′
(ω), (13)

because the first terms of eq. (10) are too slow to give a contribution. This result coincides
with the result of ref. [11]. The advantage of the Langevin approach is the possibility to
obtain spectral densities in the “orthodox” and “quantum” frequency ranges using the same
formalism while before they were necessarily treated on different footing.

For very high frequencies, h̄ω � max(W,T ), we get Γ̃+ = h̄ω/e2Rj , Γ̃− = 0 in eq. (12)
independently of the charge state (the linear case is assumed for simplicity). Hence, each
tunnel junction can be considered as a source of current fluctuations with spectral density
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Fig. 1. – Curve 1 shows the spectral density of the current (in the external lead) through the symmetric
single-electron transistor at T = 0.03e2/CΣ as a function of frequency. Curve 2 shows the spectral
density corresponding to the available power with zero-point cotribution subtracted (Tr = 0). The
dashed curves 3 and 4 demonstrate similar results for T = 0. The average current I = 0.106e/RΣCΣ

for T = 0.03e2/CΣ while I = 0.09e/RΣCΣ for T = 0.

2h̄ω/Rj (the factor 2 accounts for two directions of tunneling). If we calculate, for example,
the current fluctuations in the external lead of the single-electron transistor, then the effective
charges are |ẽ1

±| = e(C2 + Cg)/CΣ and |ẽ2
±| = eC1/CΣ (we chose the lead close to the first

junction), where CΣ = C1 + C2 + Cg is the sum of junction and gate capacitances. The
high-frequency asymptote in this case is SII(ω) = 2h̄ω[(C2 + Cg)2/C2

ΣR1 + C2
1/C

2
ΣR2].

In the “quantum” frequency range the current spectral density does not correspond directly
to the available power because of the contribution from zero-point oscillations. The spectral
density of the current calculated above can be considered as the power (within the unit
bandwidth) going from the system to a small external resistance r (divided by r and the
coupling factor α). To obtain the available power, we should subtract the power flow in
the opposite direction which is the product of the voltage spectral density of the resistance
2h̄ωr coth(h̄ω/2Tr) (the “receiver” temperature Tr can differ from T ), the factor α, and the
active conductance of the fluctuation source, which in the case corresponding to eqs. (12)-(13)
is given by

ReG(ω) =
(

(ẽj±)2/2h̄ω
)

[Γ̃+ − Γ̃−] (14)

(this expression obviously corresponds to the lowest order of photon-assisted tunneling).
Hence, the contribution to be subtracted from Sξjm←n is equal to 2h̄ω coth(h̄ω/2Tr)ReG(ω).

Traditionally this contribution is called zero-point for Tr = 0 (while for finite temperature T
another natural choice would be Tr = T ). Notice that to get the total conductance ReGt(ω),
eq. (14) should be summed over all kinds of tunneling events.

The solid line 1 in fig. 1 shows the numerical result for the spectral density SII(ω) of the
current in the external lead of the single-electron transistor consisting of two tunnel junctions
with similar capacitances C1 = C2 (Cg � CΣ) and resistances R1 = R2 for V = 0.5e/CΣ,
Q0 = 0.3e, and T = 0.03e2/CΣ [17]. The frequency dependence in the “orthodox” frequency
range is important at f = ω/2π ∼ I/e while the “quantum” frequency dependence occurs
at ω ∼ e2/CΣh̄. Because the junction resistances are chosen sufficiently large, RΣ = 100RK,
two frequency ranges are far apart from each other (the ratio of typical frequencies is on
the order of R/RK). The curve 2 shows the spectral density corresponding to the available
power (zero-point contribution is subtracted, Tr = 0). The dashed lines 3 and 4 show the
results for T = 0. Notice the features at h̄ω = 0.05e2/CΣ (this energy corresponds to the
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“first” tunneling event) and the abrupt vanishing of the available power above the frequency
ω = Wmax/h̄ (ω = 0.45e2/CΣh̄ in the figure), where Wmax is the maximum energy gain among
all possible tunneling events.

In the case Rj � RK the “orthodox” and “quantum” frequency ranges are far apart from
each other because Γ ∼ W/eRj � W/h̄. The two ranges would overlap when Rj ∼ RK . In
this case the developed formalism does not work well because of the strong cotunneling which
cannot be described by a master equation—see, e.g., ref. [18].

In conclusion, we developed a Langevin-type method for the calculation of the fluctuations
in single-electron tunneling. In the “orthodox” frequency range the results coincide with
that of the Fokker-Plank approach. The advantage of the Langevin method is the natural
generalization for the “quantum” frequency range.
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