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System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2



16Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2



17Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3



18Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3



19Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ1



20Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ1
τ3



21Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ1
τ3



22Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3



23Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2



24Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖), 
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2
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System Model
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Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2



30Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive 
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed 
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are 
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)
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Co-runner locking scheme
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Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)
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Possible to use with real-time synchronization protocols (see paper)
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Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive 
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed 
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are 
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3

Do not execute 
simultaneously

𝜖𝜖1={τ3} 
𝜖𝜖3={τ1} 



34Addressing Multi-Core Timing Interference using Co-Runner 
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been 
approved for public release and unlimited distribution

Co-runner locking scheme
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to execute in parallel with 𝜏𝜏𝑖𝑖
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Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive 
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed 
to execute in parallel with 𝜏𝜏𝑖𝑖
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Execution Control Policy

Co-runner exclusion set 𝜖𝜖𝑖𝑖 does not determine the execution order of 
co-runners when they compete

Possible approaches:

- Priority-based (this paper)

- First-come, first-served

- Other separate ordering different from task priority
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Priority-based Execution Control

Tasks in a mutual-exclusive relationship (𝜖𝜖𝑖𝑖) behave as if they were 
preemptively scheduled on the same core based on their priorities 
(called “co-runner preemption”)

deadlinearrival
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Other Control Policies: FCFS

FCFS takes away the opportunity for higher-priority tasks to preempt 
lower-priority tasks, possibly resulting in poor schedulability

deadlinearrival
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Schedulability Analysis

Baseline analysis:

Two more advanced approaches:
- Job-oriented Slowdown Analysis
- Load-oriented Slowdown Analysis

Pessimistic. It assumes 
tasks always get the worst-
case slowdown throughout 
their execution

Co-runner preemption
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Job-oriented Slowdown Analysis

Focuses on how long interfering co-runners can actually execute 
during the response time of a task under analysis 

Find the maximum cumulative execution time of a co-runner 𝜏𝜏𝑘𝑘:

Maximize the execution time of a job of 𝜏𝜏𝑖𝑖 (𝐶𝐶𝑖𝑖∗ ≤ 𝐶𝐶𝑖𝑖 ⋅ 𝜃𝜃𝑖𝑖):

Calculate the response time of 𝜏𝜏𝑖𝑖:

Solvable by 
fixed-point 
iteration
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Example 1

Response time of 𝜏𝜏1:
- Baseline analysis: 16  Misjudging that 𝜏𝜏1 misses the deadline
- Job-oriented slowdown analysis: 7  Same as in the figure
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Load-oriented Slowdown Analysis

Job-oriented analysis computes each job’s slowdown separately and 
then analyzes the response time

Instead, load-oriented analysis bounds the cumulative slowdown that 
can be possibly imposed on all execution requirements during the 
response time of a given task

Find the execution requirements 𝐸𝐸𝑖𝑖 during the response time of 𝜏𝜏𝑖𝑖:

Maximize the response time considering possible slowdowns for 𝐸𝐸𝑖𝑖:

Solvable by 
fixed-point 
iteration
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Example 2

Response time of 𝜏𝜏3:
- Job-oriented: Fail 
- Load-oriented: 16  Same as in the figure 

Job-oriented and load-oriented analyses do not dominate each other 
- Load oriented analysis fails for Example 1
- Use them jointly by taking the minimum between the two
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How to decide co-runner exclusion sets?

We propose two heuristics:
1) SA: Simulated annealing

Cost for SA: # of schedulable tasks in a given taskset

2) MaxSlack: Maximize relative slack

Adds a co-runner task to the exclusion set if doing so increases 
the cumulative sum of slack for all tasks
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Evaluation

Schedulability success ratio (SR) of random tasksets

Co-runner locking (Joint analysis + MaxSlack/SA)
- Almost 2x of improvement over the “no locking” case until mul > 0.3
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Case Study: Nvidia Xavier AGX

Inter-core interference (slowdown): 1.01 – 1.81x (much smaller than 
the worst cases reported in the literature)

Scheduling with co-runner locking:

Scheduling without co-runner locking:
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Conclusions

Co-runner locking scheme:

• New way to prevent excessive slowdown scenarios

• Applicable to priority-based preemptive scheduling

• No extra restrictions that related prior work requires:
• PREM: serializes memory phases of all tasks in the system
• Non-preemptive time-triggered scheduling
• RT-Gang: tasks in each gang have the same release offset and period

• Effective alternative when cache/DRAM partitioning methods 
are not available or they cannot eliminate all the interference 
penalties
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