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Abstract. We have calculated intensity of thermal and shot noise, and esti-

mated that of the quantum noise, of single-electron transistors, capacitively and
resistively coupled to the signal sources. Results of the calculations have been
used to estimate the ultimate performance of those devices as ultrasensitive
(sub-single-clectron-charge) electrometers.

I. Introduction

Probably the simplest devices based on the correlated single-electron tunnel
ing (for reviews of this new field, see Refs. 1-3, as well as the first papers of
this collection), which have a considerable practical potential, are the so-called
Single-Electron Transistors [2,4]. Figures la,b show equivalent circuits of two
simplest members of the family, the capacitively-coupled transistor (C-SET,
Fig. 1a) and the resistively-coupled transistor (R-SET, Fig. 1b).

Both devices are built around a system of two ultrasmall tunnel junctions
connected in series (Fig. 1c). The ”orthodox” theory of the correlated tunneling
(for a review, see Ref. 2) says [4] that if capacitances C (k= 1,2) and tunnel
conductances Gy of the junctions are small enough,

e2/Ci > kpT, (1)
ez/Gk > h, (2)

the single-electron tunneling events in the junctions 1 and 2 are mutually cor-
related, and that this correlation results in several specific features of the dc
I —V curves of the device (all these features have been observed experimen-
tally, see Ref. 3 for a review). For our present purposes, the most important
feature is that the I —V curve is quite sensitive to the background charge Qo of
the central electrode of the structure. In particular, Qo controls the threshold
voltage V; of the Coulomb blockade range, i.e. the part of the I — V' curve with
a vanishing current (Fig. 2). Note that even a sub-single-electron variation
§Qo of the charge leads to quite a considerable change 81 of the dc current
1. Hence, measuring I at fixed V (or vice versa) one can register very small
variations 6Qp < e, limited only by noise of the device. In experiments [7] the
r.m.s. noise (within one-Hertz bandwidth) was equivalent to 6Qo as small as
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Figure 1: Equivalent circuits of the SET transistors: (a) C-SET, coupled via
capacitance Cp to a signal source @, with internal capacitance Cj, and (b)
R-SET, coupled via resistance Ry to a signal source I, with internal resistance
R;. Figure (c) shows the two-junction system which is the basis of both devices.
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- Figure 2: Modulation of the dc I — V curve of the two-junction system by
sub—e. variation of the charge Qo on its central electrode as calculated from the
quasiclassical theory (see Eqs. (4)-(7)); Rk = G;!, Rg = Ri+ Rs, Cg =
Ci+Ca. 5 '

1.5 x 10~*e, the figure to be compared with ~ 102 for the best electrometers
available commercially [8].

In order to use this high sensitivity for measurement of small signals,
one should couple the two-junction system to the signal source via either a
small coupling capacitance Co ~ C) 2 (Fig. 1a), or a large resistor Ro > Rq,

Rq = mh/2e? =2 6.5 kQ (Fig. 1b). Basic signal properties of these circuits have
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been studied in Ref. 4, but their noise intensity has been only estimated there.
The purpose of this paper is to present results of the noise analysis of these
two single-electron transistors.

I1. Basic relations

Let us start with analysis of the core system, two tunnel junctions connected
in series, with a fixed value of Qo (Fig. 1c). At a given moment ¢, the state
of this system can be completely characterized by the only integer variable n
defined as -

n(t) = ni(t) — na(), 3)

where n(t) is a number of electrons passed through the kth junction until the
moment t. Statistical character of the single-electron tunneling in the normal-
metal junctions [1,2] does not allow one to write any deterministic (dynamic)
equation of motion for n(t); instead one can write down either the stochastic
(Langevin-type) equation for n(t) [1,4] or deterministic (Fokker-Planck-type)
equations for probabilities p(n,t) [4,6]. For our present circuit with its small
number of junctions the second approach seems preferable.

