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Abstract—The second generation of Robotic Operating System,
ROS 2, has gained much attention for its potential to be used for
safety-critical robotic applications. The need to provide a solid
foundation for timing correctness and scheduling mechanisms is
therefore growing rapidly. Although there are some pioneering
studies conducted on formally analyzing the response time of
processing chains in ROS 2, the focus has been limited to single-
threaded executors, and multi-threaded executors, despite their
advantages, have not been studied well. To fill this knowledge
gap, in this paper, we propose a comprehensive response-time
analysis framework for chains running on ROS 2 multi-threaded
executors. We first analyze the timing behavior of the default
scheduling scheme in ROS 2 multi-threaded executors, and then
present priority-driven scheduling enhancements to address the
limitations of the default scheme. Our framework can analyze
chains with both arbitrary and constrained deadlines and also
the effect of mutually-exclusive callback groups. Evaluation is
conducted by a case study on NVIDIA Jetson AGX Xavier
and schedulability experiments using randomly-generated chains.
The results demonstrate that our analysis framework can safely
upper-bound response times under various conditions and the
priority-driven scheduling enhancements not only reduce the
response time of critical chains but also improve analytical
bounds.

I. INTRODUCTION

The Robotic Operating System (ROS) is an open-source
middleware framework that has been widely used for robotic
systems in academia and industry. The software modularity
and composability of ROS have helped the community achieve
efficient and productive robotic software developments. How-
ever, the architecture limitations and several deep-rooted short-
comings of ROS had been unveiled over the decades, resulting
in the development of its second generation, ROS 2, which is
a complete refactoring of the previous version.

One of the major considerations in ROS 2 has been im-
proving real-time capabilities while inheriting the successful
concepts of its predecessor. As an example, to support real-
time data distribution, ROS 2 employs the Data Distribution
Service (DDS) as the underlying communication framework.
Although ROS 2 has been shown to provide better real-
time support for robotic systems, it is yet incomplete to be
applicable to hard real-time or safety-critical applications. To
guarantee stringent timing constraints in these applications,
designers need to safely upper-bound the end-to-end latency
(i.e., response time) of processing chains. Although there are
many prior studies on the response-time analysis of chains,
the unique scheduling behavior of ROS 2 calls for new

formal modeling and analysis of its timing abstractions and
scheduling architecture.

The pioneers in formally analyzing the response time of
chains on ROS 2 are [1–3]. As mentioned in these studies,
ROS 2 introduces “executors” as the abstraction of operating
system (OS) processes, providing two built-in types: single-
threaded and multi-threaded. A single-threaded executor exe-
cutes callbacks sequentially, while a multi-threaded executor
distributes pending callbacks across multiple threads (i.e.,
callbacks can execute in parallel). These studies focus on
the response-time analysis of callbacks and chains only on
single-threaded executors. Specifically, [1] and [2] mapped a
single-threaded executor to a single reservation server to derive
analysis; [3] proposed priority-driven scheduling and executor-
to-core allocation but for single-threaded executors.

As of yet, the scheduling behavior of ROS 2 multi-threaded
executors has not been studied well. However, plenty of
studies in the real-time systems area have demonstrated that
multi-threading improves system concurrency and throughput
by effectively utilizing multiple processors while preserving
timing correctness, e.g., real-time multi-threading in self-
driving cars [4]. Therefore, in this paper, we aim to analyze
and improve the timing behavior of ROS 2 multi-threaded
executors. But, the tremendous amount of non-determinism in
multi-threaded executors, such as an unpredictable distribution
of callbacks across threads and unsynchronized polling points
of threads, makes the analysis particularly challenging. In
addition, the lack of systematic support for chain priority in
ROS 2 prevents the effective utilization of parallel resources,
resulting in delayed processing of critical chains.

This paper tackles the aforementioned issues. We first
present a response-time analysis (RTA) framework for chains
running on ROS 2 multi-threaded executors. To improve the
end-to-end response time of critical chains, we also propose
priority-driven scheduling enhancements that make the execu-
tor strictly respect the priority of the corresponding chain
when scheduling individual callbacks. These enhancements
bring significant benefits in timing analysis as well as observed
performance on a real platform. The detailed contributions of
our work are as follows:
• We discuss difficulties in analyzing the timing behavior of

chains on multi-threaded executors (Sec. IV). In particular,
we redefine the properties of two ROS-specific scheduling
behaviors, polling points and processing windows, and ex-



plain why the latest single-threaded analysis based on them
is not applicable to multi-threaded executors.

• We develop an RTA framework for ROS 2 multi-threaded
executors (Sec. V). Our analysis considers chains with both
constrained and arbitrary deadlines, and upper-bounds the
response time of chains executed by multi-thread executors.
We also analyze the effects of callback groups that are used
to control the concurrency of select callbacks.

• We propose priority-driven scheduling enhancements and
the corresponding analytical extensions to our RTA frame-
work (Sec. V). The priority-driven scheduling approach
mitigates the aforementioned non-determinism issues and the
resulting analytical pessimism and helps reduce the response
time of critical chains.

• For evaluation, we performed a case study movitated by
autonomous driving software on an embedded platform as
well as schedulability experiments using randomly-generated
workloads (Sec. VI). The results support the effectiveness
of our RTA framework and demonstrate how priority-driven
scheduling enhancements improve both observed and com-
puter upper-bounds on the response time of chains

II. RELATED WORK

Many studies have been conducted on improving real-time
capabilities [5, 6] and evaluating the empirical real-time per-
formance of ROS [7, 8]. In [6], Wei et al. proposed to run two
OSes on the same platform, i.e., real-time ROS nodes on Nuttx
(RTOS) and non-real-time ones on Linux, to provide isolated
execution environments. Saito et al. [5] developed ROSCH-
G, which is a real-time extension to ROS with a CPU/GPU
coordination mechanism provided as a loadable kernel module.
Carlos et al. [7] measured the worst-case latency between
two nodes and observed deadline miss behavior in a Linux
system with the PREEMPT-RT patch. In [8], the effects of
various QoS configurations under different vendor-specific
DDS implementations were evaluated empirically. However,
some of these studies were conducted on the first generation
of ROS [5, 6] and the others did not consider formal modeling
or analysis of ROS 2 [7, 8].

Formal timing analysis of end-to-end latency has recently
received much attention for processing chains that follow
either the publisher-subscriber or read-execute-write model.
Davare et al. [9] and Schlatow et al. [10] captured an upper
bound on the end-to-end latency of a chain based on the
worst-case response time of individual tasks. In [11–13], the
authors proposed analytical methods to bound the end-to-
end latency of a chain for fixed-priority scheduling. Choi et
al. [14] focused on improving the end-to-end latency of chains
and proposed chain-based fixed-priority scheduling. However,
these approaches cannot be directly applied to ROS 2 due to
discrepancies in the scheduling model.

The literature on the response-time analysis of processing
chains on ROS 2 executors is quite limited. The first work that
formally analyzed the timing behavior of ROS 2 executors is
the work by Casini et al. [1]. They unveiled the details of

the ROS 2 callback scheduling policy implemented in single-
threaded executors and presented the response-time analysis of
callbacks and processing chains on single-threaded executors.
Tang et al. [2] proposed an improved response-time analysis
by characterizing the details of processing windows (we will
revisit this in Sec. IV), and studied the effect of callback
priorities under the standard ROS 2 scheduling policy that
results in round-robin-like behavior [15]. In [3], Choi et
al. developed a priority-driven chain-aware scheduler, called
PiCAS, which modifies the default ROS 2 policy to strictly
follow assigned chain priorities. They also presented callback
priority assignment, allocation of nodes to executors and
executors to CPU cores, and response-time analysis under their
scheduler. Unlike PiCAS which uses fixed-priority scheduling,
Arafat et al. [16] proposed a dynamic-priority scheduling
scheme to improve chain latency, especially in an overloaded
scenario. Teper at el. [17] focused on cause-effect chains where
intermediate callbacks can be released independently by their
own timers, and proposed an end-to-end latency analysis of
cause-effect chains in ROS 2. However, all of these focus on
single-threaded executors, none on multi-threaded executors.

Both single-threaded and multi-threaded ROS 2 executors
have yet another important feature called callback groups that
have not been considered in the prior analysis work [1–3, 16–
18]. While the authors of [19] explored the effect of callback
groups in single-threaded Micro-ROS executors (a variant of
ROS 2 for microcontrollers), they did not link this to formal
timing analysis. In this paper, we take this into account in our
RTA framework.

Recently, Jiang et al. [20] presented response-time analysis
for processing chains with constrained deadlines running on
a ROS 2 multi-threaded executor. While the reader might
find it similar to our work, we make unique contributions
in that our work analyzes chains with both constrained and
arbitrary deadlines and provides priority-driven scheduling
enhancements and the corresponding analytical extensions to
ROS 2 multi-threaded executors.

III. BACKGROUND AND SYSTEM MODEL

In this section, we briefly review the ROS 2 architecture
and introduce our system model.

A. ROS 2 Architecture

Fig. 1 illustrates the ROS 2 middleware architecture that
sits on top of the OS and provides a set of libraries and
tools for robotic application development. In particular, the
ROS 2 client library (rcl) consists of language-specific libraries
(rclcpp and rclpy for C++ and Python, respectively), and
the middleware library (rmw) provides publisher-subscriber
interfaces for Data Distribution Service (DDS) and intra-
process communication.

ROS 2 applications consist of nodes, each of which in turn
consists of a set of callbacks. ROS 2 callbacks are categorized
into four types: timer callbacks are triggered when the timer
period is up; subscription callbacks are triggered when a
subscribed message arrives; service and client callbacks are
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Fig. 1: ROS 2 architecture and application model

triggered by a service request and a response to a service
request, respectively. There is an inherent priority order among
these callback types such that timer callbacks have the highest
and client callbacks have the lowest priority [1–3, 18]. For
callbacks of the same type, their priorities are implicitly
determined by declaration order in the node. While callbacks
are actual executable entities, nodes are just containers of
callbacks and serve as an abstraction to allocate callbacks to
executors, i.e., once a node is assigned to an executor, all
callbacks of that node are executed by that executor.

A set of callbacks with data dependencies forms a process-
ing chain, or simply called a chain. Each callback can be
associated with one or more chains, and chains can be formed
by callbacks from different nodes. We will give a more detailed
explanation of chains in Sec. III-B.

An executor is the ROS 2 abstraction of OS-level scheduling
entities and it executes callbacks assigned to it. Each executor
maintains a ReadySet, which is a cached set of “ready” regular
(non-timer) callbacks [1, 2].1 The ReadySet is updated only
when it is empty (or there is no callback in the set eligible to
execute2). This is the only point when the executor communi-
cates with underlying layers, and is called a polling point in the
literature. The time interval between two consecutive polling
points is called a processing window, in which the executor
processes regular callbacks in its ReadySet plus incoming
timer callbacks. Therefore, callbacks released after one polling
point are not processed until the next polling point, causing
priority inversion. Also, the use of the ReadySet makes at most
one instance of any callback be processed in one processing
window. Hence, in addition to the priority inversion problem,
a callback instance might be blocked for multiple processing
windows before it gets scheduled if there are multiple pending
instances of the same callback. Sec. IV discusses more details
on these issues in the context of multi-threaded executors.

In addition, ROS 2 executors provide callback groups to
control the concurrency of callback execution. There are two
options: reentrant and mutually-exclusive. The reentrant call-

1Timer callbacks are added to the ReadySet instantly after their release.
2Ready callbacks in the ReadySet may not be eligible to run due to callback

groups that enforce concurrency. We will explain more details later.

back group allows an executor to execute any ready callback
with no other restriction. Hence, as long as a preceding
callback in a chain has completed execution, the next callback
becomes ready and can be considered for scheduling. On the
other hand, the mutually-exclusive callback group limits any
callback within this group not to be executed in parallel. In
other words, the execution of callbacks within a mutually-
exclusive group is all serialized even if the executor has
multiple threads. This could be a useful option if callbacks
were originally programmed for a single-threaded environment
but assigned to a multi-threaded executor, or they access
shared data with no synchronization in mind. However, the
use of mutually-exclusive groups introduces another type of
dependency in callback scheduling. Our analysis in Sec. V
takes into account the effects of these two options.

B. System Model

We consider a ROS 2 system Γ running on a multi-core
platform. The system Γ is composed of a set of independent
chains, i.e., Γ = {ΓC ,ΓC′ ,ΓC′′ , ...}. We present our model
for callbacks, chains, and executors as below. Without loss of
generality, we assume the discrete-time model in our system,
in which a time interval is a non-negative integer multiplier
of the system time unit (e.g., clock cycle).

Callbacks. A callback τ⟨C,j⟩ is denoted as the jth callback
of a chain ΓC , where 1 ≤ j ≤ ∥ΓC∥. We characterize each
callback τ⟨C,j⟩ with:
• E⟨C,j⟩: The worst-case execution time (WCET) of an in-

stance of a callback τ⟨C,j⟩.
• π⟨C,j⟩: The priority of τ⟨C,j⟩ (smaller values mean lower

priority).
Note that callbacks belonging to a chain do not have their
own periods or deadlines since they follow their chain’s timing
constraints. If the system has a callback that does not belong
to any chain but has a timing constraint, it can be modeled as
a single-callback chain for analysis purposes.

Chains. A chain ΓC = {τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩} consists
of ∥ΓC∥ callbacks with a sequential execution order, i.e.,
τ⟨C,j+1⟩ can start only after τ⟨C,j⟩ finishes. The chain ΓC
can be either timer-triggered (i.e., the first callback τ⟨C,1⟩ is
a timer callback) or event-triggered (i.e., τ⟨C,1⟩ is a regular
callback released by a periodic sensor input or message from
other sub-systems). Due to data dependency, any subsequent
callback becomes ready to run only when its predecessor
finishes execution. For presentation simplicity, the periods of
all subsequent callbacks are denoted with the same period as
their chain. We characterize ΓC as follows:

ΓC :=
(
EC , TC , DC , πC

)
• EC : The cumulative WCET of an instance of the chain ΓC ,

i.e., EC =
∑∥ΓC∥

j=1 E⟨C,j⟩.
• TC : The period of an instance of ΓC .
• DC : The relative deadline of an instance of ΓC .
• πC : The priority of ΓC (smaller values mean lower prior-

ity). Following the criticality-as-priority assignment [21], we
assume chains with higher criticality have higher priority.
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We denote the ith instance of a chain ΓC and its callbacks as
Γi
C = {τ i⟨C,1⟩, τ

i
⟨C,2⟩, τ

i
⟨C,3⟩, ..., τ

i
⟨C,∥ΓC∥⟩}.

The response time of the chain ΓC is denoted as RC , which
means the time from when the first callback τ⟨C,1⟩ is released
until the last callback τ⟨C,∥ΓC∥⟩ finishes execution. The chain
is said to be schedulable if RC ≤ DC . By this model, a
burst release of chain instances is possible depending on the
period of the chain, i.e., the next chain instance can be released
before the completion of the previous instance. In other words,
the response time and the deadline of a chain, RC and DC
respectively, can be greater than its period, TC . Later, we will
first analyze the case for constrained deadlines (∀C : DC ≤ TC)
and then extend it to arbitrary deadlines (∃C : DC > TC).

Executors. We consider a multi-threaded executor Π consist-
ing of m worker threads, i.e., Π = {r1, r2, ..., rm}. Each
thread rk runs on a different CPU core to maximize concur-
rency and has a resource reservation for guaranteed resource
supply. Hence, each thread is characterized by rk = (Cr

k , T
r
k )

where 1 ≤ k ≤ m, meaning that rk provides Cr
k units of

CPU time every T r
k units. The supply bound function of rk,

sbf∗
k (∆), which lower-bounds the amount of resource supply

during an interval ∆, is given by [22]:

sbf∗
k (∆)=

{
∆− (κ+ 1)(T r

k − Cr
k) if ∆ ∈ [(κ+1)T r

k−2·Cr
k , (κ+1)T r

k−Cr
k ]

(κ− 1) · Cr
k otherwise

(1)

where κ = max

([∆−(T r
k−Cr

k)
T r
k

]
, 1

)
. This captures the longest

initial delay that the periodic resource reservation can incur,
i.e., 2T r

k − 2Cr
k .

For ease of integration with schedulability analysis, a linear
approximation of the supply bound function has been widely
used [22]:

sbfk(∆)=

{
Cr

k

T r
k
(∆− 2(T r

k − Cr
k)) if ∆ ≥ 2(T r

k − Cr
k)

0 otherwise
(2)

Based on this, we can derive the following.

Def. 1 (sbf ). The supply bound function of a multi-threaded
executor Π is given by

sbfΠ(∆) =
∑
rk∈Π

sbfk(∆) (3)

Note that worker threads of an executor do not need to be
released at the same time. As long as all threads have started
before t = 0, Eq. (3) will hold.

To find the minimum time interval required to obtain a
certain amount of resource supply x, we use the pseudo-
inverse function of sbfk(∆).

Def. 2 (sbfk [23]). The pseudo-inverse function of sbfk is
defined as follows:

sbfk(x) = min{∆|sbfk(∆) = x} (4)

where x is the amount of resource that is needed.

IV. CHALLENGES IN MULTI-THREADED EXECUTOR RTA

As explained earlier, a ROS 2 executor has a ReadySet
which is updated at a polling point (PP), and the time interval
between two consecutive polling points is called a processing
window (PW). The latest work [2] derived the following
lemmas on PWs in a single-threaded executor to improve
analysis accuracy over [1].
• (Lemma 1 in [2]) “At most one instance of a regular callback

executes in a processing window.”
• (Lemma 2 in [2]) “Let ΓC be an arbitrary chain. Suppose
τ i⟨C,1⟩ (the first regular callback of the ith instance of the
ΓC) executes in processing window pwn, then the earliest
processing window for τ l⟨C,1⟩ (l > i) to execute is pwn+l−i.”

• (Lemma 3 in [2]) “At most one regular callback instance of
a chain instance executes in a processing window.”

• (Lemma 4 in [2]) “The regular callback instances of a chain
instance execute in consecutive processing windows one by
one.”
The definitions of PP and PW are rather straightforward

in a single-threaded executor as there is only one thread
updating ReadySet. However, in a multi-threaded executor
(implemented in the rclcpp package of ROS 2 Galactic and
newer versions to date), the ReadySet is shared among all
threads. Hence, one or more threads might become idle (i.e.,
ReadySet is empty or has no eligible callback to execute) and
update ReadySet, while other threads are still executing their
callbacks from the previous version of ReadySet. Those who
were executing callbacks when ReadySet was updated cannot
even notice such an update. Therefore, we need to revise the
definitions of PP and PW for multi-threaded executors:
• Polling Point (PP): A time point when at least one thread

becomes idle.
• Processing Window (PW): The time interval between two

consecutive PPs, regardless of which thread triggered the
new PP. In the nth PW, pwn, there might be some threads
that are still executing callbacks whose start times were in
previous PWs, pwn−p. These callbacks are considered carry-
in callbacks for pwn. Also, some callbacks that started in
pwn may continue to execute in pwn+q . Such callbacks are
considered as carry-out callbacks for pwn.
Based on the above definitions, some of the lemmas derived

in [2] are invalid or conditionally valid for a multi-threaded
executor. Below we fix them or confirm their validity.
• (Lemma 1 in [2]) This lemma stays valid in a multi-threaded

executor only if all chains in the system Γ have constrained
deadlines. When chains in Γ have arbitrary deadlines, then at
most m instances of each regular callback can be in execution
in the same PW, where m is the number of threads in a multi-
threaded executor. This is because a new PP can be triggered
by any idling thread; hence, there can be m − 1 instances
carried-in from previous PWs by m − 1 threads and 1 new
instance by 1 thread that triggered the current PW.

• (Lemma 2 in [2]) Since this lemma directly follows the
lemma 1 in [2], similarly, it stays valid only if all chains
in Γ have constrained deadlines. However, for chains with
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arbitrary deadlines, the earliest PW for τ l⟨C,1⟩ (l > i) to
execute would be pwn+⌊ l−i

m ⌋.
• (Lemma 3 in [2]) This lemma remains valid with the same

proof as in [2].
• (Lemma 4 in [2]) This lemma is not valid anymore because

the new definition of PP does not guarantee that all callbacks
finish their execution when the new PW begins (i.e., the
execution of some callbacks may span over multiple PWs).
Hence, there is no guarantee on which PW the succeeding
callback instance can get into ReadySet.
These revisions may help develop a timing analysis for

a multi-threaded executor, by following the approach of [2]
that focuses on PW analysis. However, there are still many
difficulties to be solved. At first, analyzing when a new PP
happens and how long a PW takes is not as straightforward
as in a single-threaded executor. Moreover, it would be hard
to determine how many PWs each callback would take to
complete its execution and how many PWs exist between two
consecutive callbacks. The difficulty multiplies when chains
with arbitrary deadlines are considered. Instead, in this paper,
we take a different approach: analyzing the response time of
a chain without having PW in mind. Our proposed analysis
is built by extending the conventional non-preemptive global
task scheduling analysis [24] and taking into account semantic
differences introduced by chains, callback dependencies, and
the ReadySet management. This approach also allows us to
incorporate priority-driven scheduling enhancements that yield
a significant benefit to critical chains.

V. PROPOSED RTA FRAMEWORK

This section presents our proposed response-time analysis
(RTA) framework. We first review the conventional non-
preemptive fixed-priority (NP-FP) global task scheduling anal-
ysis developed for non-ROS systems (Sec. V-A). Then, for a
single ROS 2 multi-threaded executor with reentrant callback
groups, we analyze the response time of a chain with a
constrained deadline (Sec. V-B). Based on this, we present
priority-driven scheduling enhancements and the correspond-
ing analysis (Sec. V-C), and extend these to chains with arbi-
trary deadlines (Sec. V-D). Finally, we relax our assumptions
by incorporating the effects of mutually-exclusive callback
groups into our analysis (Sec. V-E) and discussing how to
analyze the end-to-end response time of a chain that spans
across multiple executors regardless of their types (Sec. V-F).

A. Review of NP-FP Task Scheduling

According to the NP-FP global task scheduling analy-
sis [25], to obtain the worst-case response time of a given
non-preemptive task τi, we need to find the latest time that a
τi’s job starts its first unit of execution. Assuming this first unit
finishes after a time interval ∆ from the release of the job, the
response time of τi is ∆+ sbfk(Ei−1) where Ei is the WCET
of τi and sbfk(Ei − 1) is the minimal time interval required
by any processor (worker thread rk) to execute Ei−1. To find
∆, there should be enough resource supply for the system’s

demand. For at least one unit of workload of τi to execute in
∆, the following inequality has to hold:

dbf(∆) < sbfΠ(∆) (5)

where dbf(∆) and sbfΠ(∆) stand for the demand-bound
function and the supply-bound function, respectively. Note that
sbfΠ(∆) = m · ∆ is the maximum resource supply in a m-
processor system.

To determine dbf(∆), we first need to calculate the work-
load of other interfering tasks in ∆. Consider a set of non-
preemptive tasks with constrained deadlines. The workload of
a task τj with the WCET of Ej , the period of Tj , and the
deadline of Dj (i.e., τj := ⟨Ej , Tj , Dj⟩) during an arbitrary
time interval ∆ can be upper-bounded by the following, as
proposed in [26]:

Lemma 1 (Workload [26]). In an arbitrary time interval ∆,
the jobs of τj with a constrained deadline can execute up to

Wj(∆, α) = ⌊∆+ α

Tj
⌋·Ej +min

(
Ej ,∆−⌊

∆+ α

Tj
⌋·Tj

)
(6)

where α is an extra time to capture carry-in jobs in ∆, i.e.,
α = Rj − Ej if the response time Rj is known, and α =
Dj − Ej otherwise.

Then blocking from lower-priority tasks needs to be consid-
ered in dbf(∆). In [24], a NP-FP global scheduling analysis
is provided for periodic non-preemptive tasks, which limits
the number of carry-in jobs from lower-priority tasks that can
block τi in ∆ by the number of processors, m.

Lemma 2 (LeSh [24] in [25]’s presentation). The response
time of a periodic non-preemptive task τi = ⟨Ei, Ti⟩ is upper-
bounded by Ri = ∆+ sbfk(Ei − 1), if dbf(∆) < sbfΠ(∆)
holds for the following dbf(∆):

dbf(∆) =
∑

τh∈hp(τi)

Wh(∆, Rh − Eh)

+
∑

τl∈mlp(τi)

min(El − 1,∆)
(7)

where hp(τi) is the set of higher-priority tasks than τi, and
mlp(τi) is the subset of lower-priority tasks than τi that give
the m largest min(El − 1,∆) values (i.e., |mlp(τi)| = m).

The first term of dbf(∆) in Eq. (7) upper-bounds the
amount of interference from higher-priority tasks until τi be-
gins execution, and the second term captures the blocking time
from lower-priority jobs that have started execution before ∆.
If dbf(∆) < sbfΠ(∆) holds, at least one time unit is available
in [t, t+∆) for the job of a non-preemptive task τi released
at t to start its execution; hence, the response time is bounded
by Ri = ∆+ sbfk(Ei − 1). This equation can be solved by
a fixed-point iteration, with ∆ = 1 as a start condition.

Note that Eq. (7) uses Rh − Eh for α of the workload
function given in Eq. (6). To avoid the need to compute the
response time of high-priority tasks in advance, Rh −Eh can
be replaced with Dh − Eh, where Dh is the deadline of τh,
if τh is schedulable (∵ Dh ≥ Rh).
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Fig. 2: Proof of Lemma 3

B. Response Time of Chains
Since the ROS 2 multi-threaded executor follows global

work-conserving non-preemptive scheduling, we can derive
a response-time analysis for a chain ΓC with a constrained
deadline in a similar form as in Lemma 2, by finding the
longest time interval ∆ such that the last callback of ΓC
(τ⟨C,∥ΓC∥⟩) has at least one unit of execution during [t, t+∆)
where t is the release time of ΓC . Then, the response time
of the chain could be bounded by ∆+ sbfk(E⟨C,∥ΓC∥⟩ − 1),
analogous to the case for NP-FP task scheduling.

However, there are several differences to consider. The
first issue is an additional blocking caused by the precedence
dependencies between callbacks of the chain under analysis.
This happens because the next callback cannot start execution
until its previous callback is completed, even if there exist
other idle threads in the executor. While these idle threads
can be utilized by callbacks from other chains at runtime, for
analysis purposes, such idle threads can be assumed to be
occupied by an artificial workload that needs to be added to
dbf(∆).

Lemma 3. Consider two adjacent callbacks of a chain ΓC ,
τ⟨C,j⟩ and τ⟨C,j+1⟩, on a m-threaded executor. The precedence-
dependency blocking caused by τ⟨C,j⟩ introduces an additional
workload as interference to the start of τ⟨C,j+1⟩, which is
upper-bounded by

B⟨C,j+1⟩ = m · E⟨C,j⟩ (8)

Proof. Suppose ΓC is the only chain in the system and we are
interested in the latest time that τ⟨C,2⟩ can start its execution
from the release time of ΓC . Since τ⟨C,2⟩ cannot start until
τ⟨C,1⟩ completes, from τ⟨C,2⟩’s view, τ⟨C,1⟩ behaves as if it
occupied all m threads. This artificial workload equals to m ·
E⟨C,1⟩, which needs to be added to dbf of τ⟨C,2⟩. By induction,
as shown in Fig. 2, the same happens for any callback τ⟨C,j⟩
regardless of on which thread it is running.

Based on this, we can derive the following.

Lemma 4. For the last callback of a chain ΓC , the precedence-
dependency blocking caused by all of its preceding callbacks
is given by m · (EC − E⟨C,∥ΓC∥⟩).

Proof. By Lemma 3,
∑∥ΓC∥−1

j=1 m · E⟨C,j⟩ = m · (EC −
E⟨C,∥ΓC∥⟩).

The next issue is due to the ReadySet management. Since
ReadySet is a cached set of ready callbacks and is updated
only at PPs, the callbacks of the chain ΓC under analysis
can be blocked multiple times by lower-priority callbacks of
other chains during ΓC’s execution, and only the execution
of the last callback of ΓC is not interfered due to the nature
of non-preemptive scheduling [1, 2]. Therefore, we need to
treat the callback instances of all other chains (regardless of
their priorities) as interfering callbacks, as if they had higher
priority than any callback τ⟨C,j⟩ ∈ ΓC . For each interfering
callback, the task-level workload function given in Eq. (6)
can be used directly since a periodic non-preemptive task τj
in Eq. (6) is equivalent to a callback in our model. The entire
workload of an interfering chain ΓC′ can be upper-bounded as
follows:

Lemma 5. In an arbitrary time interval ∆, the instances of
a chain ΓC′ with a constrained deadline can execute up to

WC′(∆, α) = ⌊∆+ α

TC′
⌋ ·EC′ +min

(
EC′ ,∆−⌊∆+ α

TC′
⌋ ·TC′

)
(9)

where α is an extra time to capture carry-in instances of ΓC′ .

Proof. Similar to Eq. (6), in the first term, the total number of
instances of ΓC′ (including a carry-in) that contributes to the
workload with its entire WCET (EC′) is obtained by ⌊∆+α

TC′
⌋

and multiplied by EC′ . The workload of the carry-out instance
is bounded by the second term.

Based on Lemmas 3 and 5, we can obtain the following
theorem to find the response time of a chain ΓC .

Theorem 1. The response time of a chain ΓC =
{τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩} with a constrained deadline on
a standard ROS 2 multi-threaded executor with m threads
is upper bounded by RC = ∆+ sbfk(E⟨C,∥ΓC∥⟩ − 1), if
dbf(∆) < sbfΠ(∆) holds for the following dbf(∆):

dbf(∆) = m · (EC − E⟨C,∥ΓC∥⟩)+∑
∀Γx∈Γ−{ΓC}

Wx(∆, Dx − Ex) (10)

dbf(∆) can be solved by a fixed-point iteration with an initial
condition of ∆ = 1.

Proof. Eq. (10) captures all possible workloads in [t, t+∆),
where t is the release time of an instance of ΓC , until the
last callback of ΓC can start its first unit of execution. By
Lemma 3, we know that the maximum workload caused by
precedence dependencies is m · (EC −E⟨C,∥ΓC∥⟩). In addition,
the maximum workload from the instances of other chains is
upper-bounded by the sum of Wx given by Lemma 5. As there
is no other source of workloads in ∆, the last callback of ΓC
can start at least one unit of its execution in ∆ if dbf(∆) <
sbfΠ(∆) holds, and the response time of ΓC is bounded by
∆+ sbfk(E⟨C,∥ΓC∥⟩ − 1).

C. Priority-Driven Enhancements

As explained earlier, the ReadySet management scheme
of the standard ROS 2 multi-threaded executor requires our
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analysis to capture all callback instances of other chains as
interfering callbacks, regardless of their priorities. This is
particularly problematic for critical chains as their response
times could be unnecessarily penalized by non-critical chains.
However, prior work on a single-threaded executor [3, 18]
demonstrated that assigning callback priorities based on their
respective chain priorities and scheduling ready callbacks
by strictly based on their priorities can alleviate analytical
pessimism and improve chain response time. Hence, we apply
this approach to multi-threaded executors and discuss its
implications in analysis.

The implementation of priority-driven scheduling in a multi-
threaded executor is rather straightforward. Instead of having
each thread look for ready callbacks in ReadySet and letting
it update only when it is empty, we can modify the executor
code such that each thread updates ReadySet whenever it needs
to choose a ready callback to execute. As a result, a newly-
arrived high-priority callback does not need to wait for the
other callbacks already fetched in ReadySet to finish their
executions so that the next PP is triggered. Updating ReadySet
in this manner may seem like a lot of extra overhead, but
we found the frequency of ReadySet updates in the priority-
driven multi-threaded executor is not much higher than in the
standard one. Sec. VI-A analyzes this overhead.

For callback priority assignment, we directly adopt the
chain-aware assignment scheme proposed by [3], shown in
Alg. 1. Basically, it makes sure that callbacks from higher-
priority chains get higher callback priority than those from
lower-priority chains. Within each chain, earlier callbacks get
lower priority than later callbacks, i.e., π⟨C,j⟩ < π⟨C,j+1⟩. As
discussed in Sec. III-B, we follow the criticality-as-priority
assignment [21] for chains; thus, this assignment yields higher
priorities to callbacks from critical chains. Also, since the
standard ROS 2 executor interface does not have APIs to set
callback priorities (callback priorities are determined implic-
itly by declaration order), we also adopted such APIs from [3]
and applied them to the multi-threaded executor code base.

Algorithm 1 Chain-aware callback priority assignment [3]

1: Input: Γ:chains
2: Γ← sort in ascending order of chain priority π
3: p← 1 ▷ Initialize current priority
4: for all ΓC ∈ Γ do
5: for all τ⟨C,j⟩ ∈ ΓC do
6: π⟨C,j⟩ ← p
7: p← p+ 1

With the executor modifications for strictly priority-driven
callback scheduling and the callback priority assignment, a
chain of interest is no longer blocked multiple times by call-
backs from lower-priority chains. Now we provide a response-
time analysis for priority-driven multi-threaded executors.

Theorem 2. The response time of a chain ΓC =
{τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩} with a constrained deadline on a
priority-driven ROS 2 multi-threaded executor with m threads

is upper-bounded by RC = ∆+ sbfk(E⟨C,∥ΓC∥⟩ − 1), if
dbf(∆) < sbfΠ(∆) holds for the following dbf(∆):

dbf(∆) = m · (EC − E⟨C,∥ΓC∥⟩)

+
∑

∀Γx∈Γ−{ΓC}∧πx>πC

Wx(∆, Dx − Ex)

+
∑

∀τl∈mlp(τ⟨C,1⟩)

min(El − 1,∆)

(11)

where mlp(τ⟨C,1⟩) returns at most m largest callbacks with
lower-priority than τ⟨C,1⟩ where it includes only one callback
from each chain (i.e., |mlp(τ⟨C,1⟩)| = min(m, |{Γy|πy < πC}|)).

Proof. In priority-driven scheduling, we need to upper-bound
(i) the workload caused by precedence dependencies, (ii) the
interference from higher-priority chain instances, (iii) and the
blocking time from lower-priority chain instances. Item (i)
remains the same as in Eq. (10) since it is inherent to the chain
under analysis, not subject to the scheduling policy used.

By Alg. 1, all callbacks of a higher-priority chain have
higher priorities than the chain of interest. Therefore, to upper-
bound (ii), the workload function in Lemma 5 can be used for
higher-priority chains than ΓC , i.e., ∀Γx ∈ Γ−{ΓC}∧πx > πC .

For (iii), lower-priority callbacks can block the execution
time of higher-priority callbacks only when they started execu-
tion at least for one unit before ∆. In a m-threaded executor,
the number of lower-priority callbacks that can do so is up
to m. Thus, to upper-bound the blocking time, we can find
the m largest callbacks from other chains with lower callback
priority than τ⟨C,1⟩, which is the lowest-priority callback of ΓC
by Alg. 1. Here, the precedence dependency within a chain
limits up to one lower-priority callback from each chain can
contribute to the blocking time. In other words, each chain
cannot have more than one callback that has started before
∆ and continues execution in ∆. This number is bounded by
|{Γy|πy < πC}| since only chains with lower chain priority
than ΓC have callbacks with lower callback priority than
τ⟨C,1⟩. As a result, the number of lower-priority callbacks τl
contributing to the blocking time is bounded by the minimum
of these two conditions, and the total blocking time is obtained
by summing min(El − 1,∆) since those callbacks already
started one unit of execution before ∆.

D. Chains with Arbitrary Deadlines

This section extends our response-time analysis to arbitrary-
deadline chains, where new instances of a chain can arrive
earlier than the completion of previous instances. First, we
need to revise the workload function given in Lemma 5
because it is valid for constrained deadlines only. The implicit
assumption made in that lemma (and also Lemma 1) is that
each chain has only at most one instance as carry-in and at
most one instance as carry-out in a time interval ∆. With
arbitrary deadlines (TC < DC), a chain can have multiple of
its previous or next instances as carry-in jobs or as carry-out
jobs, respectively, as their executions can overlap. Therefore,
the workload of an arbitrary-deadline chain should be captured
solely based on its period.
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Lemma 6. In an arbitrary time interval ∆, the instances of
a chain ΓC′ with an arbitrary deadline can execute up to

W ∗
C′(∆, α) = ⌈∆+ α

TC′
⌉ · EC′ (12)

where α is an extra time to capture carry-in instances of ΓC′ .

Proof. The worst-case workload can be upper-bounded by
capturing the maximum possible arrivals. Therefore, we re-
place the floor function in Lemma 5 with the ceiling function
and the second term of Lemma 5 is no longer needed.

With the revised workload function, we can extend Theo-
rem 1 to arbitrary deadlines as follows:

Theorem 3. The response time of a chain ΓC =
{τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩} with an arbitrary deadline on
a standard ROS 2 multi-threaded executor with m threads
is upper-bounded by RC = ∆ + sbfk(E⟨C,∥ΓC∥⟩ − 1), if
dbf(∆) < sbfΠ(∆) holds for the following dbf(∆):

dbf(∆) = m · (EC − E⟨C,∥ΓC∥⟩)

+ (
∑

∀Γx∈Γ

W ∗
x (∆, Dx − Ex))− EC (13)

Proof. The difference from Theorem 1 is the second and third
terms, which capture the maximum workload from interfering
chain instances. Here, interfering chain instances include other
instances of ΓC itself because they can cause self-interference
to the instance being analyzed. By considering ΓC in the
summing term (∀Γx ∈ Γ, instead of ∀Γx ∈ Γ − {ΓC}),
W ∗

C (∆, DC − EC) gives all instances of ΓC including the
instance being analyzed. Therefore, to avoid double-counting,
EC needs to be subtracted from dbf(∆).

Next is the extension of Theorem 2 for priority-driven multi-
threaded executor analysis.

Theorem 4. The response time of a chain ΓC =
{τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩} with an arbitrary deadline on a
priority-driven ROS 2 multi-threaded executor with m threads
is upper-bounded by RC = ∆ + sbfk(E⟨C,∥ΓC∥⟩ − 1), if
dbf(∆) < sbfΠ(∆) holds for the following dbf(∆):

dbf(∆) = m · (EC − E⟨C,∥ΓC∥⟩)

+ (
∑

∀Γx∈Γ∧πx≥πC

W ∗
x (∆, Dx − Ex))− EC

+ (
∑

∀τl∈mlp∗(τ⟨C,1⟩,∆)

min(El − 1,∆))

(14)

where mlp∗(τ⟨C,1⟩,∆) returns at most m largest callbacks
with lower priority than τ⟨C,1⟩ while it includes only one
callback from each instance of chains released in ∆ (i.e.,
|mlp∗(τ⟨C,1⟩,∆)| = min(m,

∑
πy<πC

⌈∆+Dy−Ey

Ty
⌉)).

Proof. As explained in the proof of Theorem 3, interfering
chain instances include other instances of ΓC itself. Hence, the
second term considers ΓC by πx ≥ πC instead of πx > πC . As
in Eq. (13), EC needs to be deducted to avoid double-counting.

For blocking time, we know that lower-priority callbacks
can block higher-priority callbacks only when they started

execution for at least one unit before ∆, and the maximum
number of such callbacks is bounded to m. The difference
from the constrained-deadline case is that each of such call-
backs contributing to the blocking time can be originated
from each instance of other chains because there may exist
multiple outstanding instances of the same chain during ∆.
This number is bounded by

∑
πy<πC

⌈∆+Dy−E−y
Ty

⌉. Hence,
the number of lower-priority callbacks τl contributing to the
blocking time is bounded by the minimum of these two
conditions, and the total blocking time can be obtained by
maximizing the sum of min(El − 1,∆).

E. Mutually-Exclusive Callback Groups

Our analysis in the previous sections is for chains with
reentrant callback groups. In this section, we study the effects
of mutually-exclusive callback groups which introduce yet
another type of precedence dependency in callback scheduling,
adding more workload to dbf(∆). As mentioned in Sec. III-A,
the use of a mutually-exclusive callback group limits any
callback within this group not to be executed in parallel. In
other words, the execution of callbacks within a mutually-
exclusive group is all serialized.

If the mutually-exclusive callback group option is enabled
for some callbacks, Theorems 1 and 3 (standard ROS 2 multi-
threaded executor) need to be extended as follows.

Theorem 5. With mutually-exclusive callback groups, the
response time of a chain ΓC = {τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩} on
a standard ROS 2 multi-threaded executor with m threads is
upper-bounded by RC = ∆+sbfk(E⟨C,∥ΓC∥⟩−1), if dbf(∆) <
sbfΠ(∆) holds for the following dbf(∆):

dbf(∆) = RHS of Eq. (10) or Eq. (13)

+

∥ΓC∥∑
j=1

m · strangers in group(τ⟨C,j⟩)
(15)

where strangers in group(τ⟨C,j⟩) sums up the execution time
of callbacks in the same mutually-exclusive group as τ⟨C,j⟩,
except those from the chain under analysis, ΓC .

The pseudo-code of the strangers in group(τ⟨C,j⟩) function
is given by Alg. 2.

Algorithm 2 strangers in group(τ⟨C,j⟩)

1: retval = 0;
2: group = get callback group(τ⟨C,j⟩) - {τ⟨C,j⟩};
3: for all τ⟨x,k⟩ ∈ group do
4: if x ̸= C then
5: retval = retval + E⟨x,k⟩

6: return retval;

Proof. This theorem differs from Theorem 1 or Theorem 3
by only the extra workload added to the end of dbf(∆).
So, we prove the necessity of the last term,

∑∥ΓC∥
j=1 m ·

strangers in group(τ⟨C,j⟩), in dbf(∆).
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Based on the characteristics of a mutually-exclusive call-
back group, once a callback τk of the group G1 executes,
m · Ek is the safe upper-bound on the blocking time that
τk causes to its group-mate callbacks in G1, as shown by
Lemma 3. Thus, the maximum blocking to a callback τj from
all of its group-mates can be bounded by m·

∑
∀τk∈G1∧j ̸=k Ek,

where the term
∑

∀τk∈G1∧j ̸=k Ek is the return value of
strangers in group(τj).

The effect of mutually-exclusive callback groups on a chain
ΓC is maximized when all callbacks of ΓC are in different
groups and all of their group-mates block their execution
as long as possible. Therefore, m · strangers in group(τ⟨C,j⟩)
should be considered as part of dbf(∆) for each τ⟨C,j⟩ ∈ ΓC .

As can be seen, strangers in group(τ⟨C,j⟩) excludes the
blocking from group-mate callbacks that are from ΓC , the
chain under analysis (line 4 of Alg. 2). This is because the
blocking effect from callbacks of the same chain has been
already considered as precedence-dependency blocking in the
first term of Eq. (10) and Eq. (13). Therefore, we avoid double-
counting them in Alg. 2.

Theorems 2 and 4 for priority-driven multi-threaded ex-
ecutors are changed as follows in the presence of mutually-
exclusive groups.

Theorem 6. With mutually-exclusive callback groups, the
response time of a chain ