
1Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Addressing Multi-Core Timing
Interference using Co-Runner
Locking

Hyoseung Kim2, Dionisio de Niz, Bjorn Andersson,
Mark Klein, and John Lehoczky3

2 University of California, Riverside
3 Department of Statistics and Data Science, Carnegie Mellon University

2Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Copyright 2021 Carnegie Mellon University and IEEE.

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any
other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.
DM21-1040

3Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…

4Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…

5Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…

6Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…

7Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…

Use an abstraction the describes the
effect of shared hardware resources
on timing.

8Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…

Use a schedulability test that can take
this abstraction as input

9Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…Change application software
Change operating system
Change hardware
Change configuration

10Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…Change application software
Change operating system
Change hardware
Change configuration

Expensive

11Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…
Change operating system

Change configuration Focus of this talk

12Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…
Change operating system

Change configuration

Large interference

13Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to
manage inter-core interference?

prove timing correctness
considering inter-core interference?

considering that resources are
complex and often undocumented

Tasks

L1/L2

Core 1

L1/L2

Core 2

L1/L2

Core 3

Last-Level Cache (L3)

Memory Bus (and Mem Controller)

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

…
Change operating system

Change configuration

Do not execute
simultaneously

14Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Outline

System model

Co-runner locking scheme

Schedulability analysis

Allocation

Implementation

Conclusions

15Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

16Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

17Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3

18Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3

19Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ1

20Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ1
τ3

21Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ1
τ3

22Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3

23Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

24Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

25Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ3

26Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ3

no corunner
no slowdown

27Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

L1/L2

Core 1

L1/L2

Core 2

τ3τ1

τ3 experiences
3 times slowdown

28Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

29Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

System Model

Partitioned priority-based preemptive scheduling

A task 𝜏𝜏𝑖𝑖 is characterized by its minimum inter-arrival time (𝑇𝑇𝑖𝑖),
relative deadline (𝐷𝐷𝑖𝑖), and execution requirement (𝐶𝐶𝑖𝑖)

𝑆𝑆𝑖𝑖: Set of potential co-runner sets of a task 𝜏𝜏𝑖𝑖

𝜎𝜎𝑖𝑖,𝑠𝑠: Slowdown factor for a task 𝜏𝜏𝑖𝑖 due to a co-runner set 𝑠𝑠

𝐶𝐶𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖,𝑠𝑠: Worst-case execution time of 𝜏𝜏𝑖𝑖 with a co-runner set 𝑠𝑠

Example: a dual-core system w/ 𝜏𝜏1 & 𝜏𝜏2 on core 1 and 𝜏𝜏3 on core 2
- 𝑆𝑆1 = {∅, 𝜏𝜏3 }, 𝑆𝑆2 = {∅, 𝜏𝜏3 }
- 𝑆𝑆3 = {∅, 𝜏𝜏1 , {𝜏𝜏2}}

- 𝜎𝜎3,∅ = 1, 𝜎𝜎3,{𝜏𝜏1} = 3, 𝜎𝜎3,{𝜏𝜏2} = 2

30Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

31Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3Large interference

32Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3

Do not execute
simultaneously

33Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

L1/L2

Core 1

L1/L2

Core 2

τ2

τ1
τ3

Do not execute
simultaneously

𝜖𝜖1={τ3}
𝜖𝜖3={τ1}

34Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

35Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

36Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Co-runner locking scheme

Key idea: representing and enforcing the mutually-exclusive
conditions for selected co-runner tasks

Co-runner exclusion set 𝜖𝜖𝑖𝑖: co-runner tasks that are not allowed
to execute in parallel with 𝜏𝜏𝑖𝑖

With 𝜖𝜖𝑖𝑖, true co-runners that execute in parallel with 𝜏𝜏𝑖𝑖 at runtime are
determined: 𝐺𝐺𝑖𝑖 = {𝑠𝑠|𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖 ∧ ∄(𝜏𝜏𝑗𝑗 ∈ 𝑠𝑠 ∧ 𝜏𝜏𝑗𝑗 ∈ 𝜖𝜖𝑖𝑖)}

