
Resilient Mixed-Trust Scheduling
Dionisio de Niz†, Bjorn Andersson†, Hyoseung Kim˚, Mark Klein†, John Lehoczky‡

†Software Engineering Institute, Carnegie Mellon University
˚Electrical and Computer Engineering, University of California, Riverside
‡Department of Statistics and Data Science, Carnegie Mellon University

{dionisio,baandersson}@sei.cmu.edu, hyoseung@ucr.edu, mk@sei.cmu.edu, jl16@andrew.cmu.edu

Abstract—In this paper we present a new scheduling model for
resilient real-time mixed trust systems. This model extends the
previous Real-Time Mixed-Trust Computing framework RT-MTC
to support degradation modes. Management of these modes has
been identified in industrial documents as a key requirement
for deploying trusted autonomous vehicles for safe autonomy.
RT-MTC uses verified components (known as enforcers) to
guarantee that the output of a system is safe by replacing it
with a verified safe one if this output is deemed unsafe or is
not produced on time. In this paper we extend RT-MTC and
develop a scheduling model that uses the digraph scheduling
model as a baseline but extends it in four critical ways: (1) it
creates extensions for the mixed-preemptive scheduling required
by RT-MTC, (2) it enables priority bands in order to separate
trusted and untrusted components, (3) it uses these bands in
order to calculate intermediate deadlines used by the RT-MTC
framework for the scheduling of the trusted components, and
(4) it defines system mode semantics to obtain two desirable
properties of the new schedulability analysis: low pessimism and
low time-complexity. This paper evaluates the new schedulability
algorithm and shows that it is efficient in that it only needs
to analyze one transition at a time. The new model supports
the construction of a resilient autonomous system with provable
guarantees protected by verified enforcers within the RT-MTC
framework and, more importantly, preserves these guarantees
even across failure-triggered mode changes.

I. INTRODUCTION

Certification authorities (e.g., FAA [17]) allow the validation
of different parts of a system with different degrees of rigor
depending on their level of criticality. Formal methods have
been recognized as important methods to verify safety-critical
components [1]. Unfortunately, a verified property can be eas-
ily compromised if the verified components are not protected
from unverified (and untrusted) ones. Thus, the authors of [8]
require that trusting the guarantee of verified components
considers both verification and protection of components.

The work in [8] presented a real-time mixed-trust com-
puting (RT-MTC) framework to achieve trust as previously
defined. This framework enables the use of untrusted com-
ponents even for CPS critical functionality. In this framework,
untrusted components are monitored by verified components
ensuring that the output of the untrusted components always
leads to safe states (e.g., avoiding crashes). These monitor-
ing components are known as logical enforcers [5], [9]. To
ensure trust, these enforcers are protected by a verified micro-
hypervisor [23]. To preserve the timing guarantees of the
system, RT-MTC uses temporal enforcers, which are small,
self-contained codeblocks that perform a default safety action

(e.g., hover in a quadrotor) if the untrusted component has
not produced a correct output by a specified time. Temporal
enforcers are contained within the verified micro-hypervisor
without jeopardizing the existing level of trust (e.g., us-
ing compositional verification offered by extensible micro-
hypervisors [23]). Together the untrusted part and the temporal
enforcers are scheduled as a combined task called a mixed-
trust task. The untrusted part, known as a guest task (GT), is
scheduled by a fixed-priority scheduler in an untrusted VM.
The VM runs on top of a trusted hypervisor that executes
the trusted temporal enforcer, known as a hypertask (HT).
Furthermore, the authors presented a sample application for an
autonomous drone vehicle showcasing how RT-MTC preserves
the safety of the system under both permanent and temporal
failures. The authors of [8] also presented the analysis to
verify the schedulability of mixed-trust tasksets in a single
operating mode. In this paper we extend this framework to
support degraded modes of operations to adapt to faults and
environmental changes in order to reach the appropriate level
of resilience.

Achieving resilient operation across multiple degraded
modes has been and continues to be a major goal for au-
tonomous architectures. With the increasing push to deploy
autonomous cars, such considerations made their way into
industrial standards. For instance, in [12], Daimler et al. define
an architecture for autonomous driving where degraded modes
of operation are one of the key building blocks. In particu-
lar, [12] introduces the concept of a Minimal Risk Condition
(MRC) as an operating mode to which an automated-driving
system must transition upon a failure. Such a transition is per-
formed by a Minimal Risk Maneuver (MRM). This approach is
adopted from principles of ISO 26262 [13]. Figure 1a depicts
an illustration of the modes and transitions proposed in [12].

While a number of real-time modal models have been
proposed, they fail to address the challenges presented here in
at least two important respects. First, previous models consider
mode transitions as simple task parameter changes without
taking into account the computation required by the transition
and the synchronization between the modes and the transition.
This is evidenced by the explicit description in [12] of the
MRM. Second, previous work does not address the challenges
imposed by the need to preserve safety guarantees during the
transition. This paper addresses these issues by extending the
RT-MTC framework to include degradation modes.

The extended RT-MTC framework supports trusted degra-

Nominal
Opera-

tion

MRC
m

MRC
n

Final
MRC

I

MRM
m1

Degraded Operation

Capabilities
Not Fully availableCapabilities

Fully available

MRM
m2

MRM
n1

MRM
n2

MRM
I1

MRM
I2

Recovery

(a) MRC Modes [12]

VM

HV

LEUntrusted

𝒔

𝜶

෥𝜶

TE
ෝ𝜶

task
activation

control flow control+data flowdata flow

TSTD

USTD
TSD

(b) Mixed-Trust Task Runtime

Fig. 1: Behavior and Runtime Architecture

dation modes where for each mode there exists a number
of potential failures that require a specific transition into a
degraded mode. This continues until we reach a fail-stop mode
where the system completely stops. Our RT-MTC extended
framework supports degradation modes where we not only
enforce trust during an operating mode but also during a mode
transition. To analyze the schedulability of these systems we
use an extension of the digraph model [19] in order to capture
the nuances of the timing constraints of the transitioning tasks
and the timing relationships with both their respective source
and target mode GTs and HTs.

Four main limitations of the digraph model prevent its direct
application to trusted mode changes:

1) Mixed-Preemption. While the digraph literature has
been extended to support both preemptive and non-
preemptive scheduling, the RT-MTC framework requires
tasks with preemptive (in the VM) and non-preemptive
(in the HV) segments executed by two separate sched-
ulers.

2) System Modes. The flexibility of the digraph model
allows tasks to change modes independently of each
other. Unfortunately, this is a problem when the system
requires these changes to be coordinated, e.g. when the
entire system needs to adapt to a failure. This can cause
a severe schedulability penalty.

3) Intermediate Deadlines. The intermediate deadline
needed for the temporal enforcer of RT-MTC, denoted
as Ei, must be calculated based on the schedulability
analysis of the HTs. Moreover, these deadlines are linked
to edge interarrival parameters in order to capture the
semantics of the degradable RT-MTC. The digraph model
does not have support for this, and it must be added.

4) Priority Bands. The RT-MTC framework requires HTs
to be scheduled in a higher priority band than the GTs.
This requires a subtle extension of the digraph model
that must be integrated with the other extensions.

The contributions of this paper are three-fold. First, we cre-
ated an extended mixed-trust framework that supports models
of degradation required by industry without compromising the
guarantees offered by the original mixed-trust framework. To
the best of our knowledge this is the first framework that
supports these modes. Secondly, we created a schedulability
model based on the digraph model that supports this frame-
work and overcomes the limitations cited above. Finally, we
took advantage of the structure of our framework to create an
analysis algorithm with low time-complexity and pessimism.

The rest of this paper is organized as follows. In Section II
we provide a review of the mixed-trust framework. In Sec-
tion III we show that the adaptation to failure can compromise
the guarantees offered by the RT-MTC framework. We then
present our semantics that are designed to preserve safety
across adaptations. In Section IV we present the mixed-trust
digraph scheduling model. We first introduce the standard di-
graph model and then present our generalizations. In Section V
we then present the system modes and their corresponding
system transitions to complete our model. With the generalized
model, we present a procedure to calculate the Ei parameter
for our modal tasks and the integrated system scheduling. In
Section VI we then present the evaluation of our schedula-
bility model. In Section VII we discuss our implementation.
Section VIII presents related work, and Section IX offers
concluding remarks.