We will start with the quasiclassical approximation which is adequate if
Eq. (2) is well fulfilled. In this approximation the probabilities p(n,t) satisfy
the following linear system of equations [5]

pn,t)= > Y [[F(n+1)p(n 1) = TF(n)p(n)], (4)
k=1,2 & '

where I'f (n) is the rate of the tunneling events in the kth junction leading to
increase/decrease of n by one. In the quasiclassical approximation, each rate
is determined solely by the change AG of the Gibbs energy G, resulting from

‘the tunneling event:

.._._A_gﬁ (5)

Here I;(U) is the dc I — V curve of the kth junction when biased by a fixed
voltage U; for our case of the normal-metal junctions one can accept I;;(U) =
GU. The Gibbs energy of our system is a function of both n; and nj:

MHm) = ShO)L - ewp(-p ) U=

G(nl, 17.2) = -2%(@0 + en)z - ec—‘;-(nlCz + n2C1), (6)
but AG for any tunneling event is a function of n alone, so that Eqs.b(4)-(6)
form a complete system of equations for p(n,t).

When the system is solved, it is straightforward to calculate the statistical
(ensemble) averages of the currents Iy, using the standard formula:

(Ie(t)) = (=1)F+e Y [TF (n) - Tf (n)]p(n, 1). (M

47



(Here and later the summation is carried out within infinite limits until in-
dicated otherwise. Besides this, in order to simplify all expressions, we use
the convention that electron charge e is positive; it does not change the final
formulas.) '

One should be very careful, however, in using standard textbook formulas
for calculations of the intensity of fluctuations of I 5. In particular, one would
get a wrong resulwif he tried to apply to Iy 2(t) the standard formula (see, e.g.,
Ref. 9) for the autocorrelation function Kx(t —t') = (X[n(t")]X[n(¢)]) of a
variable X [n(t)]:

Kx(t-t)= Z X(n)p(n,t | o', 1) X(n")p(n), » (8)

where p(n,t | n/,t’) is the partial solution of Eq. (4) for ¢ > ¢’ with the special
initial condition

p(n,t' |0’ t') =6y 0. 9)

and p(n') = p(n',t — 00). On the other hand, Eq. (8) yields correct results for
some other variables, for example for the potential U of the central electrode,

U@ = a1;[011/ + Qo + en(t)]. (10)

The reason of this difference is that the currents Iy »(t) = eny 3(t) are not
functions of n (while U is), so that their correlation functions should be calcu-
lated anew from the general principles (see, e.g., Ref. 9), taking into account
that only the tunneling events changing n (by 1) give a finite contribution
to the currents I; ;. Such a calculation (for details, see Ref. 10) yields the
following result

Ki(t =) = Kn, (¢ —t) = & 3 [Ff (n) = T ()] x

n,n!
[p(n,t | 7'+ LE)TE () - plnt |0 = LOTE (@), (11)
This formula is valid for ¢ > ¢/ alone, because the correlation function contains

an additional term Ayé(t — t'). The easiest way to find the constant Ay is to
calculate the spectral density of the current fluctuations

Sr.(w) = 4/ dr[Kr, (1) — K1, (00)]cos(wT), (12)
o .
and require that the noise approaches the Shottky value
Sn(w) = 24k = 26(([F) +(I7)),  (IF)=ed TE@p(n)  (13)

at large frequencies w 3> (R;Cy)™?
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Figure 3: Spectral densities of the currents Iy, Iy in junctions of the two-
junction system, and spectral density of the total current I through the system
(Fig. 1c), as functions of observation frequency w. For a discussion, see text.

Figure 3 shows a typical behavior of the functions Sy, (w) and Sr(w), where
I is the "total” or "external” current [4]

It) = lel(t) +Goh. (14)

One can see that these functions can grow with frequency. This unusual
property is a consequence of electron ”anti-correlations” (tunneling of an elec-
tron decreases for some time the probability of tunneling through the same
junction), which make the correlation function (11) negative at ¢t > ¢’. Note
also that the functions Sy, (w) and Sr(w) do not show peaks around the fre-
quency f = I/e (in other words, the single-electron transistor does not exhibit
the SET oscillations), in accordance with the general principles of the single-
electronics [1-3). In practice, we will need to know the spectral density in the
low-frequency limit w < (R;Cj)~! alone, where spectral densities of Iy, I,
and I coincide (due to conservation of charge of the middle electrode):

$1(0) = lim S1,(w) = lim S1,(w)- (15)

Generally, noise properties of the single-electron transistor as a two-port
device are determined not only by intensity of two noise sources Sr(w) (*output
noise”) and Sy(w) (”back-action noise”), but also by their mutual spectral
density

Sy (w) = 2/+ dr[Ku(7) — Kru (00)] exp(iwT) = C2 S]lu(w)—l- San(“’)

-00
16
This density can be found from the correlation functions (16)

.
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Kiu(t—t) = ey (-1)**'[0f(n) = Iy ()lp(n, ¢ | o', 1)U (n')p(n'),

n,n!
for t>t,
LY
=e Y (=) HU@)p(', ' | n+ LT (n) — p(', ¢’ | n = 1,0)T% (n)]p(n)
n,n!

for t<t'.(17)

One can see that generally K,y are asymmetric functions of 7 = ¢ — t/, and
thus the mutual density (16) is a complex function of frequency. In the low-
frequency limit, however, this function approaches a real value S;y (0).

Analytically, the noise intensity can be calculated in an important limit
when the temperature is low, kT < €2/Cyg, and the bias voltage V is close
to the Coulomb blockade threshold V; [4]. In this limit, the tunneling rate is
determined by that in one of the junctions, and if there is no large asymmetry
in junction resistances, a rare leap of an electron through this junction is almost
immediately followed by the similar leap through the second junction, with a
long pause after this double leap. Hence, the double leaps are virtually not
correlated, and the low-frequency noise of current I obeys the Shottky formula
2e(I), i.e. is completely determined by (I). The last quantity can be readily
calculated from the master equation (4), because in this limit only two states
(say,n = 0 and n = 1) have non-vanishing probabilities p(n). For the case when
electron first passes through the junction 1 (e.g., for C; < Ca, —e/2 < Qo < 0),
the result is:

Ca(V = Vp)
(I> Cle(l—eXp{ Cze(V Vt)/CEkBT}) (18)

For arbitrary parameters, the noise can be calculated numerically, using
the formulas given above (a method of considerable acceleration of these cal-
culations will be described elsewhere [10]). Figure 4 shows typical plots of
low-frequency current and voltage noise intensities, and their correlation factor
Sru/(SrSu)/? as functions of the dc bias voltage V.

At very low temperatures, kgT < (GrRg)e?/Cg, the quasiclassical cur-
rent (18) in the most important voltage range V = V; becomes smaller than
the current due to the macroscopic quantum tunneling of charge [11] and the
above quasiclassical formulas should be changed for those following from a more
general approach. For GxRq < 1 and T' — 0 one can get [12] an analytical
expression

(1) = hG1G2V 2[61(14—&)( ct { }__) i+(l+ €1€2 ¥ {(1+€:) 1,

€
2me? Py 2 14¢€ +e; 7+
(19)
where
7I'Egj(1+5i)) i)j=1)2, z#]:
& = (Ci/Ce)[(Ves = V)/V], 95 = hGj/2¢2,
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Figure 4: Low-frequency spectral densities of the current I and electric poten-
tial U of the middle electrode of the two-junction system, and their correlation
factor as functions of the bias voltage. Dashed line shows the dc I — V' curve
of the system.

and V;; is the threshold of tunneling in the ith junction. Equation (19) de-
scribes transition from quantum tunneling at V < V4, V; = min{V;,, V;2} to
quasiclassical tunneling at V' > V;.

III. C-SET

Now let us consider the single-electron transistor, capacitively coupled to an

external signal source which is characterized by the signal amplitude @, and
the intrinsic capacitance C; (Fig. 1a). It is straightforward to get convinced
[4] that the Gibbs energy of the complete system is similar to that (6) of the
effective bare two-junction system (Fig. 1c) with the following parameters

C,=Ci, Ch=Cy+C. Ch=Ci+Cy+C. CIl=Cyl+CrY,
Qo = Qo + Q=(C./Ci) = Qo+ Q=z[Co/(Co + C:)]. (20)

Hence, the change of the output variable, the dc current (I}, due to a small
signal 6Q; < e can be calculated as
C';
81, 8 o 6Q Q=0 +
where (') refers to the effective two-junction system. On the other hand, r.m.s.
value of the low-frequency fluctuations of the current through the system is

~16Qq, 2]

SIn = [Sr(0)Af7?, (22)
where Af is the output bandwidth of the device (determined by the post-
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Figure 5: The responsivity 8I' /dQ of the dc current through the two-junction

system and its noise reduced to the input, as functions of the bias voltage V;

6@ is defined by Eq. (21). Dashed line shows the dc I —V curve of the system.

transistor filtering and directly related to the effective measurement time 7, =~
1/Af).

The charge resolution §Q of the device can be obtained by equating signal
|61, | to noise |81n |:

Ci
Co”
Hence, in this particular case the device sensitivity is determined exclusively
by the "output” noise (of the effective system).

Figure 5 shows a typical dependence of §Q, on the bias voltage V. The
noise (reduced to input) is high both inside the Coulomb blockade range (due
to small responsivity 8I'/0Q5) and far beyond the blockade threshold (due
to the growing current fluctuations) and reaches its minimum slightly above
the threshold. This trend is well seen in Fig. 6 which shows levels of fixed
noise 6@, on the parameter plane [@f, V]. One can see that the minimum
of 6Q’, with respect to voltage V is quite a weak function of @, except for
vicinities of special points where straight boundaries of the Coulomb blockade
meet. If one selects the point [Q}, V] corresponding to a minimum of §Q/,
the resulting noise is a decreasing function of C}, R}, and T. In practice,
the minimum value Cinin of junction capacitances is determined by technology
of fabrication of ultrasmall tunnel junctions, and should be considered as a
fixed parameter, while the coupling capacitance Cy should be considered as an
adjustable parameter and a subject of optimization.

6Qz = [Sp(0)Af]M? |8I'JoQy |~ (1 + (23)

Figure 7 shows the resulting minimum value of the transistor noise as a
function of the source capacitance, for several values of temperature. If C; is
smaller than some value Cy(T") (see Fig. 7) the optimum value of the coupling
capacitance Cp is much larger than C;. For C; — 0, relatively low temperatures
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Figure 6: Levels of the fixed noise 6Q/, on the parameter plane [Q}, V]. The
noise decreases in the vicinity of the Coulomb blockade threshold (indicated by

the straight lines) except for the points where the thresholds of tunneling in
two junctions coincide.

(ksT < €?/Cmin), and for C1 = Cz = Cpin, R1 = Rz = R the minimum noise

is

(6Qz)min = 5.4e[—25-”_7;—]1/2(130m.-,1A N2 (24)

[ /Cmin

If C; is increased beyond Cy(T'), one should decrease the coupling capacitance
in order to limit values of Cy and thus prevent the system from the destructive
effect of the thermal fluctuations. In this case the optimum value of Cjy is
determined by the condition C§ = const, and 61, (21) decreases, while the
effective noise 6Q (reduced to the device input) grows linearly with C;. At
Ci > G, the device is better characterized by its voltage sensitivity,

which is independent of C; in this limit. At low temperaturcs
(6Vz)min = 2.7(kgTRAf)Y/2. (26)
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Figure 7: Minimum noise (6Q:)min of the C-SET (Fig. 1a) at various temper-
atures as a function of the signal source capacitance C;, for C; = Cy = Chin
and R; = Ry = R. Straight lines show the linear asymptotes of (6Qz)min for
large Cj. :

Figure 8: Noise of the C-SET at vanishing temperature as a function of the
bias voltage (for Rg/RR = 0.01). On the chosen voltage and charge scales the
curve is almost independent of the junction resistance R. The insert shows the
minimum value of this curve as a function of R; X is defined by Eq. (27).

One can see that the charge and voltage noise (24), (26) decrease with
decreasing temperature T' and junction resistance R. This implies that at
sufficiently small T' and R the noise is dominated by the quantum fluctuations
which are not accounted for by the quasiclassical approximation used to obtain
Eqgs. (24), (26). For T — 0, one can calculate such a quantum noise inserting
Eq.(19) into Eq. (23), and using the fact that near Coulomb blockade threshold,
S1(0) = 2el’. .

The noise @), obtained in this way is shown in Fig. 8 for R; = R = R,
and for Qo for which Vi3 # V2. For such values of Qo the noise is practically
independent of Qo, and similar to the noise in the classical regime, reaches its
minimum value (6Q;)%,;,, at some voltage just above V;:

(6Q:)rin = AL+ LIBVCEAS/) 2, (27)
. 0 .
where the factor A can be calculated numerically. As shown in the insert of Fig.

8 this factor is a very slowly varying function of the resistance R. Equation (27)
shows that (6Qz)},;,, decreases with decreasing threshold voltage V;, i.e. with

10ne should note that this is the absolute minimum of quantum noise for symmetric
transistor with R; = R;. Asymmetry of the junction resistances presumably can further
decrease this value.
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Qo approaching e/2, and reaches its absolute minﬁnum (6Qz)min at Qo — €/2.
Since Egs. (19), (27) are no longer valid when'eV ~ k/RCY, we can get only
the estimate of the absolute minimum of the quantum noise:!

(6Qz)min ~ (RCLAfRQ/R)'/?,  for C;—0. (28)

This estimate implies that the minimum value of the natural energy measure
of the noise

§E, = (6Q2)2/2C%, (29)

can be smaller than that given by a naive estimate (6E;) ~ RAf.

Comparison of Eqgs. (24) and (28) shows that a transition between regimes
with sensitivity limited by thermal and quantum noise should take place at
kT ~ hRqg/C4R?. Since the quantum noise decreases with increasing R
(while the thermal noise increases), there is an optimum value of junction
resistance at any finite temperature T"

R~ (hRq/kpTCy)M2. (30)

In order to make a numerical estimate, let us take parameters correspond-
ing to the experiment [7]: Cp ~ 1 fF, Ry ~ 100 k2, T' =~ 50 mK. For these
parameters kpT >> (Rg/nR)(e2/Cx), so that sensitivity §Q); should be esti-
mated from quasiclassical equation (24), which yields the value

(6Qz)min/(AF)? =~ 10-5¢/Ha!/?, (31)

for the low-impedance-source measurements (C; < Ci). This value is a factor
of 10 smaller than that obtained in the experiments [7]. Possible reasons of
this difference include:

e 1/f noise contribution in experiments (in our theory, this noise is disre-
garded);

e imperfect optimization in V and Qo during the measurements;

e heating of the middle electrode by the dc current.

Further detailed experiments are certainly necessary to identify the most im-
portant reasons of this discrepancy.

For a large-capacitance source with C; = 1 pF, and for the same transistor
parameters as above, Eq. (26) yields the estimate

(6V)min/(AF)? ~ 10-°V/Hz'/?, (32)

which corresponds to charge sensitivity §Q, /(A f)!/2 = 0.01e/Hz'/2. Although
not as impressive as Eq. (31), this sensitivity is still much higher than that
available using conventional solid-state electrometers.
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IV. R-SET

Another possible way to couple the system of two small-area tunnel junctions
(Fig. 1c) to signal source is to use resistance Rg (Fig. 1b). Such a galvanic
coupling enables one to use the single-electron transistor as a galvanometer. If
the source capacitance is large (C; > e2/kpT), the coupling resistance should
be large enough (Ro > Rgq) to cut off Cj; otherwise only the sum Ro + R;
should be much larger than Rg. If the ”external resistance” Ro + R; is also
much larger than Rj 2, equations describing this system can be reduced to
those of the bare two-junction system, complemented by the self-consistency
equation for the background charge Qo:

Qo(t) = Io(t) = [IzRi + 6Uon — (U)]/(Ro + Ry), (33)

where (...) means statistical averaging (or, equivalently, time averaging on the
short time scale RaCr < (Ro + R;)Ck), and 6Ugy is the e.m.f. describing
Johnson-Nyquist noise of the coupling resistance.

Equation (33) shows that the R-SET can operate in two modes. ‘In the
first (”dc”) mode realized at

ming, {U(V, Qo)} < I Ri < ming,{U(V,Qo)} (34)

the input is on the average compensated by variations of the middle electrode
potential, '
(U) = I Ry, (35)

so that (@), (n), and (I;) are constant in time, and (lo) = 0. Note that the
range (34) can be extended considerably by a negative-feedback circuit. This
circuit, if implemented properly, does not change the system sensitivity.