Slowdown factors with co-runner locking: 𝜌𝜌𝑖𝑖 = {𝜎𝜎𝑖𝑖,𝑠𝑠|𝑠𝑠 ∈ 𝐺𝐺𝑖𝑖}

Maximum slowdown: 𝜃𝜃𝑖𝑖 = max𝜎𝜎𝑖𝑖,𝑠𝑠

Possible to use with real-time synchronization protocols (see paper)

37Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Execution Control Policy

Co-runner exclusion set 𝜖𝜖𝑖𝑖 does not determine the execution order of
co-runners when they compete

Possible approaches:

- Priority-based (this paper)

- First-come, first-served

- Other separate ordering different from task priority

38Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Priority-based Execution Control

Tasks in a mutual-exclusive relationship (𝜖𝜖𝑖𝑖) behave as if they were
preemptively scheduled on the same core based on their priorities
(called “co-runner preemption”)

deadlinearrival

Core 3 𝜏𝜏2: 𝜖𝜖2 = {𝜏𝜏4}

Core 1 𝜏𝜏1: 𝜖𝜖1 = {𝜏𝜏3}

Core 2

𝜏𝜏3: 𝜖𝜖3 = {𝜏𝜏1}

𝜏𝜏4: 𝜖𝜖4 = {𝜏𝜏2}

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

39Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Other Control Policies: FCFS

FCFS takes away the opportunity for higher-priority tasks to preempt
lower-priority tasks, possibly resulting in poor schedulability

deadlinearrival

Core 3 𝜏𝜏2: 𝜖𝜖2 = {𝜏𝜏4}

Core 1 𝜏𝜏1: 𝜖𝜖1 = {𝜏𝜏3}

Core 2

𝜏𝜏3: 𝜖𝜖3 = {𝜏𝜏1}

𝜏𝜏4: 𝜖𝜖4 = {𝜏𝜏2}

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

40Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Schedulability Analysis

Baseline analysis:

Two more advanced approaches:
- Job-oriented Slowdown Analysis
- Load-oriented Slowdown Analysis

Pessimistic. It assumes
tasks always get the worst-
case slowdown throughout
their execution

Co-runner preemption

41Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Job-oriented Slowdown Analysis

Focuses on how long interfering co-runners can actually execute
during the response time of a task under analysis

Find the maximum cumulative execution time of a co-runner 𝜏𝜏𝑘𝑘:

Maximize the execution time of a job of 𝜏𝜏𝑖𝑖 (𝐶𝐶𝑖𝑖∗ ≤ 𝐶𝐶𝑖𝑖 ⋅ 𝜃𝜃𝑖𝑖):

Calculate the response time of 𝜏𝜏𝑖𝑖:

Solvable by
fixed-point
iteration

42Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Example 1

Response time of 𝜏𝜏1:
- Baseline analysis: 16 Misjudging that 𝜏𝜏1 misses the deadline
- Job-oriented slowdown analysis: 7 Same as in the figure

5

2

52

10 2012

16 18

22

0

0

0

10 2015.5 25.52 7 12

5 100

Core 1 𝜏𝜏1:(𝐶𝐶1 = 4,𝑇𝑇1 = 10)

Core 2 𝜏𝜏2:(𝐶𝐶2 = 1,𝑇𝑇2 = 10)

𝜏𝜏3:(𝐶𝐶3 = 2,𝑇𝑇3 = 16)

• 𝜌𝜌1,{𝜏𝜏2} = 4
• 𝜌𝜌1,{𝜏𝜏3} = 2
• 𝜌𝜌1,{𝜏𝜏4} = 1

• 𝜌𝜌2,{𝜏𝜏1} = 2

• 𝜌𝜌3,{𝜏𝜏1} = 1.5

𝜏𝜏4:(𝐶𝐶4 = 7,𝑇𝑇4 = 20)
• 𝜌𝜌4,{𝜏𝜏1} = 1

22

20 22 29

0.5 1.5 2 0.5 0.53.5 3.5

12 14

0.5
1 1 1

2 2

5 2 7

43Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Load-oriented Slowdown Analysis

Job-oriented analysis computes each job’s slowdown separately and
then analyzes the response time

Instead, load-oriented analysis bounds the cumulative slowdown that
can be possibly imposed on all execution requirements during the
response time of a given task

Find the execution requirements 𝐸𝐸𝑖𝑖 during the response time of 𝜏𝜏𝑖𝑖:

Maximize the response time considering possible slowdowns for 𝐸𝐸𝑖𝑖:

Solvable by
fixed-point
iteration

44Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Example 2

Response time of 𝜏𝜏3:
- Job-oriented: Fail
- Load-oriented: 16 Same as in the figure

Job-oriented and load-oriented analyses do not dominate each other
- Load oriented analysis fails for Example 1
- Use them jointly by taking the minimum between the two

2

5.5 10

10 2012

16 20

22

𝜏𝜏3:(𝐶𝐶3 = 5,𝑇𝑇3 = 16)

0

0

0

10 20

Core 1 𝜏𝜏1:(𝐶𝐶1 = 1,𝑇𝑇1 = 10)

Core 2 𝜏𝜏2:(𝐶𝐶2 = 4,𝑇𝑇2 = 10)

• 𝜌𝜌1,{𝜏𝜏2} = 2
• 𝜌𝜌1,{𝜏𝜏3} = 2

• 𝜌𝜌2,{𝜏𝜏1} = 4

• 𝜌𝜌3,{𝜏𝜏1} = 3

2 12 22

1 1 1

0.5 3.5

5.5

4.5

0.5 0.53.5

15.5

0.5 4

45Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

How to decide co-runner exclusion sets?

We propose two heuristics:
1) SA: Simulated annealing

Cost for SA: # of schedulable tasks in a given taskset

2) MaxSlack: Maximize relative slack

Adds a co-runner task to the exclusion set if doing so increases
the cumulative sum of slack for all tasks

46Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Evaluation

Schedulability success ratio (SR) of random tasksets

Co-runner locking (Joint analysis + MaxSlack/SA)
- Almost 2x of improvement over the “no locking” case until mul > 0.3

0

0.2

0.4

0.6

0.8

1

0.
1

0.
15 0.

2
0.

25 0.
3

0.
35 0.

4
0.

45 0.
5

0.
55 0.

6
0.

65 0.
7

0.
75 0.

8
0.

85 0.
9

0.
95 1

Su
cc

es
s R

at
io

Base Job-O
Load-O Joint
LP SA
MaxSlack

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16

Su
cc

es
s R

at
io

Base Job-O
Load-O Joint
LP SA
MaxSlack

SR as a function of mul
(per-core utilization)

SR as a function of n
(# of tasks)

47Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Case Study: Nvidia Xavier AGX

Inter-core interference (slowdown): 1.01 – 1.81x (much smaller than
the worst cases reported in the literature)

Scheduling with co-runner locking:

Scheduling without co-runner locking:

48Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Conclusions

Co-runner locking scheme:

• New way to prevent excessive slowdown scenarios

• Applicable to priority-based preemptive scheduling

• No extra restrictions that related prior work requires:
• PREM: serializes memory phases of all tasks in the system
• Non-preemptive time-triggered scheduling
• RT-Gang: tasks in each gang have the same release offset and period

• Effective alternative when cache/DRAM partitioning methods
are not available or they cannot eliminate all the interference
penalties

49Addressing Multi-Core Timing Interference using Co-Runner
Locking
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution

Thanks!

	Addressing Multi-Core Timing Interference using Co-Runner Locking
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Thanks!

