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Abstract—This paper presents a task synchronization mecha-
nism, called co-runner locking, to address the timing interference
problem in multi-core real-time systems. It prevents certain
subsets of tasks from executing simultaneously on different cores
in order to avoid large performance penalties from inter-core
interference. We provide the general properties of the co-runner
locking mechanism and discuss the runtime control policies
that determine the execution order of tasks in a co-runner-
locking relationship. For schedulability analysis, we derive a
response-time test that upper-bounds the delay from co-runner
locking and the slowdown imposed by permitted co-runners
by combining two new analytic approaches: job-oriented and
load-oriented. In evaluation, we demonstrate that the co-runner
locking mechanism is an effective alternative to address the “one-
out-of-m” problem and brings about a significant improvement
in real-time taskset schedulability.

I. INTRODUCTION

Timing interference in multi-core processors has been a
major barrier to the efficient use of the latest commodity
parallel platforms in safety-critical domains. Due to hardware
resources shared among processing cores, such as caches and
memory buses, the execution time of a task on one core can
be adversely affected by other co-runner tasks on different
cores. The degree of slowdown caused by such interference is
subject to the type of tasks and the combination of co-runner
task sets, but the worst-case impact could be enormous as
reported in the literature. For example, in a quad-core platform,
the slowdown can be as large as 12× due to contention
on a shared cache [29] or DRAM memory [25], and more
than 300× due to writebuffer blocking [9]. This leads to the
so-called “one-out-of-m” problem [31] that leaves only one
core’s capacity usable for real-time task execution in a m-core
system. The significance of this problem has been recognized
by certification authorities and industry vendors, e.g., CAST-
32A [46] for avionics systems.

Many prior studies from the real-time systems community
have presented techniques to tackle the timing interference
delay in modern multi-core platforms. In particular, resource
partitioning and reservation for caches [28, 56, 58], DRAM
banks [25, 54, 62], and memory bandwidth [59, 64] have
been considered effective ways to reduce the amount of
delay and enhance the level of timing predictability. Efforts
have been also made to analytically capture this delay in
schedulability analysis, by assuming the worst-case contention

on shared hardware resources [17, 25, 63]. However, these
approaches are inherently pessimistic as partitioned resources
could be underutilized and the assumed “worst case” might
not actually occur in a given system. Time-triggered non-
preemptive scheduling has been studied to statically determine
the occurrence of possible co-runners [48, 50, 51], but it is not
applicable to priority-driven preemptive scheduling which is
the de-facto standard of today’s real-time operating systems.

In this paper, we propose co-runner locking, a task
synchronization-based approach to address the multi-core tim-
ing interference problem. The key idea of co-runner locking
is simple: it prevents subsets of tasks from running simultane-
ously so that unwanted worst-case scenarios (e.g., extremely
high slowdown due to memory-intensive tasks) can be avoided
at runtime. In other words, a task can declare a co-runner lock
to enforce a mutually-exclusive relationship with selected co-
runner tasks in making scheduling decisions.1 This approach is
particularly useful given that the extreme slowdowns reported
in the literature are caused by carefully-engineered synthetic
tasks [9, 25, 29, 31] and thus only a few tasks are likely to
cause the one-out-of-m problem in real-world scenarios. All
other scheduling decisions follow the conventional preemptive
priority-based scheduling. Hence, tasks are preemptible at any
time by priority, and the progress of tasks that are not specified
by co-runner locking is unaffected. We define the properties
of the co-runner locking scheme and discuss the runtime
execution control policies. Although our focus is on partitioned
fixed-priority scheduling in this paper, the general idea of co-
runner locking is applicable to dynamic-priority scheduling.

For schedulability analysis, our system model is based on
the co-runner dependent execution time model [6], where the
timing interference imposed by a given set of co-runners
is characterized by a slowdown factor for the worst-case
execution time obtained in isolation. We derive a response-
time test that jointly considers two new analytical approaches,
job-oriented and load-oriented, to get a tighter bound than
the baseline approach that simply multiplies the worst-case
execution time by the maximum slowdown. We then present
algorithms to determine which tasks should use co-runner

1This is the difference from conventional locks that check mutually-
exclusive conditions at the boundaries of critical sections in the code, whereas
co-runner locking does so at scheduling points and has no predefined critical
section.



locking. Experiments based on random tasksets and a real
system implementation show that the proposed co-runner lock-
ing scheme benefits schedulability and mitigates performance
penalties induced by contention on shared resources, thereby
serving as an effective alternative to existing methods.

II. RELATED WORK

From the advent of multi-core architectures, many tech-
niques have been developed to safely account for and minimize
timing interference in real-time system design. A compre-
hensive survey on various techniques is provided in [37].
For shared caches, the most popular approach is cache
partitioning [8, 26, 28, 58]. With this, a fraction of the
shared cache is either allocated exclusively to one task or
permitted to be used by a subset of tasks. Cache locking
has been studied along with partitioning [38, 56]. Real-
time cache management has also been extended to the vir-
tualization environment [23, 29, 36, 57, 60]. For memory-
induced interference, DRAM bank partitioning [25, 62] and
memory bandwidth regulation [59, 64] are proposed. These
help reduce the worst-case memory interference delay, thereby
improving temporal isolation and predictability. Researchers
have incorporated such resource partitioning techniques into
schedulability analysis to upper-bound memory interference
delay [17, 25, 63], and resource allocation algorithms to im-
prove schedulability [24, 42, 59]. Partitioning both caches and
DRAM banks has also been studied [32, 54]. It is worth noting
that we are not trying to replace these resource partitioning
techniques or claiming that our work is superior to them.
Instead, we propose an alternative, scheduling-based approach
that can be used when the above methods are unavailable (e.g.,
cache/DRAM partitioning requires significant modifications
to the virtual memory subsystem and suffers from memory
size and fragmentation issues [26, 54]), or together with
these methods. Our work can help existing cache/DRAM
partitioning and bandwidth regulation techniques since they
can reduce the degree of interference but cannot eliminate it
(e.g., > 5× slowdown remains even after cache and DRAM
partitioning [25]). In other works, after resource partitioning
and contention-aware task allocation, co-runner locking can
be applied to the tasks that still have a large slowdown.

Researchers have also proposed scheduling approaches to
address the multi-core interference problem. The first type of
work is contention-free scheduling [5, 10, 15, 21, 44, 53, 61],
which strictly prevents simultaneous execution of tasks if they
cause any contention on shared resources. PREM [44, 53, 61]
decomposes each task into memory and computation phases,
and serializes memory phases of all tasks. Calandrino and
Anderson [15] proposed a cache-aware scheduler for soft real-
time systems, which heuristically makes scheduling decisions
at every time quantum so that the working set size of jobs does
not exceed the cache size. RT-Gang [5] schedules one parallel
real-time task as a gang at a time so that the interference
penalty of each gang can be contained within the gang and
does not propagate to other gangs. The follow-up work [4]
introduced virtual gangs which group synchronously-released

tasks with the same period into the same gang. Similarly, Isola-
tion Scheduling (IS) [21] groups tasks into time partitions and
schedules each partition exclusively on a multi-core platform.

The second type of work is interference-aware scheduling,
which aims to bound or minimize timing penalties by using
the notion of interference-sensitive WCET (isWCET) [40,
47, 48, 50, 51]. The isWCET of a task is determined by
its possible co-runners for a given schedule (i.e., the dura-
tion of overlapped execution with such co-runners), thereby
reducing pessimism in estimating the interference penalty.
Nowotsch et al. [40] proposed an analysis method to compute
isWCET considering the worst-case overlap scenario, and
implemented it using AbsInt aiT [3]. Rouxel et al. [48]
proposed non-preemptive time-triggered scheduling that min-
imizes the makespan of tasks with isWCET. Skalistis and
Kritikakou [50, 51] extended this idea for runtime adaptation,
which executes tasks earlier than the original schedule when
there is a slack. Such adaptation works since isWCET already
takes into account the worst-case relative phasing of co-
runners. Andersson et al. [6] proposed the co-runner depen-
dent execution time model that generalizes isWCET using a
progress speed parameter (inverse of slowdown) and developed
schedulability analysis for sporadic tasks under preemptive
fixed-priority partitioned scheduling. Progress/slowdown pa-
rameters can be obtained by the measurement-based method
presented in that paper, isWCET analysis [40, 48], or analyt-
ical interference bounds [24, 63]. Recent work like [52] can
also be used to identify time-varying shared resource demands
from measurements. Our work is inspired by these approaches
and thus falls into the second type of work. Unlike the work
for non-preemptive time-triggered scheduling [48, 50, 51], we
focus on priority-based preemptive scheduling. Compared with
[6], our work proposes co-runner locking that offers a way to
prevent excessive slowdown scenarios. Co-runner locking may
be seen as similar to the gang approach [4, 21] in the sense
that both give a control over co-runner execution; however, our
work does not necessitate co-runners to have the same period
and the same release offset.

Real-time task synchronization has been primarily studied
for critical sections protected by mutex locks. Many protocols
have been developed for multi-core and multi-processor sys-
tems [12, 14, 19, 30, 39, 45, 55], and applied to shared GPUs
hardware accelerators [18, 20, 27, 43, 49]. The proposed co-
running locking also synchronizes task execution for given
mutually-exclusive conditions, but at scheduling points rather
than critical section boundaries. We will discuss how co-runner
locking could be used with conventional synchronization pro-
tocols for tasks with critical sections in Sec. IV-D.

Recently, a scheduler feature called core scheduling has
been introduced in Linux [35], Xen [2], VMWare ESXi [1],
and MS Hyper-V [7], as a countermeasure to address Spec-
tre vulnerability attacks [33] on simultaneous multithreading
(SMT). Core scheduling allows the user to specify what tasks
can share a physical core with SMT. While this can be thought
of as a form of co-runner locking, core scheduling itself does
not provide a formal execution model, control policy, or real-

2



time schedulability analysis.

III. SYSTEM MODEL

We consider a shared-memory multi-core system where
tasks are scheduled by partitioned fixed-priority scheduling.
Hence, each task is statically assigned to one CPU core and
does not migrate to another core at runtime. We use M to
denote the number of cores in the system and Γp to denote
the taskset of a core p, i.e., Γ =

⋃
1≤p≤M Γp. The system

has shared hardware resources, and the contention on these
resources causes a slowdown to task execution. CPU cores
may be heterogeneous in that they may operate at different
clock speed or a subset of cores is grouped into a cluster
with different shared resources.2 In this case, task execution
time and the degree of slowdown may vary depending on the
allocation of tasks to CPU cores, but we assume that task
allocation is given and fixed by the system designer.

The entire taskset Γ of the system comprises n sporadic real-
time tasks with constrained deadlines, i.e., Γ = {τ1, τ2, ..., τn}.
Each task has a unique priority, which can be assigned by any
fixed-priority assignment policy, e.g., Rate Monotonic (RM)
or Deadline Monotonic (DM), with an arbitrary tie-breaking
rule. Task τi is characterized as follows:

τi := (Ci, Ti, Di)

• Ci: The worst-case execution requirement of any job of τi.
If τi executes with no slowdown (e.g., running in complete
isolation), its worst-case execution time is equal to Ci.
• Ti: The minimum inter-arrival time between any two jobs
• Di: The relative deadline (Di ≤ Ti)
While we do not consider tasks with critical sections, the
proposed co-runner locking approach can be used with con-
ventional multiprocessor real-time synchronization protocols
like MPCP [45]. This will be discussed in Sec. IV-D.

Our task model follows the co-runner dependent execution
time model [6]. Hence, the worst-case execution time (WCET)
of a task can be greater than Ci and determined by a slowdown
from co-runner tasks. Below we define key parameters to
represent co-runner tasks and their slowdown factors.

Def. 1. S is the set of non-empty sets of tasks that can
potentially execute in parallel in the system. In other words, S
includes non-empty combinations of tasks from each per-core
taskset, formally given by

S = {s = s1 ∪ s2 ∪ ... ∪ sN | s 6= ∅ ∧ sp ⊂ Γp ∧ |sp| ≤ 1}

For example, consider τ1, τ2, and τ3 in a dual-core system.
Assume that τ1 and τ2 are assigned to core 1 and τ3 is
assigned to core 2. Then, S of this system is as follows:
S = {{τ1}, {τ2}, {τ3}, {τ1, τ3}, {τ2, τ3}}. Each element of S
represents a set of tasks that may run simultaneously in the
system at a specific point in time.

2The hardware platform we use for evaluation, Nvidia AGX Xavier, belongs
to this category since it has four CPU clusters, each with two cores sharing
one L2 cache (i.e., total eight cores and four L2 caches), and one L3 cache
and main memory shared among all eight cores.

Def. 2 (Potential co-runner sets). Si is the set of potential
co-runner sets of a task τi. Formally, it is defined as:

Si = {s = s′ \ {τi} | s′ ∈ S ∧ τi ∈ s′}

For the above example, S1 = {∅, {τ3}}, S2 = {∅, {τ3}},
S3 = {∅, {τ1}, {τ2}}.

Def. 3 (Slowdown). σi,s ≥ 1 is the worst-case slowdown
factor for a task τi due to a co-runner set s (if s = ∅, σi,s = 1).
Hence, the worst-case execution time of τi in the presence of
the co-runner set s is Ci · σi,s.

We use σi to denote the set of all slowdown factors for a
task τi, i.e., σi = {σi,s | s ∈ Si}. These can be obtained by
the methods discussed in Sec. II. As an illustration, the above
example taskset is assumed to have the following slowdown
factors: σ1 = {σ1,∅ = 1, σ1,{τ3} = 2}, σ2 = {σ2,∅ = 1,
σ2,{τ3} = 1.5}, σ3 = {σ3,∅ = 1, σ3,{τ1} = 3, σ3,{τ2} = 2.5}.

It is worth noting that, in practice, the system designer does
not need to obtain the slowdown factors of all possible co-
runner sets for each task. One can give a default slowdown
value to unknown/untested co-runner sets, e.g., by an auto-
matic tool to find the maximum slowdown [22], architecture-
level bounds [41, 48], or the degree of isolation offered by
cache and DRAM partitioning [25, 63] when they are used
with co-runner locking. One can even set σ = ∞ for certain
co-runners if they should never execute in parallel at any time.
Of course, a higher number of precise slowdown estimates can
lead to better schedulability, but the flexibility of the model
facilitates its applicability to real systems.

IV. CO-RUNNER LOCKING SCHEME

This section defines the properties of the proposed co-
running locking scheme and discusses the execution control
policies that can be used for tasks with co-runner locking.

A. Definition and Properties

At the heart of the co-runner locking scheme is representing
and enforcing the mutually-exclusive conditions for selected
co-runner tasks. We thus introduce a co-runner exclusion set
for a task τi, denoted by εi, as follows.

