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Motivation

• Unexpected processor throttling
– Interrupted or slowed execution of safety-critical tasks

• System design space exploration 
– Design workloads around thermal conditions and processor thermal 

characteristics

• Overly pessimistic or optimistic thermal budgets with inaccurate 
models
– Over or under committing resources, missing deadlines. 
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Related Work (1/2)

• High computational cost simulations18, 27, 11, 21, 39

– Require proprietary microarchitectural information
– Require detailed power traces and floor plans
– Hotspot-based, IR imaging based, and performance counter-based 

estimations17, 33, 6

• Application and processor fingerprinting with linear control systems31, 32, 

8, 1, 24, 23

– Thermal impulse response 
• Matrix pencil approach8, 15

– Convolving utilization traces with impulse response vector 
• Requires detailed information about runtime behavior of tasks
• Model changes with each application
• Impossible to model thermal behavior with preemptive tasksets
• Does not work with multiple cores with several tasks
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• Thermal parameter estimation23, 24

– Finding parameters for a solved LTI thermal system model
– Use the calibrated model to estimate temperature
– Usually high order and time/resource consuming to simulate

Related Work (2/2)
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Challenges

• Modeling Challenges
– Dynamic thermal system
– Many varying parameters
– High computational cost to solve
– Requires detailed information like power traces and detailed floorplans
– Thermal conduction between cores

• Accuracy Challenges
– Sensor imprecision (quantization)
– Sensor impulse response
– Sensor location on core
– IP blocks
– Changes in ambient temperature
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Contributions

• Low computational cost thermal modeling scheme
– Estimating thermal parameters of a well known LTI model

• Errors are considered in the model and eliminated in the temperature 
estimation 

• CPU floorplan estimation scheme
• Accuracy enhancement via the ensemble of multi-frequency thermal 

profiles
• Case study on ARM embedded platform
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System Model

• Homogeneous multi-core processor 
– Each core has a dedicated temperature sensor

• No access to:
– the chip floorplan
– the exact locations of on-chip temperature sensors
– the power traces of the processor
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Power Model

• Standard power model
– summation of static and dynamic 

power consumption. Dynamic Power

Static Power
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Temperature Model

• Common thermal model for real-
time multi-core systems.

• Cannot directly find B or b
• Instead, find B x P

Power consumption 
per coreOperating 

Temperature

System-specific 
parameter matrix

Captures the effect of 
power consumption 
on temperature

Diagonal parameter 
matrix that 
considers power 
consumption
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So, what is the problem?

• Given a multi-core CPU equipped with on-chip temperature sensors, 
construct an accurate and fast thermal RC model by estimating A and B ×
P of the CPU from a limited number of temperature profiles, without 
requiring prior knowledge of the cpu floorplan, information about the 
cooling package, and detailed power traces.
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Proposed Approach

1. Gather thermal profiles
a. n+1 profiles

2. Perform anomaly detection
a. Superposition law for MC processors

3. Estimate CPU floorplan
a. Reducing a fully-connected, 

weighted, graph

4. Estimate thermal parameters with 
with steady-state data

5. Calibrate thermal parameters with 
transient-state data
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Thermal Profiling

• Custom designed application 
– Executes on any combination of n cores
– Utilizes a customizable percentage of cpu time
– Logs frequency and temperature data

• Profiling needed
– For n cores, n+1 profiles

• One profile for each core fully utilized
• One profile when all cores are idle

– Can be enhanced with profiles at multiple frequencies
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Data Preprocessing and Anomaly Detection

• Low-pass filter on raw sensor data
– Eliminates the effects of temperature sensor imprecision and quantization

• Use of additional steady-state profiles
– Apply the thermal superposition theorem validate data
– Discard erroneous or invalid data from the thermal profile
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Floorplan Estimation

• Greedy algorithm to estimate 
the geography of the CPU cores 
on the CPU die

• Reducing the graph
– Eliminating self loops
– Subtract directed edges from 

self-loop values
– Take the minimum of that result 

to find new undirected edge 
weight
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Solving the Model for Steady-state Profiles (1/2)

Equation 1:

Solving equation 1:

Steady state simplification: 

Thermal response due to the initial 
temperature difference from the ambient

Non-homogeneous solution caused by 
the input power signal.
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Solving the Model for Steady-state Profiles (2/2)

Operating temperature 
matrix of the cpu cores 
when the i-th core is fully 
utilized

The temperature of the 
CPU when all CPU cores 
are idle

The matrix of 
temperature profiles of 
the CPU in the steady 
state.

Steady state 
temperature matrix

Idle Temperature 
matrix
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Thermal Parameter Estimation with Steady-state Profiles

• Ã is constructed according to the 
estimated floorplan

• Inverse of the temperature 
increase due to a utilization 
pattern

• Gradient descent algorithm to 
estimate r parameters. 
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Thermal Parameter Calibration with Transient-state Profiles

• Transient state profiles are key to estimating matrix B

• To estimate the value of A, we only need γ.

• Find γ by curve fitting on transient state temperature.

19

𝜦 Eigenvalues of Ã

V Eigenvectors of Ã

θ 𝑡 = θ𝑐ℎ𝑖𝑝 + 𝑒− 𝑡−𝑡0 γ෩𝑨θ0 + ෩𝑨−1 𝐼 − 𝑒𝑨 𝑡−𝑡0 𝑯

H n x 1 control signal 

hi = 1 when the ith

core is fully utilized 

θ t = θchip + 𝐕 e− t−t0 𝛄𝚲 𝐕−1θ0 + ෩𝐀−1 I − 𝐕 e− t−t0 𝛄𝚲 𝐕−1 𝐇



Accuracy Enhancement
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Predicate of CPU settings.  

Steady state temperatures of all cpu cores with setting 
Z

Augmented steady state temperature profile



Use of Multi-Frequency Data Ensembles

• At a frequency fi ,we can 
estimate Ãi with additional 
thermal profiles

• A is invariant despite changes in 
frequency, hence γi can be easily  
determined from Ãi

Temperature increase 
matrix at frequency fi. 
𝛾i denotes its power 
effect on temperature 
at that frequency. 
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Evaluation (1/4)

• ODroid-XU4 development board 
equipped with a Samsung 
Exynos5422 SoC.

• Collected temperature profiles for 
all utilization configurations and 
multiple frequencies.  

• Estimated the CPU floorplan and 
determined the thermal parameters 
A and B x P.

• Model estimates the maximum 
available utilization within 3% of 
ideal.
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Evaluation (2/4)

• Average model error at various 
frequencies and with subsets of 
thermal profiles.

• Maximum error is below 1.5C
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Evaluation (3/4)

• Comparison to the state of the art1 

(referred to as TF)
– Gathered thermal profile

– Used Matlab’s TFest function to 
estimate self-core transfer functions
• Exhaustive search to optimize the 

number of poles and zeros

– The modeling results of TF have the 
average goodness fit of 89.96% at 1.0 
GHz and 88.31% at 1.4 GHz

• Our model outperforms TF in every 
case 

24

[1] R. Ahmed, P. Huang, M. Millen, and L. Thiele. On the design and application of thermal isolation servers. ACM Trans. Embed. Comput. Syst., 16(5s):165:1–165:19, Sept. 2017

[13] S. Hosseinimotlagh, A. Ghahremannezhad, and H. Kim. On dynamic thermal conditions in mixed-criticality systems. In 2020 IEEE Real- Time and Embedded Technology and 

Applications Symposium, pages 336–349, 2020.

[14] S. Hosseinimotlagh and H. Kim. Thermal-aware servers for real-time tasks on multi-core gpu-integrated embedded systems. In 2019 IEEE Real-Time and Embedded Technology 

and Applications Symposium, pages 254–266, 2019.



Evaluation (4/4)

• Experiment using thermal 
isolation servers1, 14, 13 with 
replenishment period of 50ms 
and 100ms and the polling

server policy are used. 

• TF overestimates maximum 
available utilization (MAU) by up 
to 18% per core

• Our scheme underestimates 
MAU by a maximum of 3% per 
core
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Case Study

• Mixed-criticality flight management 
system (FMS) taskset
– Polling server with 50ms budget and 

50% utilization for low-criticality 
tasks on core 1

– 4 thermal-aware periodic servers for 
high criticality tasks on cores 2 and 4 
with replenishment budget of 50ms 
and utilization of 65%

• Temperature estimation
– Our model achieves up to 2.53% 

error 

– TF achieves up to 23.07% error

26



Wrapping it up

• Conclusion
– Novel and accurate scheme for estimating thermal parameters of COTS multi-core processors for real-time 

embedded systems
• Two stage estimation and calibration 

– Using steady state and transient state thermal profiles

• Accuracy enhancement
– Many thermal profiles with various CPU utilization configurations
– Multiple frequency profiling

– Model is robust and fast to converge
• Low computational cost
• Can be used in an event driven manner

– Negligible memory and computational overhead

– Estimation of power consumption 

• Future work
– Identifying thermal parameters of systems under various cooling conditions

– Estimating thermal parameters for heterogeneous multi-core platforms

– Statistical methods to estimating floorplan

– Mathematical analysis of the modeling against noisy thermal profiles
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Thank you!
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