In order to find the sensitivity in the dc mode, one can linearize Eq. (33) for
small signal/fluctuation perturbations, and get for w < (8U/9Qo)/(R; + Ro):

6Qo = (61 Ri + 6Uon + 6UN)(3U/0Q0)—1, (36)

where §Uy is the fluctuations of the middle electrode potential in absence of
coupling. Uniting this equation with that for the current perturbation,

81 = 61y +(81/9Q0)5Qo, (37)
one gets the following result for the signal current resolution:
1o = 2 SBO)AT/2),  S4(0) = Sy(0) + 4ksTRs,
au a1
v (0) = S1(0)x? + Su(0) = 2S1u(0)k, K =(55-)v/(55-)v.  (38)
: Q0" " " 9Qo
Figure 9 shows a typical dependence of Si;(0) on the bias voltage V. One
can see that Sy;(0) is minimum just at the Coulomb blockade threshold. Nu-
merical optimization with respect to o, V shows that
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Figure 9: Internal noise Sj; (0) of the R-SET (defined by Egs. (38)) as a function
of the bias voltage V (solid line), and dc I — V curve of the system (dashed
line).

minSy (0) = akpTR, a8, (39)

where R; = Ry = R. .

According to Egs. (38), (39), sensitivity of the R-SET electrometer as a
voltmeter is nearly the same as that of its C-SET counterpart (cf. Eq. (26)), -
and not cxtremely high. Moreover, as long as Rg 3> R, the noise of the de-
vice is dominated by the Johnson-Nyquist noise of the coupling resistor. Thus,
the resistively-coupled SET does not promise an outstanding performance for
high-C; signal sources, for which large coupling resistance (Ro 3> Rq) is neces-
sary in order not to increase effective junction capacitance and thus to protect
transistor from destructive thermal and quantum fluctuations.

On the other hand, if the signal source is small in size (say, few tens
of microns or less), so that C; < €?/kpT, and can be located close to the
transistor, there is no need in the coupling resistance Ro. Our formulas (38),
(39) show that in this case the dc current sensitivity of the electrometer can
be extremely high. For example, for the same parameters as in the previous
section and R; = 102 Q we get

S /(AF)M? ~ 10~ A/Hz?, (40)

which is some five orders of magnitude better than for any solid-state gal-
vanometer we know about.

Note also the second (”ac”) mode of operation attainable in the R-SET
without feedback outside the range (34). In this mode, (lp) # 0, and all
variables (including I) oscillate with the frequency fsgr = (lo)/e. In this
regime the device can serve as an absolulte ampermeter, although its noise is
somewhat larger than that in the dc mode.
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V. Conclusion

Our noise analysis of the capacitively- and resistively-coupled single-electron

transistors shows that under certain conditions these devices can have an ex-
tremely high sensitivity as electrometers. The most important condition of this
high performance is that the signal source admittance (including both conduc-
tance R;' and capacitance C;) is very small - see Egs. (2), (2). For such
sources, the charge/current resolution of C-SET/R-SET electrometers can be
some five to six orders of magnitude better than that of the commercially avail-
able solid-state electrometers.

Unfortunately, many room-temperature sources cannot meet this condi-
tion, notably because C; includes a relatively large contribution of the source
connections to the transistor (which should bé cooled to at least liquid-helium
temperatures at the present-day values of the tunnel junction capacitances).
For such sources, advantages provided by the single-clectronics for the elec-
trometry are not so apparent, although still considerable.

The situation could be improved significantly if an electrostatic analog
of the superconducting dc transformer (widely used with Josephson-junction
magnetometers called SQUIDs, see, e.g. Ref. 13) were available. Unfortunately,
despite a considerable duality between the single-electronic and Josephson-
junction devices [1-4], such an analog is not feasible for dc signals. This is
due to the fact that electrostatics is described by the single-component electric
potential g(r), rather than by three-component vector-potential /f(1) as mag-
netostatics (magnetic transformers are essentially based on the possibility to
twist the vector A in space).

For non-vanishing signal frequencies, however, the last argument is not
valid, and possibly a solution can be found for an effective matching of high-
capacitance sources to low-capacitance single-electron transistors. Until that
happens, the single-electronic electrometry will probably be restricted mostly
to measurements of small-size helium-cooled objects, first of all, other single-
electronic systems. The first experiment of this kind has been already carried
out [13}.
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