
AegisDNN: Dependable and 
Timely Execution of DNN Tasks 

with SGX 

Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi and Hyoseung Kim

RTSS 2021

1



Introduction

• Rising usage of emerging DNN applications in safety-critical systems.

Autonomous-driving Vehicles Robotics Defense
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Introduction

• Erroneous outputs in such systems can have catastrophic consequences.
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Introduction

• Late outputs in such systems are also not acceptable.
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Introduction

• To ensure the system function and safety, we need DNN execution:

• “Dependable” against fault-injection attacks

• “Timely” against task deadlines

• We propose AegisDNN to address dependability and timeliness
simultaneously.
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Related Work

• Modern DNN frameworks, e.g., PyTorch, TensorFlow, and Caffe 
• do not provide any run-time protection against fault-injection attacks, and
• do not provide real-time performance guarantee

• Prior work provides 
• either real-time performance guarantee, e.g., DART[1], 
• or privacy protection using Intel SGX against malicious attackers on cloud 

systems, e.g., Serdab[2], Privado[3], Occlumency[4].

6

[1] Xiang et al. Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference. (RTSS, 2019) 
[2] Elgamal et al. Serdab: An IoT framework for partitioning neural networks computation across multiple enclaves.
[3] Grover el al. Privado: Practical and secure DNN inference with enclaves. 
[4] Lee et al. Occlumency: Privacy-preserving remote deep-learning inference using sgx. (MobiCom, 2019) 



Intel SGX

Intel SGX is a hardware-assisted security extension.

- It provides a software abstraction, called enclave.

- Code and data contents in the enclave are protected.
- Encrypted and stored in the Processor Reserved Memory (PRM) (max 128MB)

- Execution model: Similar to GPU execution model(H2D, Kernel, D2H)
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Challenges

• Significant Performance Overhead
• ~5x to ~40x slowdown 
• due to extra memory copy, data encryption, and CPU-only execution

• Memory Thrashing Issue
• Caused by small SGX memory
• Race condition of Page Swapping
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Slowdown Memory thrashing: Unpredictable WCET 

3.7x

120x



Contributions

• AegisDNN: Dependable and Timely Execution of DNN Tasks with SGX

• Key Contributions:
• The first work aiming at dependable and timely DNN inference execution 

simultaneously

• Leverage SGX for protecting only the critical parts of real-time DNN tasks 
against fault injection attacks

• Designed amenable to formal real-time schedulability analysis
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System Model
• System is equipped with a GPU and a Intel SGX Enclave.

• Explicit data transmission is required between enclave and main 
memory.

• Both enclave and GPU are treated as mutual exclusive resources, we 
use lock-base synchronization to solve the unpredictability of 
memory thrashing challenge.

• SGX page swapping is enabled to support large DNN models.
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Task Model

• Sporadic task model
• Each task uses one DNN model
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General Task Model

Layer Execution Model

WCET,  min inter-arrival time,  deadline,          # of layers,         DNN model used 



Task Model

12

Ord = 

H2D memcpy,     Kernel execution,      D2H memcpy,       misc. CPU operations



Threat and Fault Model

• Dependability: the capability to ensure the integrity of output generated 
by real-time DNN tasks in the presence of malicious fault injection attacks 

• Trusted: CPU chip package, SGX, enclaves.

• Untrusted: 
• Off-chip hardware, e.g., GPUs, DRAM, memory bus
• Software components running out of enclave are all untrusted, including OS, device 

drivers, middleware, libraries and etc.

• The degree of faults is quantified by Bit Error Rate (BER)
• # of fault bits / # of total bits
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Threat and Fault Model 

• Only consider stealthy attacks. 

• The faults can be induced by either physical attacks or software attacks.

• Silent Data Corruption (SDC) probability as a metric to evaluate the 
dependability of the system.
• SDC + Dependability = 1

• SDC probability: the probability of compromised DNN output
• TOP-1
• E.g., 1% SDC probability means 1 out of 100 outputs is compromised and generate 

different TOP-1 result from its fault-free execution
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AegisDNN – Overview
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DNN Layer-wise Profiler 

• WCET Profile 
• SDC Profile – SDCIn & SDCweight

16

AlexNet layer-wise profile 

Similar Slowdown, much higher SDC
-> Better to protect layer 10

Similar Slowdown, much higher SDC
-> Better to protect layer 19



What Layers to Protect?
• SDC probability of a model if protecting a combination of layers? 
• Can achieve dependability requirement?
• Naïve solution: Run fault-injection and estimate the SDC probability for all 

the possible protection methods 
• Complexity: Exponential (2^number of layers)

• Can we guarantee the schedulability if protecting a combination 
layers?
• Real-time schedulability analysis
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Dependable

Timely



Predicting SDC Probability

• ML Approach: Linear Regression
• Key Idea:

• Each layer has a linear contribution to the overall SDC probability when protecting a 
combination of layers

• Steps:
• Step 1: Uniformly-distributed training sample 
• Step 2: Train the Linear Regression Model
• Step 3: Generate Comprehensive SDC profile
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Predicting SDC Probability
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11This is an estimate based on the speed of progress on our tested platform. 