II. REAL-TIME MIXED-TRUST BACKGROUND

We first provide some background on the RT-MTC frame-
work. Figure 1b depicts the architecture of a mixed-trust task.
The figure shows how the output of the untrusted component
in red is validated by the logical enforcer (LE), in green, to
make sure the value is safe1. However, because the untrusted
component may delay the production of the output, an inde-
pendent timer is programmed within the hypervisor (HV) that
triggers the temporal enforcer (TE) if no output is produced
by the LE. If the LE does produce an output before the timer
interrupts, then this value is used as the output (actuation in a
controller).

The architecture also presents three protection domains: An
Untrusted Space and Time Domain, which has no memory
or time protection, where the untrusted components reside;
a Trusted Space Domain, which ensures the memory of the
component is not compromised, where the LE resides; and
the Trusted Space and Temporal Domain, which provides both
memory protection and timing protection and it uses its own
timer, where the TE lives.

The system model in [8] considers a uniprocessor system
with a taskset Γ “ tµi|µi “ pTi, Di, τi, κiqu with unique
priorities. In the taskset, µi is a mixed-trust task with two
execution segments, τi and κi, with period Ti and deadline Di.
The segment τi is considered to be untrusted and scheduled
preemptively in the untrusted OS kernel inside the VM. The

1see [5] for the formalization of this scheme.

segment κi is considered to be trusted code and scheduled non-
preemptively within the trusted HV. To represent the fact that
these segments are handled by different schedulers, they are
considered to be tasks and call τi the guest task (GT) and κi the
hyper task (HT), as introduced before. These tasks are defined
by: τi “ pTi, Ei, Ciq, κi “ pTi, Di, κCiq, where Ti and Di are
the same as in µi, Ci is the worst-case execution time (WCET)
of τi, κCi is the WCET of κi, and Ei is the intermediate
deadline of τi determined by analysis. Consider a particular
job of µi, pτi,q, κi,qq. Ideally, τi,q will execute correctly taking
no more than Ci time units and finishing within Ei time units
after its arrival. In this case, the job κi,q is not activated. The
logical enforcer (LE) verifies the correctness of τi,q , while the
timing enforcer (TE) verifies the timing. If the logical enforcer
(LE) does not notify the HV that τi,q finished correctly and
on time, then the corresponding HT κi,q is activated by a timer
set to expire Ei time units after τi arrives running at a higher
priority than any GT. The deadline for τi,q , Ei, is chosen to
ensure that κi,q can finish by Di, the µi deadline. Equations
to verify schedulability were derived in [8].

We begin by showing the schedulability equations in [8];
this is useful because we will make changes to these equations
to model and analyze degradation modes. In Section IV, we
will also present an improved approach.

The reasoning of the schedulability analysis in [8] is as fol-
lows. The response time of κi is calculated by first calculating
the maximum duration of a level-i active period:

tκi “ max
jPκLi

κCj `

R

tκi
Ti

V

κCi `
ÿ

jPκHi

R

tκi
Tj

V

κCj , (1)

where κLi is the set of all HTs with lower priority than κi
and κHi is the set of tasks with higher priority than κi.

The latest start time of the qth job of κi in the active period
is obtained by:

wκi,q “ max
jPκLi

κCj`pq´1qκCi`
ÿ

jPκHi

p

Z

wκi,q
Tj

^

`1qκCj , (2)

Finally, the response time of κi is upper-bounded by:

Rκi “ max
qPt1...

Q

tκ
i
Ti

U

u

pwκi,q ` κCi ´ pq ´ 1qTiq. (3)

Given the response time of a HT, Ei is calculated as: Ei “
Di ´R

κ
i , which serves as the deadline of the GT.

To calculate the response time of the GT, it is necessary
to evaluate all the potential phasings of the interfering GTs
(higher-priority) and HTs (all HTs except its own). To simplify
this, [8] defines the request bound function (rbf) that captures
the computation time of task µi as presented in equation (4).

rbfyi pt, bq “

$

&

%

Q

t´pTi´Eiq
Ti

U`

Cib`
Q

t
Ti

U

κCi if y “ E,
Q

t
Ti

U

Cib`
Q

t´Ei
Ti

U`

κCi if y “ A,

(4)
where rxs

`
“ maxp0, rxsq, y P tE,Au indicates if the time

interval of duration t starts with the arrival of GT of µi (A)
or its HT (E), and b P t0, 1u indicates if the GT execution
should be included in the rbf.

The rbf is then used to calculate the maximum level-i busy
period (where x P tE,Au indicates if it starts with HT or GT)
with the smallest solution to:

tg,xi “

˜

ÿ

jPLi

rbfEj pt
g,x
i , 0q

¸

` rbfxi pt
g,x
i , 1q

`
ÿ

jPHi

max
yPtE,Au

rbfyj pt
g,x
i , 1q,

(5)

where Li and Hi contain the tasks with lower and higher
priority (respectively) than τi.

The latest start time of the qth job of a GT τi in the level-i
busy period, wg,xi,q , is computed as the smallest solution of:

wg,xi,q “

˜

ÿ

jPLi

rbfEj pw
g,x
i,q , 0q

¸

` qCi

`pq ´ 1` Ipx“EqqκCi `
ÿ

jPHi

max
yPtE,Au

rbfyj pw
g,x
i,q , 1q,

(6)
where Iφ is an indicator function that returns 1 if φ is true
and 0 otherwise.

The response time of a job for different phasings is com-
puted using:

Rg,xi,q “ wg,xi,q ´ ppq ´ 1qTi ` Ipx“EqpTi ´ Eiqq. (7)

The maximum response time among all the jobs in the busy
period is calculated using

Rg,xi “ max
qP

"

1...

R

t
g,x
i

´Ix“EpTi´Eiq

Ti

V*

Rg,xi,q . (8)

Finally the response time of a GT τi is given by:

Rgi “ max
xPtE,Au

Rg,xi . (9)

With these equations, the response time of all the HTs is
calculated first, then their respective Ei intervals, and finally
the response time of the GTs. A taskset is schedulable if after
all the calculated response times of the HTs are less than or
equal to their deadline and all the response times of the GTs
are less than or equal to their respective Ei.

III. MODE TRANSITION SEMANTICS

Ensuring a predictable mode transition behavior is critical
for the preservation of guarantees across these transitions. In
this section we first discuss how failures affect the guaran-
tees in the mixed-trust framework, and then we present the
semantics of the new transition protocol designed to support
transitioning enforcers that run as HTs to prevent the violation
of these guarantees.

A. Enforced Modes and Transition Guarantee Gaps
While the RT-MTC framework allows us to enforce unver-

ified components to guarantee a safety property within an
operating mode, it is insufficient to combine modes with mode
transitions while still preserving the guarantee. To see this,
consider the example of an autonomous car with two crash
avoidance enforcers namely:
‚ a high-speed enforcer that uses a lidar to detect an object

with a detection range of 20m and braking power of

10m{s2. The detection range allows the car to reach a
maximum speed of 20m{s and still brake in time to avoid
a crash.

‚ a low-speed enforcer that uses a sonar sensor to detect
objects with a detection range of 5m and the same braking
power. The detection range allows the car to reach a
maximum speed of 10m{s and still brake in time to avoid
a crash.

While the car can be safely enforced with the high-speed
or the low-speed enforcers if we ensure that the respective
top speed is preserved, it is not possible to switch from
one enforcer to another without further considerations. For
instance, an autonomous car may want to use the high-speed
enforcer if the lidar is working but if it breaks down (or it
is too foggy to work properly), it may want to switch to the
low-speed enforcer that uses the sonar instead. Unfortunately,
an instantaneous switch-over may break the assumptions of
the low-speed enforcer. Specifically, if the lidar breaks while
the car is traveling at speed v such that 10 ă v ă 20 and we
try to switch to the low-speed enforcer, its assumed top speed
of 10m{s would be violated, hence the guarantee would be
invalidated. We call this situation a guarantee gap.

The guarantee gap between two enforcers can be closed if
we add an intermediate transitioning enforcer that drives the
system in a guaranteed manner from one environment where
the first enforcer was valid (top speed of 20m{s) to another
where the second enforcer is valid (top speed of 10m{s). In
our example, a transitioning enforcer could be implemented to
start braking at 10m{s2 at the instant the lidar stops working
and stop braking when the car reaches the speed of 10m{s. It
is worth noting that such an enforcer will be consistent with
the enforcer action and the point of failure of the high-speed
enforcer, that is, the speed v would be v ď 20m{s and the
“last” distance from the obstacle d before the lidar broke was
d ě 20m.

From the RT-MTC scheduling point of view, this is reflected
as two task modes where each task mode has a GT and HT
and an intermediate transitioning mode that only has a HT,
since this transition needs to be trusted and cannot contain an
untrusted component. It is worth noting that the transitioning
HT also needs to execute periodically since it is expected to
set a setpoint to the (brake) controller and periodically monitor
its progress until it reaches the desired condition (speed).

B. Synchronized Degradation

Following [12], we define a synchronized modal transition
that (1) ensures that the first activation of the transitioning
HT occurs at the time when the source-mode HT would have
occurred; and (2) the first activation of the GT of the target
mode occurs when the last period of the transitioning HT ends.
This is depicted in Figure 2.

Note that special care must be taken when assigning values
to E-parameters. Let us consider a mode m. Let Rκ,mi denote
the response time of the HT of a mixed-trust task µi in mode

𝜇1:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 30

𝐸1

𝜏1 𝜅1 𝜅1
𝑇𝜏1 𝜅1

𝑇 𝜅1
𝑇 𝜏1

′ 𝜏1
′𝜅1

′

𝐸1

𝑇1 = 4 𝑇1
𝑇 = 4 𝑇1

′ = 10

𝐸1
′Release offset of

𝜅1
𝑇 = 𝐸1

Fig. 2: Synchronized Degradation Timeline.

m and let Emi denote the E-value of the GT of µi in mode
m. Then we require that:

Emi ď Dm
i ´R

κ,m
i (10)

Extra care must be exercised, because the E-value also depends
on the transition. Let Rκ,m,m

1

i denote the response time of the
HT of a mixed-trust task µi in the transition from mode m to
mode m1. Then we require that:

Emi ď Dm
i ´R

κ,m,m1

i . (11)

The synchronized transition provides a design abstraction
in line with the desire to preserve a timing guarantee across
mode changes. Specifically, in our system, a mode degradation
can degrade the mission performance (e.g., car speed) but not
the safety property (e.g., crash avoidance). This means that the
timing requirements of the first activation of the transitioning
HT should be the same as the timing requirements of the
source mode HT. This is the most stringent requirement for
the transitioning HT, since it will transition to a degraded
mode with more relaxed timing requirements (e.g., due to the
slower speed of 5m{s). The synchronized activation of the
guest task of the target mode is just a natural consequence of
the activation.

When recovering from a degraded mode (e.g., when the
lidar becomes operational again), we use a synchronized
transition protocol that involves a transitioning HT and a
period alignment with the target mode guest task. In this case
we assume that the more stringent restrictions (e.g., faster
speed—20m{s) will not become operational until the target
mode is fully operational.

C. Trusted Transition Initiation

The preservation of the guarantees across mode transitions
requires the transition of the HT within the trusted HV and
the execution of the transition in a trusted manner. To align
this with the RT-MTC model we design our transition initiation
to be part of the HT triggering mechanism. More specifically:

1) We use the trusted HT-triggering timer to trigger the
detection of the transition initiation event (e.g., lidar
failure).

2) When the HT timer elapses we decide whether to
execute the current mode HT or the transitioning HT.
This leads to a replacement effect where the transitioning
HT replaces the source mode HT when the Ei timer
elapses as shown in Figure 2 at time instant 6.

D. System Modes

It is worth noting that a single event (e.g., lidar failure) can
cause multiple tasks to switch modes (e.g., collision avoidance
and pedestrian detection). This has two important effects that

𝑣𝑣1,1

𝑣𝑣1,4

𝑣𝑣1,2

𝑣𝑣1,3

𝑣𝑣1,5

13

12

25 100

10

29

18

50

⟨6,10⟩

⟨2,12⟩

⟨5,25⟩

⟨1,10⟩

⟨10,50⟩𝑔𝑔1

𝑒𝑒1,1

𝑒𝑒1,2

𝑒𝑒1,3

𝑒𝑒1,4

𝑒𝑒1,5

𝑒𝑒1,6

𝑒𝑒1,7

𝑒𝑒1,8

Fig. 3: Sample Digraph Model

must be considered. First, when testing the schedulability of
a task in one mode it should not consider tasks not active in
that mode. Secondly, because the detection of the triggering
mechanism occurs in the HT of each task, this detection
can occur at different times in different tasks. This enables
the specification of the timing requirements of each task
transitioning need independent of each other. To consider these
effects we create system modes that group tasks that are active
at the same time and that react to the same transitioning events.
We discuss this in Section V.

Now that we have established the critical design features
for our mode transition protocol, we will discuss the mapping
of the mixed-trust tasks into the digraph scheduling model.

IV. MIXED-TRUST DIGRAPH SCHEDULING

In this section we present first, how the digraph model
allows us to accommodate the complex timing dependen-
cies between the GT and HT of a mixed-trust task in both
source and target modes along with the transitioning HT.
And secondly, the limitation of the digraph model and our
extensions to accommodate (1) both preemptive and non-
preemptive scheduling of GT and HT, respectively, (2) the
system-mode partitioning that disables tasks from one mode
when another is active, (3) intermediate deadlines to support
the HT activation, and (4) priority bands to accommodate
the HT’s higher-priorities. In this section, we present these
extensions. We also introduce a new approximation for low-
priority blocking. Based on these, a detailed modeling of
system modes will be discussed in Section V.

A. Digraph Model Background

We first introduce the basic digraph model as originally
presented in [22], with altered notation that is compatible
with the RT-MTC model notation used in this paper. The
authors in [22] describe a digraph taskset as tg1, g2, . . .u where
each task is represented by a directed graph gi “ pVi, Eiq
with a set of vertices Vi “ tvi,1, vi,2, . . .u and a set of
edges Ei “ tei,1, ei,2, . . .u. Each vertex is labelled as vi,k “
pCi,k, Di,kq with Ci,k representing the worst-case execution
time and Di,k the relative deadline. Each edge is labelled as
ei,k “ pvi,s, vi,t, Ti,kq where vi,s is the source vertex, vi,t is
the target vertex, and the Ti,k is the interarrival time between
two vertices. A vertex in the model encodes a type of execution
requirement of a job and its deadline, and each edge represent
an interarrival time between two types (or the same type, if

self loops are possible) of possible job instances. Figure 3
depicts a sample digraph with labelled vertices and edges and
annotations xCi,k, Di,ky for each vertex vi,k and Ti,k for each
edge ei,k.

A task graph in this model generates jobs by visiting each
vertex (generating a job with that vertex’s timing parameters),
then selects non-deterministically an outgoing vertex, waits
at least for the vertex’s interarrival time and moves to the
target vertex. We say that a task graph is schedulable using a
particular scheduling protocol if all possible jobs that the task
graph can generate can always finish by their corresponding
deadline even when experiencing the worst case interference
from all the other task graphs with higher priority.

The digraph scheduling model was originally defined for
the Earliest Deadline First scheduling policy [19] but was later
extended for fixed-priority scheduling [22]. The fixed-priority
model will be used as the basis of our analysis and we describe
it next.

1) Fixed-Priority Digraph Scheduling: In [22], the authors
evaluate schedulability with the help of a request function (rf)
for a path πj “ pvj,0, . . . , vj,lq of a task graph gj .

rfπj ptq :“ maxtepπ1jq|π
1
j is a prefix of πj and ppπ1jq ă tu,

(12)
where
‚ epπjq :“

řl
k“0 Cj,k and

‚ ppπjq :“
ř

tTj,k|ej,k “ pvj,r, vj,r`1, Tj,kq ^ 0 ď r ď
l ´ 1u.

For instance, for a path π “ pv1,1, v1,2, v1,3q from the
example in Figure 3 its rfπp50q “ 6 ` 5 ` 1 “ 12 with a
ppπq “ 13 ` 29 “ 42. Note that a smaller t, say 40, would
not allow the inclusion of v1,3 as part of the request giving
rfπp40q “ 11.

We say that a vertex vi,k is schedulable with an interference
set hppiq if and only if

@π̄ P Πphppiqq : Dt ď Di,k : Ci,k `
ÿ

gjPhppiq

rf
πpgjq

ptq ď t,

(13)
where Πpgiq is the set of paths of gi, ΠpΓq :“ Πpg1q ˆ . . .ˆ
ΠpgN q|Γ “ tg1, . . . , gNu denotes all combinations of paths
from all tasks, and π̄ “ pπpg1q, . . . , πpgN qq denotes a single
combination of paths in ΠpΓq.

This schedulability test can be applied directly to task
graphs that have graph-wide priorities by simply calculating
the interfering set hppiq for a graph gi and testing all its
vertices for schedulability.

2) Static Job-Type Priorities: The digraph model was ex-
tended in [22] to accommodate job-type priorities, i.e., where
each vertex can have its own priority, by using the busy
window concept. This busy window concept was needed to
take into account the fact that a high-priority job from a vertex
vi,k can delay a medium priority job from a vertex vj,r that
causes a preemption on a job from a vertex vi,k`1 (a successor
of vi,k). This delay shortens the interarrival time between two
consecutive jobs of the vertex vj,r increasing the interference

on the vi,k`1 job. To take into account this delay effect, Stigge
et al. [22] define the suffix request function (denoted rfsfx

π ptqq
that traverses previous nodes going backwards from the node
of interest. This is defined as:

rfsfx
π ptq :“ maxtepπ1q|π1 is suffix of π and ppπ1q ď tu. (14)

It is worth noting that (14) uses ď t to include computations
that arrive at the end of the time interval of duration t.

The following schedulability condition for vi,q can be
applied

@rfsfx
P RFsfx

pgirď vi,qs, vi,qq, r̄f P CRFpΓrď vi,qsq, x ď L :

Dt ď Di,q : rfsfx
pxq `

ÿ

gjPΓ

rfpgiqpx` tq ď x` t,

(15)
where this condition is quantified over all critical2 suffix
request functions (RFsfx) for gi which represent paths ending in
vi,q (captured with the notation rď vi,qs) and all combinations
of critical request functions (CRF) from all other tasks. This
is tested over all time interval durations x up to maximum
duration L. If in this test there is an interval of duration t
where all of the workload from the other task and this vertex
finish then the condition is satisfied. A bound on L can be
obtained by using the most abstract request function (mrf)
given in [22].

3) Non-Preemptive Digraphs: Non-preemptive scheduling
can be modeled in digraphs by first calculating the blocking
term due to lower-priority tasks that start executing before the
vertex of interest. This is captured by

Bplppiqq “ maxtCj,q|vj,q P gj , gj P lppiqu, (16)

where lppiq is the set of lower priority tasks. Then an inclusive
request function (to give preference to lower-priority tasks
when they arrive simultaneously with higher-priority — the
worst case) is defined as:

rf‚πptq :“ maxtepπ1q|π1 is prefix of π and ppπ1q ď tu, (17)

and the schedulability condition is modified to

@rfsfx
P RFsfx

pgi, vi,qq, r̄f P CRF‚phppIqq, x ď L :

Dt ď Di,q ´ Ci,q : Bplppiqq ` rfsfx
pxq ´ Ci,q`

ÿ

gjPhppiq

rfpgjqpx` tq ď x` t.
. (18)

It it worth noting that (18) basically calculates the starting
instant of the task and verifies that this instant leaves enough
time for Ci,q to finish by its deadline.

The non-preemptive scheduling analysis presented in [22]
was not for job-type priorities. Job type priorities are actually
needed to capture the different priorities of HT and GT. How-
ever, this is a straightforward extension where the execution
time of a vertex is considered to be zero if its priority is
lower than that of the vertex we are testing. This approach
was implemented in our extension.

2critical functions are defined in [22] but not discussed here for brevity.

B. Mixed-Preemption Digraphs

Having presented the digraph background, we next present
the extensions needed to accommodate our resilient mixed-
trust multi-modal model. The first challenge we address for
mixed-trust digraphs is the mixture of preemptive and non-
preemptive scheduling. To simplify the discussion, we use
the function χpvi,kq that returns true if the vertex is non-
preemptive and false otherwise.

The general strategy to enable mixed preemption is to
develop a conditional schedulability test where if the vertex of
interest is non-preemptive we calculate the starting time and
if not, we calculate the completion time.

1) Suffix Path Approximation: One of the big challenges
for digraph scheduling is the complexity of its algorithms. The
mixed-trust scheme can potentially bring additional complex-
ity that starts with the fact that the suffix path calculation needs
to accommodate the additional digraph nodes and transitions
of the mixed-trust task model (GT and HT). Hence, we decided
to start with a simpler over-approximation of the suffix path
calculation.

Let us first observe that the delay effect of the suffix path
can cause at most one additional task preemption from a
higher-priority vertex. This is the traditional carry-in effect of
a self-suspending task. Hence, we decided to take advantage
of previous results in this area [6] and replace the suffix
path calculation with a task-wide calculation of the additional
exposure to preemptions. This is captured by the maximum
jitter that an interfering task can have.

Jpgjq “ max
vj,qPVj

pDj,q ´ Cj,qq. (19)

This allows us to build a request function that does not require
the path suffix transversal.

We create a conditional request function based on (12) that
either includes computations that arrive at the end of the
interval t (if the vertex vi,k being tested is non-preemptive)
or excludes them (if the vertex is preemptive). We define

rf
vi,k
πj ptq :“ maxtepπ1jq|π

1
j is a prefix of πj and endpπ1j , vi,kqu,

(20)
where

endpπ, vi,kq “

#

ppπq ď t if χpvi,kq,
ppπq ă t otherwise.

(21)

We can calculate the maximum interfering interval (where
other tasks can interfere) for a vertex vi,k as the minimum
solution to (22)

MIpvi,kq “ P pvi,kq `
ÿ

gjPhppiq

rf
vi,k

πpgjq
pMIpvi,kq ` Jpgjqq,

(22)
where rfvi,k

πpgjq
is defined in a similar fashion to (13) but using

(20) instead of (12). In addition, P pvi,kq defines the pending
work that is conditionally defined as:

P pvi,kq “

#

Bplppiqq if χpvi,qq,
Ci,k otherwise,

(23)

and Npvi,kq is defined as the non-preemptible work that the

task is allowed to do once it starts to execute. This is defined
as:

Npvi,kq “

#

Ci,k if χpvi,kq,
0 otherwise.

(24)

We next create the schedulability condition as follows.

@π̄ P Πphppiqq : MIpvi,kq ď Di,k ´Npvi,kq. (25)

Note that (25) verifies that a vertex finishes before its
deadline if it is preemptible or starts Ci,k units before its
deadline if it is non-preemptible.

C. Mixed-Trust Digraph Mapping
Now that we have the basic building blocks to test schedu-

lability of a mixed-trust task with a digraph extension model,
we discuss the mapping of GTs and HTs of a mixed-trust task
to a digraph model and the transitioning HT.

Specifically, we will build a modal system using digraph in
three stages. First, we will create a uni-modal mixed-trust task
graph (UMMT) that models a mixed-trust task in one mode as
a digraph. Secondly, we will create a multi-modal mixed-trust
task graph (MMMT) that models modes with mixed-trust tasks
graphs that are active in different modes with a transitioning
graph that captures the execution of the transitioning HT
as explained in Section III. These two stages allow us to
evaluate the schedulability of tasks with the modal behavior
from Section III that forms the basis of our schedulability.
In the final stage, we build a system-level meta graph that
combines the MMMTs of all mixed-trust tasks and their
transitioning HTs and group them into system-level modes.
This stage is elaborated in the next section in order to describe
the model transformation required to verify schedulability of
system transitions.

Uni-Modal Mixed-Trust Task Graph (UMMT). A
UMMT µgi “ pVi, Eiq corresponding to mixed-trust task
µi “ pτi, κiq is built with a pair of vertices Vi “ tpvi,1 “
pCi,1, Di,1q, vi,2 “ pCi,2, Di,2qqu. The vertices vi,1 and vi,2
represent the GT τi “ pTi, Ei, Ciq and the HT κi “

pTi, Di, κCiq, respectively, with Ci,1 “ Ci, Ci,2 “ κCi,
Di,1 “ Ei and Di,2 “ Di ´ Ei. We use χpvi,jq to
tell if vi,j corresponds to a HT or not, i.e., χpvi,1q “ F
(false) and χpvi,2q “ T (true). µgi has three edges: Ei “
tei,1 “ pvi,1, vi,2, Ti,1q, ei,2 “ pvi,2, vi,1, Ti,2q, ei,3 “

pvi,1, vi,1, Ti,3qu with Ti,1 “ Ei, Ti,2 “ Ti´Ei, and Ti,3 “ Ti.
While in this mapping Ci, Ti, Di are the given parameters of
the task µi, Ei is calculated during the analysis process. We
will show how this is done with (27).

Multi-Modal Mixed-Trust Task Graph (MMMT). An
MMMT µ̂gm “ pGm,Rmq is composed of a set of mixed-
trust task graphs Gm “ tµg1, . . . , µgNu connected through
a set of transitioning task graphs Rm “ tgN`1 . . . , gN`Mu.
Each transitioning task graph gt P Rm has a single vertex
Vt “ tvt,1u and three edges Et “ tet,1, et,2, et,3u, where et,1
connects from the source GT vertex to the transitioning HT
one, et,2 is a self-loop, and et,3 is from the transitioning HT
to the target GT. Then, in gt, the parameters of vertices are
characterized by Vt “ tvt,1 “ pCt,1, Dt,1qu with Dt,1 “ Di,2

𝑣𝑣1,1𝑣𝑣1,2 𝑣𝑣3,1 𝑣𝑣2,2𝑣𝑣2,1

𝑣𝑣4,1

𝑒𝑒1,1

𝑒𝑒1,2

𝑒𝑒1,3

𝑒𝑒2,1

𝑒𝑒2,2𝑒𝑒2,3

𝑒𝑒3,1

𝑒𝑒3,2

𝑒𝑒3,3

𝑒𝑒4,2

𝑒𝑒4,1𝑒𝑒4,3

𝜇𝜇𝑔𝑔1 𝜇𝜇𝑔𝑔2

𝑔𝑔3

𝑔𝑔4

Fig. 4: Digraph µ̂g1 (MMMT)

𝑣1,1𝑣1,2

𝑣3,1

𝑣2,2𝑣2,1

𝑣4,1

𝑒1,1

𝑒1,2

𝑒1,3

𝑒2,1

𝑒2,2𝑒2,3

𝑒3,1

𝑒3,2

𝑒3,3

𝑒4,2

𝑒4,1

𝑒4,3

𝜇𝑔1 𝜇𝑔2
𝑔3

𝑔4

𝑣5,1𝑣5,2

𝑣7,1

𝑣6,2𝑣6,1

𝑣8,1

𝑒5,1

𝑒5,2

𝑒5,3

𝑒6,1

𝑒6,2𝑒6,3

𝑒7,1

𝑒7,2

𝑒7,3

𝑒8,2

𝑒8,1

𝑒8,3

𝜇𝑔5 𝜇𝑔6

𝑔7

𝑔8

𝑣1,1𝑣9,2

𝑒9,1

𝑒9,2

𝑒9,3

𝜇𝑔9

𝑣10,1𝑣10,2

𝑒10,1

𝑒10,2

𝑒10,3

𝜇𝑔10

ℳ1

ℳ2

𝒯2,1 𝒯1,2

ෞ𝜇𝑔1

ෞ𝜇𝑔2

Fig. 5: System Modes

and χpvt,1q “ T , and those of three edges by Et “ tet,1 “
pvi,1, vt,1, Tt,1q, et,2 “ pvt,1, vt,1, Tt,2q, et,3 “ pvt,1, vj,1, Tt,3u
where Tt,1 “ Ti ´ Ei ^ Tt,2 “ Ti ^ Tt,3 “ Ti ´ Ei
and vi,1 P Vi ^ vj,1 P Vj ^ µgi “ pVi, Eiq ^ µgj “

pVj , Ejq ^ µgi, µgj P Gm.
We also define srcpgtq “ vi,1 as the shorthand for the

source vertex of the transitioning graph and tgtpgtq “ vj,1
as the shorthand for the target vertex. Figure 4 depicts a
multi-modal mixed-trust task graph µ̂g1 “ pG1,R1q with
G1 “ tµg1, µg2u,R1 “ tg3, g4u. Thick circles on a vertex
indicates it is non-preemptive.

The mapping shown in Figure 4 allows us to calculate the
Ei parameter as follows. First, we verify the schedulability of
all non-preemptive nodes (corresponding to HTs) assuming the
other node’s (GTs) WCET is zero. This is possible because
in the mixed-trust model all HTs have higher priority than
GTs. That is, they are scheduled in a higher-priority band.
This also allows us to calculate the response time of each HT
vertex with:

Rpvi,kq “MIpvi,kq ` Ci,k, (26)

The Ei parameter is then calculated in a similar manner to [8]:

Ei “ Di ´Rpvi,kq. (27)

Finally, we verify the schedulability of the GT vertex to test
if they can finish by their corresponding Ei parameter.

𝑣1,1𝑣1,2

𝑣3,1

𝑣2,2𝑣2,1

𝑒1,2 𝑒2,1

𝑒2,2𝑒2,3

𝑒3,1

𝑒3,2

𝑒3,3

𝜇𝑔1 𝜇𝑔2

𝑔3

𝑣5,1𝑣5,2

𝑣7,1

𝑣6,2𝑣6,1

𝑒5,2 𝑒6,1

𝑒6,2𝑒6,3

𝑒7,1

𝑒7,2

𝑒7,3
𝜇𝑔5 𝜇𝑔6

𝑔7

𝑣1,1𝑣9,2

𝑒9,2
𝜇𝑔9

𝑣10,1𝑣10,2

𝑒10,1

𝑒10,2

𝑒10,3

𝜇𝑔10

ℳ1 ℳ2

𝒯1,2

Fig. 6: System Transition

In the next section, the calculation of the Ei parameter and
the system schedulability will be revisited once we introduce
systems modes.

V. MODELING SYSTEM MODES

In this section, we build the model that defines system
modes with multiple MMMTs and systems transitions that
allows these MMMTs to switch modes together. This model
is a meta-graph composed of graph tasks that are enabled in
different modes and graph edges and transitioning vertex that
are executed during the mode transition. Specifically, we define
a modal system S as

S “ pMG “ tµ̂g1, µ̂g2, . . .u,M “ tM1,M2, . . .u,

T “ tTi,j , Tr,s, . . .uq
(28)

where, given a set of MMMTs MG “ tµ̂gs “

pGs,Rsq, µ̂gt “ pGt,Rtq, . . .u, each mode Mi is built as
a set of UMMTs as Mi “ tµgk “ pVk, Ekq, µgl “

pVl, Elq, . . . |µgk P Gs, µgl P Gt, . . .u. Each transition
Ti,j between two modes Mi and Mj is defined as
the set of transitioning task graphs Ti,j “ tga “

pVa, Eaq, gb “ pVb, Ebq, . . . |ga P Rs, srcpgaq P Vk, gb P
Rt, srcpgbq P Vl, . . .u, and Mj “ tµgc “ pVc, Ecq, µgd “
pVd, Edq, . . . |µgc P Gs, tgtpgaq P Vc, µgd P Gt, tgtpgbq P
Vd, . . .u.

Figure 5 depicts an example of a system with two system
modes, M1 and M2, and two transitions, T1,2 and T2,1,
built with two multi-modal mixed-trust task graphs plus an
additional single-modal mixed-trust task graph in each mode.
The multi-modal task graphs µ̂g1 and µ̂g2 have identical
structure to the one presented in Figure 4.

It is important to note that a mixed-trust task graph can
belong to any number of modes. This allows us to classify
task graphs with respect to mode transitions as follows.

Given a transition Ts,t from a mode Ms to a mode Mt we
define four sets a mixed-trust task graph can belong to.

Definition 1. Os,t “ tµgi|µgi P Ms ´Mtu. These are the
old UMMTs that belong to the source mode but do not belong
to the target mode.

Definition 2. Ns,t “ tµgi|µgi P Mt ´Msu. These are the
new UMMTs that belong to the target mode but not to the
source mode.

Definition 3. Pps,t “ tµgi|µgi P Ms XMtu. These are the
persistent UMMTs that belong to both the source and the
target mode.

Definition 4. Cs,t “ tµ̂gi|Gi XMs ‰ H ^ Gi XMt ‰ Hu

These are the set of MMMTs that change mode.

To verify the schedulability of a modal system we need to
analyse the schedulability of each mode and of each transition.
A mode is analyzed by disabling all the vertices outside of
the mode and the edges that are either outside or have an end
outside the mode.

To analyze a transition we need to enable both modes
of a transition and disable some transitions in the source

mode that are not part of the possible mode transition path.
Specifically, the mode-triggering event (e.g., lidar failure) can
only be discovered at the beginning of the execution of a HT
as explained in Section III. This means that a task may be
starting to run the GT vertex when the mode-triggering event
occurs. This means that it will need to wait until it finished
executing its GT and the HT arrives to discover that it needs
to switch mode and starts executing the mode-transition HT.
This is in fact the worst case that we evaluate and is reflected
in Figure 6 where the GT self-loop edges are removed along
with the edges between the GTs and the HTs (except to or
from the transitioning HT).

It is worth noting that the edges of the tasks of the target
mode are all enabled when the modal transition starts. This
is because, it may so happen that one task may transition
much faster to the target mode than another and the edges of
the former may be traversed multiple times before the latter
finishes transitioning to the new mode. Similarly, new mixed-
trust tasks that do not have a counter part in the source mode
are assumed to start as soon as the transition is activated.

We now formalized the task-graph set transformation re-
quired to obtain the task-graph set to be analyzed during a
transition Ts,t. We call this the transitioning task-graph set
ST s.t. ST s.t calculated as:

ST s,t “ Os,t YNs,t Y Ps,t Y Cs,t (29)

where
Os,t “tµgi “ pVi, E iq|µgi “ pVi, Eiq P Os,t

^ E i “ Eiztpvi,1, vi,1, Ti,1q, pvi,1, vi,2, Ti,2quu
(30)

Cs,t “tµgi “ pVi, E iq|µgi “ pVi, Eiq P Gx XMs

^ µ̂gx “ pGx,Rxq P Cs,t
^ E i “ Eiztpvi,1, vi,1, Ti,1q, pvi,1, vi,2, Ti,2quu
Y tGy XMt|µ̂gy “ pGy,Ryq P Cs,tu

(31)

Figure 6 depicts ST 1,2 of the system presented in Figure 5.
For convenience we use the shorthand function ST pTs,tq to
obtain the transitioning task graph from a transition graph
Ts,t. The definitions presented in this section will be used to
calculate the Ei parameter and test the general schedulability
of our modal system in Sections V-A and V-B respectively.

A. Mode-Aware E Calculation

In order to calculate the E parameters we first focus on all
the hypertasks during the different modes and the different
transitions assuming that the guest tasks do not run. That is,
first we test all the modes, then all the transitions only consid-
ering the HT. We will keep a variable RSqi,x for each mode or
transition q (remember a vertex may belong to multiple modes
and transitions). Each of these test will proceed as follows:

1) Assume that each vi,x|χpvi,xq “ T corresponding to a
HT has Di to complete (including transitioning nodes if
evaluating transition)

2) Assign deadline monotonic priorities to all these vertices
3) Calculate the response time Ri,x of each vertex.

4) if Ri,x ď Di then RSqi,x “ RSqi,x Y tRi,xu otherwise
we return unschedulable.

5) Then we calculate Ei,x “ Di ´maxRSqi,x.
6) Finally, we select the minimum between the Ei,x of the

vertex in the source mode representing the HT Ei,1 and
the Ei,y of the transitioning vertex (see Fig 6) to be used
for both the source mode HT and the transitioning HT
in order to honor the transition semantics presented in
Section III.

Once the schedulability of the HT is verified and the Ei
parameters are calculated then we integrate the schedulability
of the system as presented next.

Algorithm 1: IsSchedulable(S)
@RSi,x ÐH ;
for Mi PM do

SetLayeredDMPrior(tvk,t P Vk|µgk “ pVk, Ekq PMiu) ;
for vk,t P Vk|χpvk,tq ^ µgk “ pVk, Ekq PMi do

if Rpvk,tq ď Dk,t then
RSk,t Ð RSk,t Y tRpvk,tqu ;

else
return FALSE ;

end
end

end
for Ts,t P T do

SetLayaredDMPrior(tvk,t P Vk|µgk “ pVk, Ekq P ST s,tu) ;
for vk,t P Vk|χpvk,tq ^ µgk “ pVk, Ekq P ST s,t do

if Rpvk,tq ď Dk,t then
RSk,t Ð RSk,t Y tRpvk,tq ;

else
return FALSE ;

end
end

end
for vk,t P allvertexpSq do

Ek,t Ð Dk,t ´maxpRSk,tq ;
end
for µ̂gi “ pGi,Riq PMG do

for vr,2 P Vr, vt,1 P Vt|µgr “ pVr, Erq P Gi ^ gt “
pVt, Etq P R^ µgr “ srcpgtq do
Er,2 “ maxpEr,2, Et,1q ;
Et,1 “ maxpEr,2, Et,1q ;

end
end
for Mi PM do

SetLayeredDMPrior(tvk,t P Vk|µgk “ pVk, Ekq PMiu) ;
for vk,t P Vk|µgk “ pVk, Ekq PMi do

if Rpvk,tq ą Dk,t then
return FALSE ;

end
end

end
for Ts,t P T do

SetLayeredDMPrior(tvk,t P Vk|µgk “ pVk, Ekq P ST s,tu) ;
for vk,t P Vk|µgk “ pVk, Ekq P ST s,t do

if Rpvk,tq ą Dk,t then
return FALSE ;

end
end

end
return TRUE ;

B. Modal Schedulability

We consider that a modal mixed-trust digraph system is
schedulable if (1) all of its modes are schedulable and (2) all

its transitions are schedulable.
Mode schedulabilty is performed applying the new mixed-

trust digraph schedulability presented in Section IV while
filtering the vertex that do not belong to the current mode.

Transitioning graph schedulability is performed in a similar
fashion to the modes. It is worth reminding the reader that
the graph will include parts of the source and target mode
as presented in Figure 6. Algorithm 1 presents the overall
algorithm. In this algorithm SetLayeredDMPrio() assigns
deadline monotonic priorities in a layered fashion, with all
χpvi,jq “ T (HT) nodes with higher priority than χpvr,sq “ F
(GT) nodes.

VI. EVALUATION

It is tempting to believe that since our algorithm that
performs schedulability testing uses enumeration of paths, the
algorithm would have high time-complexity and hence its
running time would be so large that it cannot be used on
realistically sized systems. Note, however, that we consider a
run-time model where mode change must finish before a new
mode change can begin. This reduces the number of possible
paths to explore. Indeed, we will see, in this section, that the
running time of our schedulability test is reasonable.

In order to evaluate the performance of our algorithm we
conduct five experiments to measure both the schedulability
success rate (percentage of tasksets successfully scheduled)
and the time it takes to execute the schedulability. While there
are no other mixed-trust scheduling schemes for modal sys-
tems, we wanted to provide a sense of the schedulability loss
if one only takes the worst-case parameters across all modes
and transitions and use the original mixed-trust scheduling [8].
This is presented in Figure 7b.

The tasksets are generated starting with the following de-
fault parameters: utilization of 70%, 10 tasks per mode3, two
modes, minimum period of 100, maximum period of 1000
and a utilization of the HT of 10% of the GT. Then these
parameters are modified according to each of the experiments.
The tasksets are generated by first generating at random the
period of the task and then calculating their Ci and κCi
by multiplying the period by the utilization allocated to the
GT and the HT respectively. Each point in the plots is the
average of 1000 experiments. The analysis algorithms were
implemented in Java running on Intel i7-1065G7 at 1.3GHz
(max-turbo: 3.9GHz) with 32GB RAM.

Figure 7a shows the success rate as a function of the
increasing degradation depth. This degradation is calculated
as a random enlargement of the period in the previous mode
and recalculating the computation time as explained above. As
you can observe in the plot there is basically no effect of the
number of degradation modes to the schedulability. However,
there is an effect in the analysis execution time (as expected)
which is presented in Figure 8a. This figure in fact presents a
super-linear tendency.

3This number is motivated by the number of tasks used in recent au-
tonomous vehicle research; see [24] for example.

Figure 7b shows the success rate as a function of the increas-
ing utilization. As expected we can see that the schedulability
start to decrease between 60 and 70%. The average execution
time of these experiments is presented in Figure 8b. In this
case, the execution time starts decreasing as the utilization
grows due to the fact that we need to traverse shorter paths
to explore longer interference. The slight bump between 0.4
and 0.7 can be explained by the fact that at lower utilizations
the response time over which we need to explore paths is
small, then transitions into a longer paths for tasks that are
still schedulable, and finally transitioning to shorter paths that
lead to a large number of unschedulable tasks. As expected,
the original mixed-trust scheduling scheme degrades rapidly
after only 40% utilization down to zero at 60%.

Figure 7c shows the success rate as a function of the increas-
ing number of tasks per mode. In this case the schedulability
decreases a bit initially and stays at around 50%. This is
a lower schedulable utilization than the regular RM but is
expected due to the 10% default utlization of HTs. The average
execution time of these experiments is presented in Figure 8c.
In this case the execution time increases with the number
of tasks per mode and because we do not see a decrease in
schedulability beyond 50% even for the larger number of tasks
per mode, the execution time does not decrease.

Figure 7d shows the success rate as a function of the
increasing period ratio (between minimum and maximum
period). We can see that when the periods are very similar
there is a lot of interference that later improves with a larger
ratio but decreases again due to the larger effect of the
preemption of large computation of HT with long period over
GT of shorter period. The average execution time of these
experiments is presented in Figure 8d. In this case, even though
we see a decrease in schedulability with large period ratios,
the algorithm still needs to evaluate large paths to determine
schedulability.

Figure 7e shows the success rate as a function of the increas-
ing percentage of HT utilization. Clearly, as the utilization of
HTs increases their preemption on GTs and other HTs (due to
non-preemptive nature) decreases the utilization sharply. The
average execution time of these experiments is presented in
Figure 8e. In this case, we see a decrease in execution time of
the analysis that matches the decrease in schedulability given
that with a larger κCi

Ci
the schedulability can be resolved with

much shorter paths.

VII. IMPLEMENTATION

We implemented our resilient mixed-trust framework on a
Raspberry Pi 3-B board running Linux raspberrypi 4.4.50-
v7+ and the uber-XMHF hypervisor (https://uberspark.org/).
In order to preserve trust during mode changes, our implemen-
tation locates the mode change logic within the trusted HV.
The modes are implemented as an array of CPU reservations
keeping track of the index of the current mode. When the
mode change logic in the HV decides to change modes, the
new mode index is sent to the VM as the return code of
the guestjobstart() hypercall. This hypercall is used to

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10

Su
cc

e
ss

 R
at

e

Degradatioin Depth

(a) Degrad. Depth

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Su
cc

e
ss

 R
at

e

Utilization

Ours

MTS

(b) Utilization

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

Su
cc

e
ss

 R
at

e

Tasks per Mode

(c) Tasks Per Mode

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 8 16 32 64

Su
cc

e
ss

 R
at

e

Period Ratio

(d) Period Ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5

Su
cc

e
ss

 R
at

e

kC/C

(e) HT Utilization

Fig. 7: Success Rate

0

50

100

150

200

250

3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Degradation Depth

(a) Degrad. Depth

0

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ex
ce

u
ti

o
n

 T
im

e
(m

s)

Utilization

(b) Utilization

0

2

4

6

8

2 3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Tasks Per Modes

(c) Tasks Per Mode

0

10

20

30

40

2 4 8 16 32 64
Ex

e
cu

ti
o

n
 T

im
e

 (
m

s)
Period Ratio

(d) Period Ratio

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

kC/C

(e) HT Utilization

Fig. 8: Analysis Execution Time

inform the HV when the reservation periodic activation starts.
This hypercall is used to check whether or not the previous
guest job has completed or is expected to continue running
during the current activation. If it continues to run, the HV
then will block the output to prevent the output from a job
from a previous period and execute the HT to compensate
for it. It is worth noting that using the guestjobstart()
allows us to avoid the use of an upcall from the HV into the
VM.

The mode-change protocol implementation is depicted in
Figure 9. The figure shows a sequence diagram with the mode
change messages. This sequence starts with the HV timeout.
Then the mode changer (not shown separately) within the HV
detects that it needs to change the mode. This then create a
reprogramming of the timers with the first period timer of the
new mode. Then it can either execute the HT of the new mode
or the last execution of the HT of the old mode. The execution
of the new or old HT is an option in the implementation that
allows us to capture the need to quickly react to a (e.g., sensor)
failure, or detect that the transitioning mode has completed
its corrective action (e.g., has reduced the speed to 10 m/s
in the Lidar failure of Section III-A) with its last execution.
Then, when the kernel periodic timer elapses, and call the
guestjobstart() hypercall returning the new mode, a
mode-change signal is sent to the application before waking
it up and programming the period and budget timers with the

Task1 Kernel
Kernel
Timer

HV
HV

Timer

VM HV
Hyper
Task1

mode_change_signal()

mode_change(mode)
start_of_period()

wakeup()

mode=guestjobstart()

create_timer(budget[mode])

timeout(period)

create_timer(period[mode])

create_timer(first_period[mode])

timeout(regular_period)

hypertask[mode]()

Fig. 9: Mode Change Protocol Implementation

Action Average Worst-Case
HV mode change 5,985 12,211
VM mode change 19,578 22,894
Hypercall 11 14

TABLE I: Mode Change Overhead Execution Time (ns)

new mode parameters.
We measured the implementation overhead in the HV and

kernel module mode change routines and the hypercall to
communicate the mode change. The results are presented in
Table I the figure is the average and worst-case of 100 samples.

We measured the implementation overhead of (i)
the mode_change() function in the HV, (ii) the
mode_change() routing in the kernel module and
(iii) the guestjobstart() hypercall that obtains the new
mode.

Figure 10 shows a trace of a task reconstructed from
timestamps collected during execution. The task starts with
a period of 1 sec (with execution time of 10ms) repeating for
four periods at zero, one, two, and three secs. Then the task
switches to one period of 4 sec and then repeats the four-one
pattern a second time.

VIII. RELATED WORK

In [8] de Niz et al. developed the mixed-trust computing
framework which allows a component to be designed with
trusted and untrusted components such that they are enforced
from both logical and timing perspectives. Unfortunately,
this framework neither considered degraded modes nor the
expressiveness of the digraph task model.

Mixed-criticality scheduling [7] allows designers to specify
different assurance levels for different tasks and also specify
possible behaviors of a task with different parameters. In [10]
de Niz and Phan presented a multi-modal mixed-criticality
scheduling scheme on multiprocessors. Unfortunately, these
works do not consider the need to protect trusted components
from untrusted ones.

Stigge et al. [19] introduced the digraph task model for
single-core scheduling with EDF. The authors provided a
schedulability test based on an abstraction of paths, dynamic
programming, and path dominance relations. In [21] Stigge
and Yi presented a fixed-priority schedulability analysis for
diagraph on unicore showing that the exact schedulability

0 1 1
0
0

1
0
1

2
0
0

2
0
1

3
0
0

3
0
1

7
0
0

7
0
1

8
0
0

8
0
1

9
0
0

9
0
1

1
0
0
0

1
0
0
1

1
4
0
0

1
4
0
1

Fig. 10: Mode Switch Trace (10’s of ms)

analysis is co-NP-hard. Stigge and Yi [22] generalized the
request function overapproximation presented in [20] that
works also for non-preemptive tasksets and for the case that
the priority of a job is specified by its corresponding node.
Unfortunately, this does not address mixtures of preemptive
and non-preemptive jobs nor system modes. Abdullah et al.
[14] studied a digraph fixed-priority scheduling on single
core with mixture of preemptive and non-preemptive vertices.
Unfortunately, they do not consider same-task vertices with
different priorities or system modes.

Mode change for periodic and sporadic tasks on a sin-
gle processor has been studied for fixed-priority preemptive
scheduling [16], [15] and EDF [4]. Ekberg and Yi [11]
studied EDF scheduling of digraph tasks scheduled on a single
processor. They considered a model for mixed criticality and
this was achieved with mode change. However, all tasks make
the mode switch simultaneously by replacing old with new
parameters. This solution cannot capture our needs for fixed-
priority, and mixed-preemption.

Simplex [18] is an architecture comprising a complex con-
troller, a simple controller, and two sets of states. The first set
describes safe states; the second set describes when there is a
need to transition between controllers. The complex controller
is allowed to operate when the plant is in the second set. If
the plant leaves this set, then the simple controller takes over.
With this architecture, the complex controller can be optimized
for performance and does not need to be verified; the simple
controller, however, is verified to make sure that the plant is
always in a safe state. One can think of the simple controller in
Simplex as somewhat analogous to our HT. Other frameworks
(e.g., [2], [3]) mitigate the impact of attackers by rebooting,
assuming that attacks do not happen instantaneously, but do
not protect against bugs in unverified code.

IX. CONCLUSIONS

In this paper we present a new scheduling model for resilient
real-time mixed trust systems. This model extends the previous
Real-Time Mixed-Trust Computing framework RT-MTC to be
able to model degradation modes that had been required by
autonomous vehicles over the years. The RT-MTC uses verified
enforcers to monitor the output of a system and replaces it
with a safe one if the output is deemed unsafe or is not
produced on time. The extended model presented in this
paper uses the digraph scheduling model as a base line but
extends it in four critical ways: (1) it creates extensions for
the mixed-preemption scheduling required by RT-MTC, (2)
it enables priority bands in order to separate trusted and
untrusted components, (3) it uses these bands to calculate
intermediate deadlines used by the RT-MTC framework in
the scheduling of the trusted components, and (4) it defines
system mode semantics to obtain two desirable properties
of our schedulability analysis: low pessimism and low time-
complexity. We evaluated our schedulability algorithm with
experiments that vary different system parameters concluding
that while there is room for optimization the algorithm is
reasonably efficient (e.g., even for a degradation depth of

10). This is explained by the fact that at any given time,
the algorithm only needs to analyze one transition, because
in our model transitions are required to be completed before
another is enabled. We also discussed our implementation
on Raspberry Pi. The new model presented here allows the
construction of resilient autonomous systems with provable
guarantees protected by verified enforcers within the RT-MTC

framework and, more importantly, preserve these guarantees
even across failure-trigger mode changes.

X. ACKNOWLEDGMENT

Copyright 2021 IEEE. This material is based upon work
funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon Uni-
versity for the operation of the Software Engineering Institute,
a federally funded research and development center.
References herein to any specific commercial product, process,
or service by trade name, trade mark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by Carnegie Mellon University
or its Software Engineering Institute.
Carnegie Mellon R© is registered in the U.S. Patent and Trade-
mark Office by Carnegie Mellon University.
DM21-0739

REFERENCES

[1] RTCA Special Committee 205. Formal methods supplement to DO-
178C and DO-278A, 2011.

[2] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin
Mohan, and Marco Caccamo. Guaranteed physical security with
restart-based design for cyber-physical systems. In Proceedings
of the 9th ACM/IEEE International Conference on Cyber-Physical
Systems, ICCPS ’18, pages 10–21, Piscataway, NJ, USA, 2018.
IEEE Press. URL: https://doi.org/10.1109/ICCPS.2018.00010,
http://dx.doi.org/10.1109/ICCPS.2018.00010
doi:10.1109/ICCPS.2018.00010.

[3] Fardin Abdi, Rohan Tabish, Matthias Rungger, Majid Zamani,
and Marco Caccamo. Application and system-level software
fault tolerance through full system restarts. In Proceedings of
the 8th International Conference on Cyber-Physical Systems,
ICCPS ’17, pages 197–206, New York, NY, USA, 2017.
ACM. URL: http://doi.acm.org/10.1145/3055004.3055012,
http://dx.doi.org/10.1145/3055004.3055012
doi:10.1145/3055004.3055012.

[4] B. Andersson. Uniprocessor EDF scheduling with mode change. In
OPODIS, 2008.

[5] B. Andersson, S. Chaki, and D. de Niz. Combining symbolic runtime
enforcers for cyber-physical systems. In RV, 2017.

[6] Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang,
Björn Brandenburg, Konstantinos Bletsas, Cong Liu, Pascal Richard,
Frédéric Ridouard, Neil Audsley, et al. Many suspensions, many
problems: a review of self-suspending tasks in real-time systems. Real-
Time Systems, 55(1):144–207, 2019.

[7] R. Davis and A. Burns. Mixed-criticality systems—a review.
In Technical Report, University of York, Available at https://www-
users.cs.york.ac.uk/burns/review.pdf, 2019.

[8] D. de Niz, B. Andersson, M. Klein, J. Lehoczky, A. Vasudevan,
H. Kim, and G. Moreno. Mixed-trust computing for real-time sys-
tems. In 2019 IEEE 25th International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA),
pages 1–11, Aug 2019. http://dx.doi.org/10.1109/RTCSA.2019.8864566
doi:10.1109/RTCSA.2019.8864566.

[9] D. de Niz, B. Andersson, and G. Moreno. Safety enforcement for the
verification of autonomous systems. In Proceedings of SPIE, 2018.

[10] Dionisio de Niz and Linh T. X. Phan. Partitioned scheduling of
multi-modal mixed-criticality real-time systems on multiprocessor
platforms. In 20th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2014, Berlin, Germany,
April 15-17, 2014, pages 111–122. IEEE Computer Society,
2014. URL: https://doi.org/10.1109/RTAS.2014.6925995,
http://dx.doi.org/10.1109/RTAS.2014.6925995
doi:10.1109/RTAS.2014.6925995.

[11] P. Ekberg and W. Yi. Schedulability analysis of a graph-based task model
formixed-criticality systems. Real-Time Systems Journal, 52:1–37, 2018.

[12] Daimler et al. Safety First for Automated Driving.
https://www.daimler.com/documents/innovation/other/safety-first-
for-automated-driving.pdf, 2019.

[13] ISO. ISO 26262 Road Vehicle Functional Safety , 2018.
[14] M. Mohaqeqi J. Abdullah, G. Dai and W. Yi. Schedulability analysis and

software synthesis for graph-based task models with resource sharing. In
2018 24th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2018.

[15] A. Burns K. Tindell and A. J. Wellings. Mode changes in priority pre-
emptively scheduled systems. In RTSS, 1992.

[16] J. P. Lehoczky K. Ramamritham L. Sha, R. Rajkumar. Mode change
protocols for priority-driven preemptive scheduling. Journal of Real-
Time Systems, 1989.

[17] Special C. of RTCA. DO-178C, software considerations in airborne
systems and equipment certification, 2011.

[18] L. Sha. Using simplicity to control complexity. IEEE Software, 2001.
[19] M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time task

model. In 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 71–80, 2011.

[20] M. Stigge and W. Yi. Combinatorial abstraction refinement for feasibility
analysis. In 2013 IEEE 34th Real-Time Systems Symposium, 2012.

[21] M. Stigge and W. Yi. Hardness results for static priority real-time
scheduling. In 2012 24th Euromicro Conference on Real-Time Systems,
2012.

[22] M. Stigge and W. Yi. Combinatorial abstraction refinement for feasibility
analysis of static priorities. Real-Time Systems Journal, 51:639–674,
2015.

[23] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. überspark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[24] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and
Yuhao Zhu. Building the computing system for autonomous
micromobility vehicles: Design constraints and architectural
optimizations. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1067–
1081, 2020. http://dx.doi.org/10.1109/MICRO50266.2020.00089
doi:10.1109/MICRO50266.2020.00089.

