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It is shown that dc 1-V curves of the semiconductor superlattices of small (practically, 
submicron) cross section should exhibit oscillations with the dc voltage period e/C, where C is 
the capacitance between adjacent conducting layers. These oscillations are due to the 
single-electron quantization of electric charge of the boundaries of static high-electric-field 
domains. 

Low-temperature electron transport properties of the 
multilayer tunneling structures (conductor/tunnel 
barrier/conductor* * * ) may be dominated by the single- 
electron charging effects lT2 if cross-section S of the struc- 
ture, and hence capacitance C between the adjacent layers 
(CccS), are small enough to satisfy the condition E,=g/ 
20 k,T. Modern nanolithography allows to fabricate 
submicron substrates for which the above condition is well 
satisfied at T < 1 K. The charging effects may include, in 
particular, a substantial correlation of the single-electron 
tunneling events in space and/or time, which are of con- 
siderable interest for several electronics applications.” 

In metallic systems, the single-electron charging effects 
have been studied in a considerable detail.lZ2 In semicon- 
ductor nanostructures, these effects are even more interest- 
ing because here the charge quantization can coexist with 
electron energy quantization. However, these effects are 
well understood only for the simplest double-barrier struc- 
tures.3-7 In this letter we will present the first results on the 
single-electron charging effects in multilayer semiconduc- 
tor structures-“slim” superlattices. 

We have analyzed superlattices with small miniband 
width S<max(kBT, eVi, fi/r), where eVi are the voltage 
drops across the tunnel barriers and r is the relaxation time 
of momentum, which is determined by the elastic scatter- 
ing of electrons in the wells and/or in the barriers.’ In this 
limit, electrons are nearly localized in the conducting lay- 
ers, and electron transport between the layers can be de- 
scribed as a sequential hopping with a complete random- 
ization of the phase of the wave function between 
consecutive tunneling events. Another assumption is that 
the elementary charging energy EC is much larger than the 
energy scale A of the energy quantization due to the lateral 
confinement. The ratio A/E, is close to a,/‘2d, where aa is 
the Bohr radius in the semiconductor material, and d is the 
superlattice period,4 so that our results are strictly valid in 
the limit 2dsaB. 

Under these conditions, the superlattice can be de- 
scribed exactly as a one-dimensional ( 1D) array of metal- 
lic tunnel junctions9 by probability rates for tunneling of a 
single electron through each barrier. The only (but very 
important) distinction is that the “bare” I-V curve of each 
junction of the superlattice (i.e., the dc 1-V curve in the 
case of the fixed voltage across it) consists of a series of 
current peaks. Each of these peaks is due to the tunneling 

between energy levels in the adjacent conducting layers, 
that correspond to different minibands. For relatively small 
voltages, only two peaks (corresponding to the miniband 
pairs 1 - 1 and l-2) are important, and the junction 1-V 
curve can be approximated as follows: 
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Io’U)=x 1+(u/vo)2+~ (l-U/Vd” ’ ) (1) 

where V, is the width of the Erst peak (determined by 
momentum relaxation time r), and eV, is the energy gap 
between the lowest (first) and the next (second) mini- 
bands. Coefficients R and A are determined mainly by the 
barrier transparency and the structure of the wavefunc- 
tions in the first and second miniband. Although we ne- 
glected the width of the second resonant current peak in 
Eq. (l), it is still a good approximation, since character- 
istic voltages in the simulations below do not come very 
close to the center of this peak at U- VI. 

We have carried out extensive numerical simulations 
of dynamics of the superlattice using approximation ( 1) 
and the Monte Carlo method described in Ref. 9. Figure 1 
shows typical results of the simulations for a superlattice of 
a relatively large cross section (e/C< V,) . At low voltages, 
G’< NV,, where N is the number of the tunnel junctions in 
the superlattice), the applied electric Eeld is distributed 
uniformly, and the dc I-V curve of the whole structure 
follows the curve (1) for one junction with U= V/N. 
When V/N approaches the position V, of the first current 
peak, the uniform Eeld distribution along the superlattice 
becomes unstable due to the negative differential resistance 
of the junction ( 1 ), and one tunnel junction is switched 
into a state with high electric Eeld ( U< VI). This transition 
leads to a sharp drop of the superlattice current. When the 
voltage V is increased to V= VI + (N- 1) V,, one more 
junction is switched to a high-voltage state, etc. As a result, 
the I-V curve exhibits a series of branches as the number II 
of tunnel junctions forming the high-electric Eeld domain 
increases (Fig. 2). This phenomenon is well understood 
theoretically’O*” and experimentally, ‘“,12-16 although we 
are not aware of any previous attempt of its quantitative 
numerical modeling. Our modeling indicates, in particular, 
that although the transitions between the branches are hys- 
teretic [Fig. 1 (a)], this hysteresis can be substantially sup- 
pressed at higher values of parameters e/Co and il [Fig. 
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1 (b)]. This effect can be readily explained by the fact that 
the shot noise of the tunneling electrons causes random 
switching between the branches. 

For slim superlattices of a very small cross-section S 
(and hence of small capacitance k C<e/Vo) our modeling 
predicts an entirely different behavior (Fig. 3). First of all, 
current is suppressed at voltages V below the threshold 
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FIG. 2. Schematic band diagram of a superlattice with a high-field do- 
main embracing n tunnel barriers (of the total number N). 
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FIG. 1. The dc I-V curves of a usual (large cross section) superlattice 
with small single-electron charging effects. The quasiperiodic structure is 
due to formation of the high-field domain embracing increasing number n 
of tunnel barriers (O<n<N). Dashed curve shows the “‘bare” I-V curve of 
the individual tunnel junction scaled up in the voltage by the total number 
N of the junctions in the superlattice. Temperature is assumed to be small 
(kJ42/C, eV,). 
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FIG. 3. The dc Z-V curves of a “slim” (small cross section) superlattice 
for several values of the parameter A.. Such superlattices exhibit strong 
single-electron charging effects: the Coulomb blockade of tunneling at 
V < V,= (N- l)e/2C, and a structure with the period AV=e/C due to 
quantization of electric charge of the high-field domains at V> V, . 

value V,= (N- l)e/2C. This is a typical manifestation of 
the Coulomb blockage of tunneling, which was repeatedly 
observed in various metallic systems.1’2 Even more impor- 
tant, at V> V, the superlattices show a new phenomenon: 
a very distinct structure with the voltage period AV=e/C 
(Fig. 3). These steps are a result of the quantization of the 
electric charge Q of the (stationary) boundary of the high- 
field domain (Fig. 2): each new step corresponds to an 
increase of Q by e. This picture resembles the so-called 
Coulomb staircase in metallic double-junction systems,“2 
but in semiconductors this effect can be observed even for 
large N, since the effect is strongly enhanced by the 
negative-slope part of the junction I-V curve. 

The mth step of the pattern corresponds to the follow- 
ing dynamics of the system: m electrons are forming the 
stationary charge Q=me of the high-Eeld domain bound- 
ary (for small V- V,, this domain embraces just one tun- 
nel junction). An additional electron enters the superlat- 
tice, and is rapidly moving along it by successive tunneling 
through the junctions with low voltage (and hence large 
conductance), until it reaches the high-field domain 
boundary. Here the voltage is high and effective conduc- 
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tance low, so that the “new” electron joins m “old” elec- 
trons sitting on the boundary, until one of them eventually 
tunnels through the high-field region. 

This picture, where the domain boundary is a bottle- 
neck for the electron motion, is strictly valid for ilg 1/N2. 
For larger values of ,?., there is no well-defined single do- 
main boundary in the superlattice (it splits into several 
domains which are not correlated at least within our sim- 
ple model), but numerical simulations show that the peri- 
odic modulation of the dc I-V curve is visible until quite 
high values of d [Fig. 3(b)]. In this regime, however, it is 
better interpreted as manifestation of the quantization of 
the total charge of the superlattice. All calculation results 
are also qualitatively independent of the position of the 
second resonant peak, provided that Vi % VO. 

To summarize, slim semiconductor superlattices of a 
small cross-section S should exhibit a new phenomenon: 
single-electron quantization of electric charge boundary of 
the high-field domains. Experimentally this effect may be 
observable at reasonable values of S and T (say, S < 1 pm2 
and T < 1 K for GaAs/AlGaAs structures with the period 
d-20 nm). Such superlattices can presumably be fabri- 
cated both in free standing and buried geometries (see, e.g., 
Ref. 17). Besides experimental confirmation of domain 
quantization, the most important issue to be addressed in 
experiment would be the possible coexistence of the charge 
quantization with the electron energy quantization due to 
their lateral confinement in the conducting layers (this ef- 
fect was not considered in this work). 
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