
AegisDNN: Dependable and
Timely Execution of DNN Tasks

with SGX

Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi and Hyoseung Kim

RTSS 2021

1

Introduction

• Rising usage of emerging DNN applications in safety-critical systems.

Autonomous-driving Vehicles Robotics Defense

2

Introduction

• Erroneous outputs in such systems can have catastrophic consequences.

3

Introduction

• Late outputs in such systems are also not acceptable.

4

Introduction

• To ensure the system function and safety, we need DNN execution:

• “Dependable” against fault-injection attacks

• “Timely” against task deadlines

• We propose AegisDNN to address dependability and timeliness
simultaneously.

5

Related Work

• Modern DNN frameworks, e.g., PyTorch, TensorFlow, and Caffe
• do not provide any run-time protection against fault-injection attacks, and
• do not provide real-time performance guarantee

• Prior work provides
• either real-time performance guarantee, e.g., DART[1],
• or privacy protection using Intel SGX against malicious attackers on cloud

systems, e.g., Serdab[2], Privado[3], Occlumency[4].

6

[1] Xiang et al. Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference. (RTSS, 2019)
[2] Elgamal et al. Serdab: An IoT framework for partitioning neural networks computation across multiple enclaves.
[3] Grover el al. Privado: Practical and secure DNN inference with enclaves.
[4] Lee et al. Occlumency: Privacy-preserving remote deep-learning inference using sgx. (MobiCom, 2019)

Intel SGX

Intel SGX is a hardware-assisted security extension.

- It provides a software abstraction, called enclave.

- Code and data contents in the enclave are protected.
- Encrypted and stored in the Processor Reserved Memory (PRM) (max 128MB)

- Execution model: Similar to GPU execution model(H2D, Kernel, D2H)

7

Challenges

• Significant Performance Overhead
• ~5x to ~40x slowdown
• due to extra memory copy, data encryption, and CPU-only execution

• Memory Thrashing Issue
• Caused by small SGX memory
• Race condition of Page Swapping

8

Slowdown Memory thrashing: Unpredictable WCET

3.7x

120x

Contributions

• AegisDNN: Dependable and Timely Execution of DNN Tasks with SGX

• Key Contributions:
• The first work aiming at dependable and timely DNN inference execution

simultaneously

• Leverage SGX for protecting only the critical parts of real-time DNN tasks
against fault injection attacks

• Designed amenable to formal real-time schedulability analysis

9

System Model
• System is equipped with a GPU and a Intel SGX Enclave.

• Explicit data transmission is required between enclave and main
memory.

• Both enclave and GPU are treated as mutual exclusive resources, we
use lock-base synchronization to solve the unpredictability of
memory thrashing challenge.

• SGX page swapping is enabled to support large DNN models.

10

Task Model

• Sporadic task model
• Each task uses one DNN model

11

General Task Model

Layer Execution Model

WCET, min inter-arrival time, deadline, # of layers, DNN model used

Task Model

12

Ord =

H2D memcpy, Kernel execution, D2H memcpy, misc. CPU operations

Threat and Fault Model

• Dependability: the capability to ensure the integrity of output generated
by real-time DNN tasks in the presence of malicious fault injection attacks

• Trusted: CPU chip package, SGX, enclaves.

• Untrusted:
• Off-chip hardware, e.g., GPUs, DRAM, memory bus
• Software components running out of enclave are all untrusted, including OS, device

drivers, middleware, libraries and etc.

• The degree of faults is quantified by Bit Error Rate (BER)
• # of fault bits / # of total bits

13

Threat and Fault Model

• Only consider stealthy attacks.

• The faults can be induced by either physical attacks or software attacks.

• Silent Data Corruption (SDC) probability as a metric to evaluate the
dependability of the system.
• SDC + Dependability = 1

• SDC probability: the probability of compromised DNN output
• TOP-1
• E.g., 1% SDC probability means 1 out of 100 outputs is compromised and generate

different TOP-1 result from its fault-free execution
14

AegisDNN – Overview

15

DNN Layer-wise Profiler

• WCET Profile
• SDC Profile – SDCIn & SDCweight

16

AlexNet layer-wise profile

Similar Slowdown, much higher SDC
-> Better to protect layer 10

Similar Slowdown, much higher SDC
-> Better to protect layer 19

What Layers to Protect?
• SDC probability of a model if protecting a combination of layers?
• Can achieve dependability requirement?
• Naïve solution: Run fault-injection and estimate the SDC probability for all

the possible protection methods
• Complexity: Exponential (2^number of layers)

• Can we guarantee the schedulability if protecting a combination
layers?
• Real-time schedulability analysis

17

Dependable

Timely

Predicting SDC Probability

• ML Approach: Linear Regression
• Key Idea:

• Each layer has a linear contribution to the overall SDC probability when protecting a
combination of layers

• Steps:
• Step 1: Uniformly-distributed training sample
• Step 2: Train the Linear Regression Model
• Step 3: Generate Comprehensive SDC profile

18

Predicting SDC Probability

19
11This is an estimate based on the speed of progress on our tested platform.

