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Motivation

e Unexpected processor throttling
— Interrupted or slowed execution of safety-critical tasks

e System design space exploration
— Design workloads around thermal conditions and processor thermal
characteristics

e Overly pessimistic or optimistic thermal budgets with inaccurate

models
— Over or under committing resources, missing deadlines.
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Related Work (1/2)

e High computational cost simulations!® 27,11, 21,39
— Require proprietary microarchitectural information
— Require detailed power traces and floor plans
— Hotspot-based, IR imaging based, and performance counter-based
estimationst’ 33,6

e Application and processor fingerprinting with linear control systems3% 32
8,1, 24,23

— Thermal impulse response
e Matrix pencil approach® 1>

— Convolving utilization traces with impulse response vector
e Requires detailed information about runtime behavior of tasks
e Model changes with each application
e Impossible to model thermal behavior with preemptive tasksets
e Does not work with multiple cores with several tasks
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Related Work (2/2)

e Thermal parameter estimation?® 24
— Finding parameters for a solved LTI thermal system model
— Use the calibrated model to estimate temperature
— Usually high order and time/resource consuming to simulate
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Challenges

e Modeling Challenges
— Dynamic thermal system
— Many varying parameters
— High computational cost to solve
— Requires detailed information like power traces and detailed floorplans
— Thermal conduction between cores
e Accuracy Challenges
— Sensor imprecision (quantization)
— Sensor impulse response
— Sensor location on core
— IP blocks
— Changes in ambient temperature
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Contributions

e Low computational cost thermal modeling scheme
— Estimating thermal parameters of a well known LTI model

e Errors are considered in the model and eliminated in the temperature
estimation

e CPU floorplan estimation scheme

e Accuracy enhancement via the ensemble of multi-frequency thermal
profiles

e (Case study on ARM embedded platform
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System Model

e Homogeneous multi-core processor
— Each core has a dedicated temperature sensor
e No access to:
— the chip floorplan
— the exact locations of on-chip temperature sensors
— the power traces of the processor

[TH RIVERSIDE ,



UNIVERSITY OF CALIFORNIA, RIVERSIDE

Power Model

e Standard power model P(t) = Ps(t) + Pp(t
— summation of static and dynamic

power consumption. Dynamic Power

Pp(t) = ko f(t)*

v Static Power
Pg(t) = k19(t) + ko
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Temperature Model

[9’(t)}n><1 = }?‘”X”[g(t)]nxl + BﬂXﬂ[P(tnnxl

e Common thermal model for real- ' .
time multi-core systems.
e Cannotdirectlyfind Borb Power consumption
e Instead, find BxP Operating per core
Temperature
Diagonal parameter System-specific ‘ Captures the effect of
matrix that parameter matrix power consumption
considers power: on temperature
consumption \
ann — blxnInxn

[TH RIVERSIDE .



UNIVERSITY OF CALIFORNIA, RIVERSIDE

So, what is the problem?

e Given a multi-core CPU equipped with on-chip temperature sensors,
construct an accurate and fast thermal RC model by estimating A and B x
P of the CPU from a limited number of temperature profiles, without

requiring prior knowledge of the cpu floorplan, information about the
cooling package, and detailed power traces.
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Proposed Approach

1 . G a t h e r t h e r m a I p rOfI I e S @ z:?:i\::tate @ Anomaly Detection during Data Preprocessing @ Floorplan Estimation
a. n+1 profiles et ———,, l I i 4@>
. profle2 — [ _» Bi:'}. 9;%» —*| Anomaly detection [T :
2. Perform anomaly detection i memasenem v ermat gy
rofile n+1 I Graph
a. Superposition law for MC processors . [@ : T
A & BP «—{ Thermal Parameter Estimation Thermal P: imati

3 ' ES ti ma te CPU fI 0 Orpl a n with Transient-State Data with Steady-;ta:e‘Data
a. Reducing a fully-connected,

weighted, graph
4. Estimate thermal parameters wit
with steady-state data
5. Calibrate thermal parameters with
transient-state data
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Thermal Profiling

e Custom designed application
— Executes on any combination of n cores
— Utilizes a customizable percentage of cpu time
— Logs frequency and temperature data

e Profiling needed

— For n cores, n+1 profiles
e One profile for each core fully utilized
e One profile when all cores are idle