Def. 4 (Co-runner exclusion set). εi is the set of co-runner
tasks that are not allowed to execute in parallel with τi. The
relationship is symmetric but not transitive, e.g., τj ∈ εi =⇒
τi ∈ εj (τi and τj are prohibited to run simultaneously), and
τj ∈ εi ∧ τi ∈ εk 6=⇒ τj ∈ εk. If there is no restriction on
co-runner tasks of τi, then εi = ∅ and ∀τj : τi /∈ εj .

With the co-runner exclusion set εi, not all potential co-
runner sets s ∈ Si will execute in parallel with τi at runtime.
Hence, we use Gi to define a set of “true” co-runners of τi.

Def. 5 (True co-runner sets). Gi is the set of true co-runner
sets of τi which are not prevented by εi and thus can execute
in parallel at runtime. It is formally given by:

Gi = {s | s ∈ Si ∧ @τj(τj ∈ s ∧ τj ∈ εi)}
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Hence, if a co-runner task τj is in εi, the task τi does not
experience slowdown from a co-runner set s′ that includes τj .
In other words, a slowdown factor of σi,s′ does not apply to
any job of τi if s′ ∩ εi 6= ∅. Only σi,s with s∩ εi = ∅ applies.

Def. 6 (Slowdown with co-runner locking). ρi is the set of
slowdown factors for the true co-runner sets in Gi.

ρi = {σi,s | s ∈ Gi}

Def. 7 (Maximum slowdown). θi is the maximum slowdown
factor in ρi, i.e., θi = maxσi,s∈ρi σi,s.

With the above definitions, one can imagine that the worst-
case execution time of τi can be easily bounded by Ci · θi
for any occurrence of unprevented co-runners. In Sec. V, we
will take this approach to derive a baseline analysis and then
propose a more precise method.

B. Execution Control Policy

The co-runner exclusion set εi does not determine the
execution order of co-runners when they compete. Hence, we
need a runtime policy to control their execution. Below defines
a priority-based execution control policy for tasks with co-
runner locking.
R1. When a ready task τi is chosen for execution on a core p,

the scheduler checks whether there is any task τk ∈ εi that
is currently running on a different core q.
a) If there is no τk, then τi begins execution on the core p.
b) If there is τk and it has lower priority than τi, then τk

is suspended immediately until τi’s completion, and after
that, the scheduler executes τi on the core p and the next
ready task (6= τk) on the core q.

c) If there is τk and it has higher priority than τi, then the
task τi is suspended and the scheduler finds the next ready
task for execution on the core p.

R2. When a task τi that is currently executing on a core
p stops execution (due to job completion, suspension, or
preemption), the following conditions are considered.
a) If there are any tasks in εi that have been suspended due

to τi’s execution, the scheduler wakes up all such tasks (so
they become ready to run). Later, when they are selected
for execution by the scheduler, R1 will take place.

b) If no task in εi has been suspended due to τi, the scheduler
executes the higher-priority ready task on the core p (same
as regular priority-based scheduling).

In R2.a, the reason the scheduler wakes up all suspended tasks
instead of just one highest-priority task is that two or more
suspended tasks may be eligible to execute simultaneously
with other co-runners when they get CPU cores. This is
different from the semantics of conventional critical sections,
which have a fixed access count for each resource.

Example. Consider a taskset Γ = {τ1, τ2, τ3, τ4} on three CPU
cores, as shown in Fig. 1. Tasks are ordered in decreasing order
of priorities, so τ1 on core 1 has the highest priority and τ4 on
core 2 has the lowest priority. Each task has a non-empty co-
runner exclusion set ε, which has been determined to prevent
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Fig. 1: Co-runner locking with priority-based execution control
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Fig. 2: Co-runner locking with FCFS execution control

slowdown from particular co-runner tasks. Any other tasks not
in ε are assumed to incur zero slowdown for simplicity. For
instance, τ1 has τ3 ∈ ε1 and τ1’s execution time is unaffected
by the parallel execution of τ2 and τ4.

Let us take a look at the scheduling timeline of the figure.
When τ1 arrives at time 3, the execution control policy finds
out that τ3 ∈ ε1 is running and has lower priority than
τ1. Hence, it suspends τ3 and starts τ1’s execution, as if τ1
preempted τ3. Meanwhile, τ4 on core 2 can execute because
core 2 has been relinquished and τ4 is not mutual-exclusive
with τ1 (recall that the scheduler is work-conserving). At time
6.5, τ2 on core 3 arrives and it makes τ4 suspended since τ2
has higher-priority than τ4. Core 2 is idling from time 6.5 to 7
due to co-runner locking. When τ1 finishes execution at time 7,
τ3 resumes. All tasks finish execution before their deadlines.
The time intervals affected by co-runner locking are shown
with shaded areas (gray).

In summary, the priority-based control policy makes tasks
in a mutual-exclusive relationship (εi) behave as if they were
preemptively scheduled on the same core based on their prior-
ities. Hence, we call such behavior as “co-runner preemption”.
This property helps schedulability of higher-priority tasks,
especially when task priorities are assigned by RM or DM,
because they are not blocked by lower-priority co-runner tasks.
Other Control Policies. We can also consider other execution
control policies. In conventional real-time locking protocols
for critical sections, first-come first-serve (FCFS) has been
widely studied as an alternative to priority-based arbitration
and has showed good properties to schedulability. Thus, we
discuss the feasibility of FCFS for co-runner locking.

Fig. 2 illustrates the schedule of the same taskset as above
under the FCFS-based control policy. Unlike the priority-based
case, a task arrived earlier is prioritized when it comes to
controlling the co-runner execution order. The first difference
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can be seen at time 3 when τ1 arrives. Although τ1 has higher
priority than τ3, τ3 continues execution due to FCFS. Then, τ1
is blocked for 3 time units and misses the deadline. The same
result happens to τ2. As τ4 has been already running, τ2 is
blocked until τ4’s completion and misses the deadline. Those
blocking times by lower-priority tasks do not occur under the
priority-based execution control. In fact, FCFS takes away the
opportunity for higher-priority tasks to preempt lower-priority
tasks, possibly resulting in poor schedulability.

One may also consider other orders. Under partitioned
scheduling, comparing task priorities across cores may impose
unfair scheduling penalty to particular cores because priorities
were originally assigned to serve only the role of achieving
per-core schedulability. This may become an issue especially
when per-core taskset utilization is imbalanced or each core
has tasks with a different range of deadlines, e.g., [10, 100] ms
on core 1 and [100, 1000] ms on core 2. An arbitrary co-
runner execution order separate from priority therefore has the
potential to help such cases. However, this requires additional
considerations; for example, to avoid deadlocks, total ordering
must be ensured over priority and co-runner execution orders.
We leave this as future work and focus on the priority-based
policy in the rest of this paper.

C. Implementation Considerations

The two rules of the execution control policy given in
Sec. IV-B need to be implemented within the scheduler since
they should be checked when a scheduling decision is made.
The rule R1 should be placed before context-switching to
the next task to run. R1 can also be applied after context-
switching, but doing so would incur larger overhead as the
task might need to be suspended immediately after the context
switch. The rule R2 can be placed at the beginning of the
scheduler, before R1 is assessed. A data structure for the co-
runner exclusion set εi should be allocated for any task that
is using co-runner locking, and this can be easily done by
expanding the task control block (TCB). Other parameters we
defined in the system model, e.g., S, Gi, ρi, are not required
at runtime as they are used only for offline analysis purposes.

Co-runner locking requires changes to the scheduler, but the
implementation difficulty is much lower than cache/DRAM
bank partitioning which requires a detailed knowledge of
address mapping in hardware and significant changes to page
allocation in the virtual memory subsystem. If the system
already has the core scheduling feature [1, 2, 7, 35] discussed
in Sec. II, the implementation of co-runner locking can largely
benefit from it. The runtime overhead to check co-runner
conditions would be similar to PREM [44] which serializes
the memory phases of all tasks on different cores at runtime.
We will show the breakdown of this overhead in Sec. VII.

D. Tasks with Critical Sections

A question that can be raised is how co-runner locking
interacts with conventional real-time synchronization protocols
and how blocking time can be analyzed if tasks have critical
sections. In multi-core systems, scheduling penalties caused by
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co-runner locking

cannot preempt 𝜏4

critical section

critical section

(a) Case 1: τ1 with no critical section
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priority boosting

critical section

critical section

co-runner locking

(b) Case 2: τ1 with a critical section

Fig. 3: Co-runner locking with MPCP

critical sections are categorized into local and remote blocking.
Local blocking is the delay for which a task needs to wait for
lower-priority tasks on the same core. Remote blocking is the
delay that a task has to wait due to the tasks on different cores.
Remote blocking also causes additional delay due to back-to-
back execution and multiple priority inversion, both of which
are caused by self-suspending behavior [13, 34].

To analyze such delays, tasks with co-runner exclusion
conditions can be treated as if they were on the same core.
This is because under the priority-based execution control
policy, suspension by higher-priority co-runner tasks has the
same effect as the preemption by higher-priority tasks on the
same core (called co-runner preemption). Hence, conventional
multiprocessor synchronization protocols like MPCP [45] and
FMLP [13] can be used with co-runner locking, with some
extensions to the blocking time analysis. We do not provide
a full analysis on this matter, but instead, we briefly discuss
such extensions in the context of MPCP.

Let us consider a taskset Γ = {τ1, τ2, τ3, τ4} in a three-
core system shown in Fig. 3a, where τ1 and τ4 are co-runner
exclusive, i.e., ε1 = {τ4} and ε4 = {τ1}, and τ2 and τ4 share
the same mutex to access a global resource. If a higher-priority
task with co-runner locking does not use a shared resource (τ1
in Fig. 3a), the remote blocking time for a lower-priority task
(τ4) remains unaffected (same as without co-runner locking)
because τ1 cannot preempt τ4 during critical section execution
due to MPCP’s priority boosting.3 This also applies to the case
where τ1 uses the same shared resource as τ4. However, τ1
experiences priority-inversion (local) blocking from time 4.5
to 8.5, which can be analyzed by treating as if τ1 were on the
same core as τ4.

3Other real-time multiprocessor synchronization protocols such as FMLP
also have similar mechanisms to offer bounded remote blocking [13].
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Fig. 4: Back-to-back execution effect due to co-runner locking

If a higher-priority task with co-runner locking uses a
different shared resource (τ1 in Fig. 3b), the remote blocking
time for τ4 is increased due to co-runner preemption (time 5.5
to 9). This can be bounded by capturing the critical section
length of such higher-priority tasks as if they were accessing
the same resource or executing on the same core.

Back-to-back execution due to self-suspending behavior is
already considered by the co-runner locking analysis given in
Sec. V, so no extra work is needed. Multiple priority inversions
can happen because whenever a task suspends due to remote
blocking, lower-priority tasks get a chance to request a mutex
and will execute with priority boosting [34]. The number of
priority inversions may increase due to co-runner locking since
it causes additional suspension. But this can be bounded by
the number of arrivals of higher-priority co-runners during the
response time of the task under analysis.

The use of co-runner locking with real-time synchronization
protocols therefore calls for a tradeoff between co-runner
slowdown and critical section blocking time. This could be
accommodated when determining co-runner exclusion sets
(Sec. VI). In addition, timing penalties could be reduced by
modeling slowdown factors of normal and critical-section seg-
ments separately (Sec. V-D). These are interesting extensions
that can be built upon our work.

V. SCHEDULABILITY ANALYSIS

This section presents schedulability analysis for tasks under
the co-runner locking scheme with priority-based execution
control. We first show a baseline approach that can be obtained
by directly extending the conventional iterative response-time
test. To address the pessimism of the baseline, we then derive
job-oriented and load-oriented slowdown analyses. Finally, we
extend our task model to multi-segment tasks.

A. Baseline Analysis

Recall that the worst-case execution time (WCET) of a
task τi can be upper-bounded by the worst-case execution
requirement Ci multiplied by the maximum slowdown θi from
true co-runners (Def. 7), i.e., Ci ·θi. Another factor we need to
consider for schedulability is the preemption-like delay caused
by higher-priority tasks that execute on different cores but are
in the co-runner exclusion set εi of τi. (Def. 4).

In addition, there is a back-to-back execution effect caused
by higher-priority tasks on the same core which are suspended
(preempted) by co-runners with even higher priority. Those

co-runners themselves may also be delayed by the other co-
runners. Fig. 4 gives an example. The two tasks τ1 and τ2
arrive together at time 0, but due to co-runner locking, τ1
executes first and τ2 is delayed until time 5. On core 2, τ3
arrives at time 5 but τ2 prevents τ3’s execution. Thus, τ4 begins
execution at time 5. The second job of τ2 arrives at time 6,
so τ3 is further delayed until time 7. The task τ3 executes its
first job from time 7 to 9, and then executes its second job in
a back-to-back manner. This self-suspending behavior of τ3
causes larger than one job of interference to τ4. However, τ4
cannot directly see how this happens since τ3’s self-suspension
is caused by τ2’s self-suspension which is caused by τ1.

A simple solution can be derived by assuming that any
higher-priority tasks, including those running on the same and
different cores, are self-suspending tasks. Let us review the
following lemma given by Bletsas et al. [11]:

Lemma 1 (from [11]). The worst-case response time of a
self-suspending task τi is upper bounded by:

Ri = Ci +
∑

τj∈hpp(τi)

⌈Ri + (Rj − Cj)
Tj

⌉
Cj (1)

where hpp(τi) is the set of higher-priority tasks than τi on the
same core.

This lemma captures the self-suspension behavior of an
interfering task τj as a release jitter bounded by Rj−Cj . One
can also use Dh instead of Rj in the summing term (1) [16].
Using this, we derive the following for our task model.

Lemma 2 (Baseline analysis). The worst-case response-time
of a task τi under co-runner locking is upper bounded by:

Ri = Ci · θi +
∑

τj∈hpp(τi)

⌈
Ri + Ij(Cj · θj)

Tj

⌉
Cj · θj

+
∑

τk∈εi∧τk∈hp(τi)

⌈
Ri + Ik(Ck · θk)

Tk

⌉
Ck · θk

(2)

where

Ij(x)=

{
max(Rj − x, 0) ,∃τy :τy∈εj ∧ τy∈hp(τj)
0 , otherwise (3)

, and hp(τi) is the set of all higher-priority tasks than τi in
the system. It can be solved by fixed-point iteration with the
initial condition of Ri = Ci · θi. τi is schedulable if Ri ≤ Di.

Proof. Eq. (2) is an extension of Eq. (1). The first term is the
execution time of τi, the second term bounds the preemption
from higher-priority tasks on the same core, and the third
term bounds the preemption by higher-priority tasks in the
co-runner exclusion set εi. The self-suspending behavior of
each higher-priority task τj is captured as a release jitter of
Ij(Cj ·θj), where Ij returns Rj−Cj ·θj if τj has a co-runner
exclusion relationship with τi, and zero, otherwise.

B. Job-oriented Slowdown Analysis

In Eq. (2), the execution time of a task τj is simply
captured by Cj ·θj , assuming it gets the worst-case slowdown
throughout its execution. However, this is overly pessimistic
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Fig. 5: Taskset 1

when the execution time of the worst-case co-runner task is
short. Fig. 5 depicts an example where τ1 runs on core 1 and
the other three tasks run on core 2. The deadlines of these tasks
are equal to their periods. The slowdown factor of each task
for each co-runner set, ρi,s, is denoted in the figure, and the
co-runner exclusion set εi is empty for all tasks. The number in
each box represents the actual unit of execution progress made
during that time, so the sum of these numbers for one period is
equal to the task’s execution requirement Ci. For instance, the
first job of τ1 is shown with three boxes: at first, it executes in
parallel with τ2 from time 0 to 2, experiencing the slowdown
of 4 and making 2/4 = 0.5 units of progress; secondly, it
executes with τ3 from time 2 to 5, making 3/2 = 1.5 units
of progress; and finally, its execution overlaps with τ4 for 2
time units, making 2/1 = 2 units of progress, and finishes at
time 7. This clearly shows that the actual execution time of a
task can be much smaller than what is bounded by Eq. (2),
e.g., 4 · 4 = 16 for τ1, thereby misjudging that τ1 missed the
deadline. To reduce this pessimism, we present an approach
to obtain a tighter upper bound on the slowdown of each job.

The key to our job-oriented slowdown analysis lies in
bounding how long interfering co-runners can execute during
the response time of a task under analysis. We first analyze
an upper bound on the cumulative execution time of one co-
runner τk, ζi,k, during the response time of τi, Ri. A simple
approach is to capture the maximum number of occurrences
of τk during Ri multiplied by the execution requirement Ck
and the slowdown θk. Hence, it is given by:

ζi,k = min

((⌈Ri
Tk

⌉
+ 1
)
Ck · θk, Ri

)
(4)

where “+1” is to capture a carry-in job in the window of
Ri. The reason for taking the minimum between the two
terms is that the cumulative execution of τk during Ri cannot
exceed Ri. However, since the use of the ceiling function may
overestimate τk’s job executing beyond Ri, Eq. (4) can be
rewritten with a floor function as follows:

ζi,k = min

((⌊Ri
Tk

⌋
+ 1
)
Ck · θk + min

(
Ri −

⌊Ri
Tk

⌋
Tk, Ck · θk

)
, Ri

)
= min

((⌊Ri
Tk

⌋
+ 1
)
Ck · θk + min

(
Ri mod Tk, Ck · θk

)
, Ri

)
(5)

On the other hand, Eq. (4) can also be improved by replac-
ing the pessimistic “+1” term with a self-suspension release

jitter [11, 16] (given in Eq. (3)):

ζi,k = min

(⌈Ri + Ik(Ck · θk)

Tk

⌉
Ck · θk, Ri

)
(6)

By combining these two improvements to Eq. (4), we can
obtain the following.

Lemma 3. The maximum cumulative execution time of a co-
runner τk during the response time of τi is upper-bounded by

ζi,k = min

(⌊Ri + Ik(Ck · θk)

Tk

⌋
Ck · θk

+ min
(

(Ri + Ik(Ck · θk)) mod Tk, Ck · θk
)
, Ri

) (7)

Proof. Omitted as the steps are shown above.

We now extend this to all tasks in a co-runner set.

Lemma 4. The maximum cumulative time ξi,s that all tasks
in an non-empty co-runner set s (s 6= ∅) execute together in
parallel during the response time of τi is defined as follows:

ξi,s = min
τj∈s

ζi,j (8)

Proof. Obviously, co-runner tasks in s cannot execute alto-
gether longer than the execution time of the shortest one. Note
that the back-to-back execution effect caused by tasks with
self-suspending behavior is already bounded by ζi,j .

The above lemma is for non-empty co-runner sets s 6= ∅. For
s = ∅, we define ξi,∅ =∞. This might look counter-intuitive
at a first glance, but indicates that the maximum cumulative
time that other cores are idling is unbounded since there is no
minimum execution time defined for each task.

Let us use Vi,k to denote the k-th largest slowdown factor
in the slowdown set ρi, and Xi,k to denote the co-runner set
corresponding to Vi,k.4 Using these, we compute an upper
bound on the execution time of a task τi as follows.

Theorem 1 (Job-oriented analysis). The execution time of a
job of τi under co-runner locking is upper-bounded by

C∗i =
∑

0<k≤|ρi|

Vi,k · φi,k (9)

where φi,k upper-bounds the maximum execution requirement
of τi affected by a slowdown factor Vi,k and is given by

φi,k = min
(
Ci −

∑
0<l<k

φi,l,
ξi,Xi,k
Vi,k

)
(10)

Proof. To maximize the execution time of τi, it has to get the
largest slowdown factor Vi,1 (k = 1) for as much execution
requirement as possible. On the one hand, this is bounded by
τi’s execution requirement Ci; hence, φi,1 ≤ Ci and the exe-
cution time C∗i ≤ φi,1 ·Vi,1. On the other hand, the co-runner
set corresponding to Vi,1 cannot execute in parallel with τi
longer than ξi,1, and the maximum execution requirement that

4Vi,k is ordered in decreasing order of slowdown factors (i.e., Vi,1 is the
largest), but the number of co-runners in Xi,k may not increase with k (e.g.,
it is possible that |Xi,1| < |Xi,2|). In other words, we do not assume that
the slowdown of τi is just a function of the number of co-runners.
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τi can accomplish during this time is ξi,Xi,1/Vi,1. Therefore,
an upper bound on τi’s execution requirement affected by Vi,1
is obtained by taking the minimum between these two, i.e.,
φi,1 = min(Ci, ξi,Xi,1/Vi,1).

If Ci ≤ ξi,Xi,1/Vi,1, the execution time of τi is bounded by
Ci · Vi,1. Otherwise, τi may experience slowdown from other
co-runner sets (k ≥ 2) for its remaining execution requirement,
Ci − ξi,Xi,1/Vi,1 = Ci − φi,1.

For k = 2, the execution time of τi is the sum of Vi,1 ·φi,1
and the time required to complete the remaining execution
requirement of Ci−φi,1. Hence, Vi,2 applies to the minimum
of Ci−φi,1 (whole remaining part) and ξi,Xi,2/Vi,2 (progress
achievable during Vi,2), which is given by φi,2. If there
still remains non-zero execution requirement, this sequence
continues for the next largest slowdown factor.

For k = |ρi|, the least slowdown factor of 1 applies because
the co-runner set Xi,|ρi| is ∅. Hence, any remaining execution
requirement at this point can be executed with no slowdown,
and φi,|ρi| ensures this by taking the minimum between the
remaining execution requirement and ξi,∅ = ∞. The steps
for all co-runner sets from k = 1 to |ρi| are represented
by the summing term in Eq. (9). It is worth noting that
Eq. (10) cannot be negative because it considers the remaining
execution requirement of τi and

∑
φi,k cannot exceed Ci.

Using this theorem, the response time test given in Eq. (2)
can be rewritten as follows:

Ri = C∗i +
∑

τj∈hpp(τi)

⌈
Ri + Ij(C

∗
j )

Tj

⌉
C∗j

+
∑

τk∈εi∧τk∈hp(τi)

⌈
Ri + Ik(C∗k)

Tk

⌉
C∗k

(11)

where the initial value for fixed-point iteration is Ri = Ci (not
C∗i , since C∗i depends on Ri).

Example. For the taskset in Fig. 5, the job-oriented slowdown
analysis bounds the worst-case response time of each task as
follows: R1 = 7, R2 = 2, R3 = 5, and R4 = 14, which
exactly match the timeline shown in the figure. However, the
job-oriented approach can be pessimistic for a different type
of tasksets. Let us consider another example given in Fig. 6.
The figure depicts the worst case, i.e., shifting around the jobs
of τ1 and τ2 does not increase τ3’s response time. Our focus
is to analyze the response time of τ3, which is shown to be
the same as its period, 16. However, the job-oriented analysis
determines τ3 fails to meet the deadline. This is because it
assumes that τ1 is slowing down both τ2’s job and τ3’s job
for 2 time units each, but that cannot occur in reality.

C. Load-oriented Slowdown Analysis

The job-oriented analysis computes each job’s slowdown
separately and then analyzes the response time. Alternatively,
we can directly analyze the response time of a task τi by
iteratively capturing the cumulative slowdown imposed on all
the load during τi’s response time. Here, the load means the
execution requirement of the task itself and those of other
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higher-priority tasks preempting that task. Below we define
additional terms required for this load-oriented approach.

Def. 8. Hi is the set of tasks directly contributing to the load
for τi’s response time. This includes τi, higher-priority tasks
on the same core, and higher-priority mutually-exclusive co-
runner tasks.

Hi = {τj | τj = τi ∨ τj ∈ hpp(τi) ∨ (τj ∈ εi ∧ τj ∈ hp(τi))}

Based on Hi, the load Ei can be defined as follows.

Def. 9 (Load). Ei is the sum of all execution requirements of
tasks in Hi during τi’s response time Ri. Note that Ij(Cj)
captures the self-suspending behavior of τj as in Eq. (2).

Ei = Ci +
∑

τj∈Hi\{τi}

⌈
Ri + Ij(Cj)

Tj

⌉
Cj (12)

We now introduce G∗i and ρ∗i , which are similar to Gi
(Def. 5) and ρi (Def. 6) but different in the sense that the
new parameters are defined for the tasks in Hi.

Def. 10. G∗i is the set of “true” co-runner sets of tasks in Hi.

G∗i = {s | ∃τj(τj ∈ Hi) ∧ (s ∈ Gj)}

Note that G∗i is a set so there is no duplicate element.

Def. 11. ρ∗i is the set of slowdown factors corresponding to the
co-runner sets in G∗i . If there are multiple slowdown factors
for the same co-runner set, ρ∗i stores only the maximum.

ρ∗i = {x | ∃s(s ∈ G∗i ) ∧ (x = max
τj∈Hi

σj,s)}

Let us use V ∗i,k to denote the k-th largest slowdown factor
in the modified slowdown set ρ∗i , and X∗i,k to denote the co-
runner set corresponding to V ∗i,k. We now derive an upper
bound on the worst-case response time of a task τi as follows.

Theorem 2 (Load-oriented analysis). The worst-case response
time of a task τi in the presence of co-runner interference is
upper-bounded by

Ri =
∑

0<k≤|ρ∗i |

V ∗i,k · φ∗i,k (13)

where

φ∗i,k = min
(
Ei −

∑
0<l<k

φ∗i,l,
ξi,X∗i,k
V ∗i,k

)
(14)

Note that this is a recurrence since Ei depends on the previous
value of Ri. It can be solved by fixed-point iteration with
Ri =

∑
τj∈Hi Cj for the initial value of Ei.
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Proof. Eq. (13) is analogous to Eq. (9) and can be proved in
the same way as in Theorem 1.

Example. The load-oriented analysis computes the worst-case
response time of the tasks in Fig. 6 as follows: R1 = 2,
R2 = 5.5, and R3 = 16. In fact, this taskset is favorable
to the load-oriented analysis because, when analyzing τ3, the
interfering co-runner τ1 executes for only 4 time units during
R3. It is worth noting that the job-oriented and the load-
oriented analyses do not dominate each other (e.g., the load-
oriented analysis declares a failure to τ4 in Fig. 5). Given
that both analyses produce upper bounds on the worst-case
response time, we propose to use them jointly, by taking the
minimum between the two.

D. Extension to Multi-segment Tasks
We now extend our task model such that each task consists

of a sequence of one or more execution segments. This
multi-segment task model is effective in capturing different
slowdown factors for each part of a program and has been
used in prior work on co-runner dependent execution time [6].
A multi-segment task τi can be represented as a collection
of single-segment tasks, all of which have the same period,
deadline, and priority: τi := (τi1 , τi2 , ..., τin), where τi1 and
τin are the first and the last segment of τi. For schedulability
analysis, the response time tests provided in earlier subsections
can be reused with minor modifications: (i) the execution time
of a multi-segment task under analysis needs to be captured
as the sum of execution times of tasks corresponding to
its segments, and (ii) the segments of higher-priority multi-
segment tasks can be treated as independent single-segment
tasks because our analysis is agnostic to their execution order
but captures how long they execute. Below we present how
each analysis can be extended.
Baseline analysis. The response time of a multi-segment task
τi is upper-bounded by:

Ri = Ci +
∑

τj∈hpp(τi)

⌈
Ri + Ij(Cj · θj)

Tj

⌉
Cj · θj

+
∑

τk∈εi∧τk∈hp(τi)

⌈
Ri + Ik(Ck · θk)

Tk

⌉
Ck · θk

(15)

where Ci =
∑
τi′∈τi

Ci′ · θi′ , εi = ∪τi′∈τiεi′ , and the initial
condition for fixed-point iteration is Ri = Ci.
Job-oriented slowdown analysis. The response time test
given in Eq. (11) can be rewritten for multi-segment tasks:

Ri = C∗i +
∑

τj∈hpp(τi)

⌈
Ri + Ij(C

∗
j )

Tj

⌉
C∗j

+
∑

τk∈εi∧τk∈hp(τi)

⌈
Ri + Ik(C∗k)

Tk

⌉
C∗k

(16)

where C∗i =
∑
τi′∈τi

C∗i′ and the initial condition for fixed-
point iteration is Ri =

∑
τi′∈τi

Ci′ .
Load-oriented slowdown analysis. For the load-oriented
analysis, we need to redefine two of the parameters to take

Algorithm 1 Simulated Annealing (SA)
Require: Γ: a taskset, α: cooling rate, tmin: minimum temperature

threshold, iter: # of iterations per temperature, time limit: max-
imum time for search

1: /* Sanity check: no need to run if already schedulable */
2: Run response-time test for all tasks
3: if taskset is schedulable then
4: return success
5: t = 1.0 /* t: current temperature */
6: nprev= # of schedulable tasks w/o co-runner locking
7: while t > tmin do
8: for k = 1 to iter do
9: Randomly picks two tasks, τi and τj

10: if τj /∈ εi then
11: εi = εi ∪ {τj}; εj = εj ∪ {τi}
12: else
13: εi = εi \ {τj}; εj = εj \ {τi}
14: Update co-runner sets G and slowdown factors ρ
15: Run response-time test for all tasks
16: ncur = # of schedulable tasks
17: if taskset is schedulable then
18: return success
19: /* probabilistic acceptance */
20: if exp((ncur − nprev)/|Γ|/t) > random(0, 1) then
21: nprev = ncur
22: else
23: Revert εi and εj
24: Update co-runner sets G and slowdown factors ρ
25: t = t · α
26: if elapsed time > time limit then
27: break
28: return failure

into account all segments of τi. First, Hi, the set of tasks
contributing to the load for τi’s response time is changed to:

Hi = {τj | τj ∈ τi ∨ τj ∈ hpp(τi)∨ (τj ∈ εi ∧ τj ∈ hp(τi))}
Secondly, Ei, the sum of all execution requirements of tasks
in Hi during Ri is changed to:

Ei =
∑
τi′∈τi

Ci′ +
∑

τj∈Hi\τi

⌈
Ri + Ij(Cj)

Tj

⌉
Cj (17)

With these Hi and Ei, the response time test given in Eq. (13)
can be used for analyzing multi-segment tasks.

VI. CO-RUNNER EXCLUSION ALGORITHMS

Choosing the right set of tasks for a co-runner exclusion set
εi is critical to achieving schedulability. However, there is no
clear strategy that always leads to good results. Adding a co-
runner task to εi may reduce slowdown-induced delay but may
increase preemption-induced delay to others. Exhaustively
searching the entire solution space is not feasible even for
a reasonable-size system. Motivated by these difficulties, we
develop two heuristic algorithms, the one based on simulated
annealing and the other based on a simple intuition.

A. Simulated Annealing
We first formulate the problem of finding a co-runner

exclusion set εi into simulated annealing (SA) as shown in
Alg. 1. It takes as input a taskset Γ and other SA-related
parameters including the cooling rate α, the minimum temper-
ature threshold tmin, the number of iterations per temperature,
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Algorithm 2 Maximize Relative Slack (MaxSlack)
Require: Γ: a taskset

1: /* Sanity check: no need to run if already schedulable */
2: Run response-time test for all tasks
3: if taskset is schedulable then
4: return success
5: for all τi ∈ Γ in descending order of priority do
6: /* Consider all co-runner tasks τk of τi */
7: for all τk ∈ Γ ∧ τk 6= τi in descending order of priority do
8: /* Check if τk and τi are already mutually-exclusive */
9: if τk ∈ εi then

10: continue
11: /* Check slack before/after τk is selected for exclusion */
12: slackold =

∑
∀τj

Dj−min(Rj ,Dj)

Tj

13: εi = εi ∪ {τk}; εk = εk ∪ {τi};
14: Update co-runner sets G and slowdown factors ρ
15: Run response-time test for all tasks
16: slacknew =

∑
∀τj

Dj−min(Rj ,Dj)

Tj
17: if slacknew < slackold then
18: /* Discard if resulting slack is smaller than before */
19: Revert εi and εj
20: Update co-runner sets G and slowdown factors ρ
21: if taskset is schedulable then
22: return success
23: return failure

and the time limit. Since our goal is taskset schedulability,
the cost for SA is determined by the number of schedulable
tasks in a given taskset. The variables to change are εi. For
each temperature level, the algorithm first generate a new
random set of variables by randomly picking two tasks and
toggling their co-runner exclusion relationship (lines 9-13).
Then it updates the set of true co-runner sets and the set of
slowdown factors for both tasks, i.e., Gi, Gj , ρi, and ρj , and
checks the schedulability by running the response-time test.
If the taskset is schedulable, the algorithm returns success.
Otherwise, it accepts the new variable set with a probability
computed by exp() (line 20); if not acceptable, then the
variable set is reverted to the previous one. This continues
until the temperature t cools down below the threshold tmin
or it hits the time limit. If the algorithm cannot make the
taskset schedulable until this point, it returns failure.

B. Maximizing Relative Slack

Our second heuristic focuses on the simple fact that in-
creasing the slack of higher-priority tasks can help improve
the schedulability of lower-priority tasks. Alg. 2 depicts our
algorithm, MaxSlack, which aims to maximize relative slack.
Basically, it iterates over all tasks in descending order of
priority (so the highest-priority task first) and adds a co-
runner task to the exclusion set ε if doing so increases the
cumulative sum of slack for all tasks. Specifically, for each
τi, the algorithm finds all co-runner tasks τk of the task τi. If
τi and τk are not already in a mutually-exclusive relationship,
the algorithm checks if the sum of relative slack after adding
τk to εi and τi to εk is greater than before (lines 12 and
16). The sum of relative slack for all tasks is computed by∑
∀τj

Dj−min(Rj ,Dj)
Tj

, where min(Rj , Dj) is to consider a task
whose response time is not bounded. If the new slack value

is smaller than before, εi and εk are reverted. Otherwise, the
algorithm keeps these co-runner exclusion sets and moves on
to the next highest-priority task.

VII. EVALUATION

A. Schedulability Tests

We evaluate the performance of our response-time analysis
and the effects of co-runner locking in taskset schedulability
by using random tasksets. We follow the taskset generation
procedure in [6] to generate co-runner dependent execution
time and use the same parameters as in that paper. Below we
summarize this procedure. For each taskset, we first generate
n tasks and assign priorities based on the Deadline Monotonic
(DM) policy. Tasks are allocated to M CPU cores based on
the worst-fit decreasing (WFD) heuristic in order to balance
the workload across cores. For WFD, tasks are ordered based
on task utilization Ui = Ci/Ti, which is the case where a
task does not experience co-runner slowdown. Once tasks are
assigned to cores, we scale up the execution requirements of
all tasks by the rate of 1.01 at a time while the taskset remains
schedulable, assuming there is no co-runner interference.
Hence, after this procedure, multiplying each task’s execution
requirement by 1.01 makes the taskset unschedulable. Then,
the execution requirements of all tasks are multiplied by an
experiment control parameter mul ≤ 1. This mul value
serves as an indicator for per-core utilization. For co-runner
slowdown, we generate the entire set of co-runner sets, and
randomly choose a slowdown value from [1, 1/progmin] for
each co-runner set s, where progmin ≤ 1 is another control
parameter. Once generated, co-runner slowdown values are
reordered such that if s ⊂ s′, then σi,s ≤ σi,s′ . This reordering
is to reflect the reality that a larger number of co-running tasks
tend to cause a greater slowdown.

Based on the above procedure, a total of 2,128,000 tasksets
are generated with the combinations of the following parame-
ters which are obtained from [6]: the number of tasks n ∈
{2, 4, 6, 8, 10, 12, 14, 16}, the number of segments per task
∈ {1, 2}, the number of CPU cores M ∈ {2, 3, 4, 5, 6, 7, 8},
mul ∈ {0.05, 0.10, 0.15, ..., 0.95, 1.00}, and progmin ∈
{0.05, 0.10, 0.15, ..., 0.95, 1.00} and progmin < mul.

We use these tasksets to assess the performance of the
response-time tests presented in Sec. V. Seven methods are
compared: (i) our baseline analysis (Base), (ii) job-oriented
analysis (Job-O), (iii) load-oriented analysis (Load-O), (iv)
joint analysis that takes a minimum between job-oriented and
load-oriented analysis results for the response time of each
task (Joint), (v) the method proposed in [6] that formulates
the schedulability analysis of tasks with co-runner dependent
execution time into linear programming (LP), (vi) joint anal-
ysis with simulated annealing for finding co-runner exclusion
sets (SA), (vii) joint analysis with the MaxSlack algorithm
(MaxSlack). The first five methods, Base, Job-O, Load-O,
Joint, LP, do not use co-runner locking (i.e., εi = ∅ for
all tasks). LP is the only existing work that can be directly
compared with our work; however, LP does not support co-
runner locking and it is not trivial to extend it. In case of SA,
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Fig. 7: Schedulability success ratio (SR)

TABLE I: Algorithm running time per taskset on an
x86@2.35 GHz processor

Name Avg (ms) Max (ms) Name Avg (ms) Max (ms)
SA 1189.4 30391.1 MaxSlack 54.4 2108.2

we used the time limit of 30s, iter = 30, tmin = 0.001, and
α = 0.99.

Fig. 7 shows the schedulability success rate of the seven
different methods. Each sub-figure demonstrates the schedula-
bility success rate of each method based on different criteria
(mul and # of tasks). Among the methods that do not use co-
runner locking, both Job-O and Load-O outperform Base by a
noticeable amount, and Joint performs better than these two.
It is also shown that Job-O and Load-O do not dominate each
other. LP performs the best among those that do not use co-
runner locking. However, the analytical benefit of LP comes
at a high computational cost. While Job-O, Load-O, and Joint
take only less than 10 ms per taskset for a system with 8 cores,
LP takes more than 100 seconds per taskset on overage for the
same system. Such a high cost makes it difficult to be used
with the algorithms to find co-runner exclusion sets because
they check schedulability iteratively until a solution is found.

As can be seen from SA and MaxSlack, the use of co-
runner locking brings significant benefit in schedulability.
Specifically, MaxSlack achieves 100% of success ratio for
mul ≤ 0.15, and almost 2× of improvement compared to
the “no locking” methods until mul exceeds 0.3. Another
interesting thing is that MaxSlack yields better results than
SA in many cases, despite its simplicity and shorter running
time (see Table I). There are some cases where LP performs
slightly better than MaxSlack and SA (0.65 ≤ mul), but this
is due to the pessimism of our schedulability analysis when
the utilization is high.

TABLE II: Implementation cost
Name Avg (µs) Max (µs)

Check other tasks in εi 0.29 9.63
Send suspend signal 0.45 8.99
Suspend running task 20.13 120.06
Wake up task 5.53 50.97

TABLE III: Taskset information for case study
Task Ci ms Ti ms CPU Type Slowdown factors (selected)

τ1 90.4 150 CPU1 Mem σ1,{τ2,τ3,τ5} = 1.72
σ1,{τ3,τ5,τ6} = 1.81

τ2 20.0 200 CPU2 Comp ∀s ∈ S2 : σ2,s = 1.01
τ3 90.4 300 CPU0 Mem σ3,{τ1,τ2,τ5} = 1.72

σ3,{τ1,τ5,τ6} = 1.81
σ3,{τ2,τ4,τ5} = 1.12
σ3,{τ4,τ5,τ6} = 1.18

τ4 100.0 400 CPU1 Comp ∀s ∈ S4 : σ4,s = 1.01
τ5 90.4 480 CPU3 Mem σ5,{τ1,τ2,τ3} = 1.18

σ5,{τ1,τ3,τ6} = 1.81
σ5,{τ2,τ3,τ4} = 1.12
σ5,{τ3,τ4,τ6} = 1.72

τ6 90.4 600 CPU2 Mem σ6,{τ1,τ3,τ5} = 1.81
σ6,{τ3,τ4,τ5} = 1.72

B. Case Study

We implemented the co-runner locking scheme in the Linux
kernel v4.9.140 running on an Nvidia Xavier AGX platform.
The implementation was done following our discussion in
Sec. IV-C. The Xavier board has a total of 8 CPU cores and
provides multiple power modes. We used the MAXN power
mode (2.2 GHz) and disabled dynamic frequency scaling to
minimize performance variability.
Overhead. Co-runner locking incurs the following overhead
at runtime: (i) checking co-runner conditions (εi), (ii) sending
a suspension request to another core if a lower-priority co-
runner has to be suspended, (iii) suspending a currently-
running task upon request, and (iv) waking up a task from the
waiting list if there is any. Item 1 occurs whenever a task with
εi 6= ∅ enters the scheduler, but the others happen only under
specified conditions. Table III shows the overhead observed
from our implementation. Item 1 has very low overhead since
it merely requires reading other tasks’ running states. While
the frequency of other items varies by tasksets and εi, we
consider this cost is acceptable and can be optimized.
Taskset. Table III summarizes the taskset used in our case
study. Tasks are ordered in descending priority, i.e., τ1 is the
highest-priority task. Memory-intensive tasks (τ1, τ3, τ5, and
τ6) are based on the latency program [62] and their perfor-
mance is highly affected by inter-core cache interference. In
contrast, CPU-intensive tasks (τ2 and τ4) have little slowdowns
from co-running tasks (i.e., ∀s : σ2,s = σ4,s = 1.01). The
tasks are assigned to CPU0-3 of the Xavier board. The slow-
down factors of the tasks are estimated by the measurement-
based method in [6], and only some of them are depicted in the
table for space reasons. Note that these slowdowns (≤ 1.81×)
are much smaller than the worst cases reported in the literature,
e.g., > 5× with cache and DRAM bank partitioning in a quad-
core system [63], and thus less favorable for co-runner locking.

Fig. 8 shows the execution traces of the taskset for 2s
with and without co-runner locking. We recorded the traces
using trace-cmd and kernelshark, and then annotated
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Fig. 8: Taskset execution traces

with arrows to indicate the release time of the highest-priority
task on each CPU. All the tasks were released together at
time 0. In case of co-runner locking, only τ1 is determined to
run exclusively from other co-runners by MaxSlack (Alg. 2),
i.e., ε1 = {τ2, τ3, τ5, τ6} and ε2 = ε3 = ε5 = ε6 = {τ1}.
Let us compare the results from the two cases. First, in
Fig. 8a, τ1 does not experience any inter-core interference
since no co-runner exists during its execution; hence, all tasks
in the system meet their deadlines. Second, in Fig. 8b, the
first instance of τ1, τ1,1, executes beyond its deadline due
to the slowdown from co-runners. This delays the start time
of the second instance, τ1,2, which in turn causes τ4,1 to
miss its deadline too. The execution times of the memory-
intensive tasks, τ3, τ5, and τ6, are also much longer than
those with co-runner locking. While this taskset could also be
made schedulable by existing resource partitioning [54, 63]
or interference-aware allocation [42, 59], the results show the
potential of co-runner locking as an alternative approach.

VIII. CONCLUSION

In this paper, we presented the co-runner locking scheme
to address the multi-core timing interference problem. Unlike
existing approaches, our scheme takes a task synchronization
approach to prevent some co-runner tasks from executing in
parallel if they cause a large slowdown. The details on co-
runner locking properties and runtime control policies were
discussed. For the selection of mutually-exclusive co-runner
sets, we developed two heuristic algorithms, simulated an-
nealing and maximizing relative slack. Experimental results
with randomly generated tasksets show that our analysis is
much less pessimistic compared to the baseline approach. Case
study results demonstrate that co-runner locking is effective
even when inter-core interference is moderate. Therefore, we
believe that co-runner locking can serve as an effective alter-
native to address the “one-out-of-m” problem when resource
partitioning methods are unavailable or when they cannot
eliminate all the interference penalties.
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