ML prediction accuracy

Time required for
generating the SDC

profile

Cross-validation and Ground-truth Validation

Significant Time Saving

What Layers to Protect?
• SDC probability of a model if we protect a combination of layers?
• Can achieve dependability requirement?
• Naïve solution: Run fault-injection and estimate the SDC probability for all

the possible protection methods
• Complexity: Exponential (2^number of layers)

• ML Solution: Linear Regression

• Can we guarantee the schedulability if protecting a combination of
layers?
• Real-time Schedulability Analysis

20

Dependable

Timely

Schedulability Conditions

• Soft real-time systems: LST ->

• Hard real-time systems: fixed-priority scheduling:
• Mutual exclusive device
• MPCP

21

Timely?

Finding Layer Protection Configurations

• Known: for each combination of protected layers (i.e., layer protection config)
• Comprehensive SDC profile -> whether dependable?
• Comprehensive sched analysis based on WCET profile -> whether timely?

• Decide: Which combination of layers to protect?

• Goal: Max dependability while satisfying schedulability requirement

• Exhaustive Search
• Go through each combination for each task
• Exponential Complexity!

22

Finding Layer Protection Configurations

• We propose a Dynamic-Programming (DP) based algorithm
• Polynomial Complexity

• How it works?
• Minimize utilization need for each task (DP)
• Maximize dependability using available system resource

23

Finding Layer Protection Configurations
• How it works?
• Minimize utilization need for each task (DP)
• Maximize dependability using available system resource

• UD[i,j,k] -> Min utilization while protecting up to k continuous
subsequence from layer i to layer j and meeting the dependability
requirement D.

• We use DP to calculate the min required utilization for each task in
the taskset.

24

Finding Layer Protection Configurations
• How it works?
• Minimize utilization need for each task (DP)
• Maximize dependability using available system resource

25

- STEP1:
- Compute all the U for all tasks in the taskset
- Given dependability requirement D, we check

whether taskset is feasible

- STEP2:
- If not feasible -> no solution available
- If feasible -> find the maximum system dependability

while taskset is still feasible

Evaluation
• Hardware Specs:

• Intel 7700K Quad-core, with SGX enabled
• 16GB RAM
• Maximum 128 MB of encrypted SGX memory
• RTX 2080 Super

• DNN Models: ResNet-18, AlexNet, PilotNet, LeNet

• Attacks Considered:
• Random-fault-injection (RANFI) from TensorFI1 and Ares2 (FP models)
• Target-fault-injection (TFI) from BinFI3 (FP models)
• Bit-flip attack (BFA) with progressive bit search4 (on quantized INT8 models)

26

[1] Z. Chen et al. TensorFI: A Flexible Fault Injection Framework for TensorFlow Applications. (ISSRE, 2020)
[2] B Reagen et al. Ares : A framework for quantifying the resilience of deep neural networks. (DAC, 2018)
[3] Z. Chen et al. BinFI an efficient fault injector for safety-critical machine learning systems. (SC, 2019)
[4] A. Rakin. Bit-Flip Attack: Crushing Neural Network With Progressive Bit Search . (ICCV, 2019)

Integrated System Evaluation

27

RANFI & TFI BFA

Integrated System Evaluation – Soft Real-time

28

QoS: Percentage of
jobs finished both

timely and
dependably

AegisDNN meets
Dependability requirement
and dominates other
approaches

Integrated System Evaluation – Soft Real-time

29

QoS: Percentage of
jobs finished both

timely and
dependably

AegisDNN meets
Dependability requirement
and dominates other
approaches

Integrated System Evaluation – Hard Real-time

30

We found the taskset 1 could not be
used with hard real-time constraints
even if we lower the dependability

requirements
(probably due to the analytical

pessimism)

100
50
100
80
250
250
300

Modified

Integrated System Evaluation – Hard Real-time

31

AegisDNN was able to
guarantee the hard real-
time constraints

Our hard real-time
schedulability analysis
can reject unsafe
tasksets

AegisDNN meets
Dependability requirement
and dominates other
approaches

Conclusion
• We presented AegisDNN, a DNN inference framework for timely and dependable execution with

SGX.

• We discussed the related work and challenges of using SGX.

• We solve the challenges by proposing AegisDNN:
• layer-wise WCET and SDC profiling mechanisms
• ML-based SDC prediction method
• DP-based configuration-finding algorithm
• Schedulability analysis

• We have implemented and evaluated against several state-of-the-art DNN fault-injection attacks.

• Experimental results indicate AegisDNN dominates the other approaches in many aspects,
including response time, throughput, dependability, and QoS under both soft and hard real-time
scenarios.

32

AegisDNN: Dependable and
Timely Execution of DNN Tasks

with SGX

Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi and Hyoseung Kim

Thank you!

33