— Can be enhanced with profiles at multiple frequencies
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Data Preprocessing and Anomaly Detection

e Low-pass filter on raw sensor data
— Eliminates the effects of temperature sensor imprecision and quantization

e Use of additional steady-state profiles
— Apply the thermal superposition theorem validate data
— Discard erroneous or invalid data from the thermal profile
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Floorplan Estimation

e Greedy algorithm to estimate
the geography of the CPU cores
on the CPU die

e Reducing the graph

— Eliminating self loops

— Subtract directed edges from
self-loop values

— Take the minimum of that result
to find new undirected edge
weight
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Solving the Model for Steady-state Profiles (1/2)

Equation 1: 0(t)], 1 = Anxnl0(t)]n1 + BrxnlP(t)],

t
Solving equation 1:  8(t) = Oy + el 1046, -I—/ e ABP(s)ds

tp

Thermal response due to the initial Non-homogeneous solution caused by

temperature difference from the ambient the input power signal.

Steady state simplification:  0(t) = O + €046,

— 47 (1) BP

Ooo = lim O(t) = Oonip — A"'BP
—00
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Solving the Model for Steady-state Profiles (2/2)

[Y;]nx 1 Operating temperature
matrix of t_he cpu cgres O = lim O(t) = Oupip — A 'BP
when the i-th core is fully t—o0
utilized -
Y| —|[YoYs... Y, — Pp(—A'B
1/(] < The temperature of the Yo¥o Olnxn D( )
CPU when all CPU cores
are idle Steady state Idle Temperature
T temperature matrix matrix
Y], n = [Y1Y2... Y] < The matrix of
temperature profiles of A= — PDb(Y VY. .YI)]T)I
the CPU in the steady
state. 1
A= (Y— YoYo.. .YO]T)
v=0bFPp
A =—~A
[TH RIVERSIDE
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Thermal Parameter Estimation with Steady-state Profiles

e Aisconstructed according to the
estimated floorplan

e Inverse of the temperature = (Y - %Y. .Yo]T)1
increase due to a utilization
pattern

e Gradient descent algorithm to .

. L ;
estimate r parameters. argmin_ 1A =Yz
a;: 1 , T
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Thermal Parameter Calibration with Transient-state Profiles

Transient state profiles are key to estimating matrix B
® To estimate the value of A, we only need y.

® Findy by curve fitting on transient state temperature.
A = —A

0(t) = 0.5, + A9 — A“T(1 — A\ BP H<—— n x 1 control signal
(6) = Oanip + €700 ) h = 1 when the it
0(t) = Oupip + e(t—tg)—'yﬁeﬂ n (fy/i)_l (I B eAt)bIP core is fully utilized

A A A <—— Eigenvalues of A
0(t) = echip + e—(t—to)YAeO + A1 (I _ eA(t—tO) )H

N V «<—— Eigenvectors of A
08(t) = Bcpip + Ve TVAy-1g, + A1 (1 - Ve (ttvAy-1 )Y
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Accuracy Enhancement

. -

_Y]nxn = NY,... Y] < The matrix of
temperature profiles of
the CPU in the steady

state.

D)ypin = 1212 Zu"

mXxn

Predicate of CPU settings.

U=[X.X,...X.|"
/'

Steady state temperatures of all cpu cores with setting
VA

Vo (P D7) D o)

Augmented steady state temperature profile
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Use of Multi-Frequency Data Ensembles

e Ata frequency we can Yi: Temperature increase
] ~ : I’ L matrix at frequency f.
estimate A, with additional y; denotes its power
thermal profiles effect on temperature
at that frequency.

e Aisinvariant despite changes in
frequency, hence y;can be easily

. ~ A=A
determined from A, !
o
argmin ZHAI - —=Y'||3
a;j: j € [1,r] T
i€ [LIf]
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Evaluation (1/4)

e (ODroid-XU4 development board
equipped with a Samsung
Exynos5422 SoC.

e Collected temperature profiles for
all utilization configurations and
multiple frequencies.

® Estimated the CPU floorplan and
determined the thermal parameters
A and B x P.