ML prediction accuracy 

Time required for 
generating the SDC 

profile

Cross-validation and Ground-truth Validation

Significant Time Saving



What Layers to Protect?
• SDC probability of a model if we protect a combination of layers? 
• Can achieve dependability requirement?
• Naïve solution: Run fault-injection and estimate the SDC probability for all 

the possible protection methods 
• Complexity: Exponential (2^number of layers)

• ML Solution: Linear Regression

• Can we guarantee the schedulability if protecting a combination of 
layers?
• Real-time Schedulability Analysis

20

Dependable

Timely



Schedulability Conditions

• Soft real-time systems: LST ->

• Hard real-time systems: fixed-priority scheduling:
• Mutual exclusive device
• MPCP 

21

Timely?



Finding Layer Protection Configurations

• Known: for each combination of protected layers (i.e., layer protection config)
• Comprehensive SDC profile -> whether dependable?
• Comprehensive sched analysis based on WCET profile -> whether timely?

• Decide: Which combination of layers to protect?

• Goal: Max dependability while satisfying schedulability requirement

• Exhaustive Search
• Go through each combination for each task
• Exponential Complexity!
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Finding Layer Protection Configurations

• We propose a Dynamic-Programming (DP) based algorithm
• Polynomial Complexity

• How it works?    
• Minimize utilization need for each task (DP)
• Maximize dependability using available system resource
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Finding Layer Protection Configurations
• How it works?    
• Minimize utilization need for each task (DP)
• Maximize dependability using available system resource

• UD[i,j,k] -> Min utilization while protecting up to k continuous
subsequence from layer i to layer j and meeting the dependability 
requirement D.

• We use DP to calculate the min required utilization for each task in
the taskset. 
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Finding Layer Protection Configurations
• How it works?    
• Minimize utilization need for each task (DP)
• Maximize dependability using available system resource
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- STEP1: 
- Compute all the U for all tasks in the taskset
- Given dependability requirement D, we check 

whether taskset is feasible

- STEP2: 
- If not feasible -> no solution available
- If feasible -> find the maximum system dependability 

while taskset is still feasible 



Evaluation
• Hardware Specs:

• Intel 7700K Quad-core, with SGX enabled
• 16GB RAM
• Maximum 128 MB of encrypted SGX memory
• RTX 2080 Super 

• DNN Models: ResNet-18, AlexNet, PilotNet, LeNet

• Attacks Considered:
• Random-fault-injection (RANFI) from TensorFI1 and Ares2 (FP models)
• Target-fault-injection (TFI) from BinFI3 (FP models)
• Bit-flip attack (BFA) with progressive bit search4 (on quantized INT8 models)
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[1] Z. Chen et al. TensorFI: A Flexible Fault Injection Framework for TensorFlow Applications. (ISSRE, 2020) 
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Integrated System Evaluation

27

RANFI & TFI BFA



Integrated System Evaluation – Soft Real-time

28

QoS: Percentage of 
jobs finished both 

timely and 
dependably

AegisDNN meets
Dependability requirement 
and dominates other 
approaches



Integrated System Evaluation – Soft Real-time
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QoS: Percentage of 
jobs finished both 

timely and 
dependably

AegisDNN meets
Dependability requirement 
and dominates other 
approaches



Integrated System Evaluation – Hard Real-time
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We found the taskset 1 could not be 
used with hard real-time constraints 
even if we lower the dependability 

requirements 
(probably due to the analytical 

pessimism)
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Integrated System Evaluation – Hard Real-time
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AegisDNN was able to 
guarantee the hard real-
time constraints

Our hard real-time 
schedulability analysis 
can reject unsafe 
tasksets

AegisDNN meets
Dependability requirement 
and dominates other 
approaches



Conclusion
• We presented AegisDNN, a DNN inference framework for timely and dependable execution with 

SGX. 

• We discussed the related work and challenges of using SGX.

• We solve the challenges by proposing AegisDNN: 
• layer-wise WCET and SDC profiling mechanisms 
• ML-based SDC prediction method
• DP-based configuration-finding algorithm
• Schedulability analysis

• We have implemented and evaluated against several state-of-the-art DNN fault-injection attacks. 

• Experimental results indicate AegisDNN dominates the other approaches in many aspects, 
including response time, throughput, dependability, and QoS under both soft and hard real-time
scenarios. 
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