® Model estimates the maximum
available utilization within 3% of
ideal.
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Evaluation (2/4)

==1.4 GHz =13 GHz 1.2 GHz 1.1GHz ==1GHz ==0.9 GHz ===0.8 GHz ==0.7 GHz

e Average model error at various 14
frequencies and with subsets of
thermal profiles. oo M
ul g
e Maximum erroris below 1.5C =% | =—sre
N
0
N e ?‘ ?‘ "z » ?l b % i
(y. 0?’ (y?’ (_?’) (_,V (’?"» (y.) (’V'\’?, (’V.} (y"\’ (,';‘» (y’_\:‘b (F.‘\":J v,}"l:’,
Cases
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Evaluation (3/4)

® Comparison to the state of the art? o —ion e Zeleeeme e

mdl1.4GHz ==TF10GHz ==TF1.4GHz
__95 5
o

(referred to as TF) Ees =

— Gathered thermal profile g is 7
g Ess
— Used Matlab’s TFest function to “oo w0 w0 o
. . Time (s) 600 1400 2200 3000
estimate self-core transfer functions Time (5
. L. (a) core 1 (b) core 2
®  Exhaustive search to optimize the
number Of pOIeS and Zeros ==sensor 1.0 GHz==sensor 1.4 Ghz==mdl 1.0 GHz ==sensor 1.0 GHz==sensor 1.4 Ghz==mdl 1.0 GHz
_ The modeling results Of TF have the Ggsmdll,4GHz ==TF 1.0 GHz ==TF 1.4 GHz mdl 1.4 GHz ==TF 1.0 GHz ==TF 1.4 GHz
average goodness fit of 89.96% at 1.0 [
GHz and 88.31% at 1.4 GHz 8
[ ) Our m0d€| Outperforms TF |n every 45600 1400T. “zzoo 3000 600 1400T_ ”2200 3000
Case (c) core 3 (d) core 4
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Evaluation (4/4)

. . WMTF100 ms ZTF 50 ms & mdl 100 ms ¥ md| 50 ms
e Experiment using thermal ’

isolation servers® 1% 13 with
replenishment period of 50ms
and 100ms and the polling
server policy are used.

e TF overestimates maximum
available utilization (MAU) by up
to 18% per core

=
= o
AN

AN
e
AN

per Active core(%)

NN = ’ AN -
B\ X =

Utilization overestimation

A m o

4 cores 3 cores 2 cores 1 core

e Qur scheme underestimates
MAU by a maximum of 3% per

core
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Case Study

=—sensor 1.4 Ghz mdl 1.4 GHz ==TF 1.4 GHz =sensor 1.4 Ghz mdl 1.4 GHz =TF 1.4 GHz
e Mixed-criticality flight management s _» _
g o " < 70 f'
system (FMS) taskset gos | ts
[ 4 @ 60
— Polling server with 50ms budget and gss g%
50% utilization for low-criticality 4 4
0 1000 2000 3000 1] 1000 2000 3000
tasks on core 1 Time (s) Time (s
— 4 thermal-aware periodic servers for (@) core 1 (b) core 2
high criticality tasks on cores 2 and 4
th replenlshment budget of SOmS ==sensor 1.4 Ghz =-mdl 1.4 GHz =—=TF 1.4 GHz —sensor 1.4 Ghz —mdl 1.4 GHz —TF 1.4 GHz
Wi 75 15
and utilization of 65% Tes | gt | S |t m——
L Temperature estimation ass gss
— Our model achieves up to 2.53% Yo e am e [ S —
e rror Time (s) Time (s)
. 0 (c) core 3 (d) core 4
— TF achieves up to 23.07% error
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Wrapping it up

® Conclusion
— Novel and accurate scheme for estimating thermal parameters of COTS multi-core processors for real-time
embedded systems
° Two stage estimation and calibration
- Using steady state and transient state thermal profiles
L d Accuracy enhancement

- Many thermal profiles with various CPU utilization configurations
- Multiple frequency profiling

— Model is robust and fast to converge
L Low computational cost
° Can be used in an event driven manner
- Negligible memory and computational overhead

—  Estimation of power consumption
®  Future work
— Identifying thermal parameters of systems under various cooling conditions
—  Estimating thermal parameters for heterogeneous multi-core platforms
—  Statistical methods to estimating floorplan
— Mathematical analysis of the modeling against noisy thermal profiles
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Thank you!
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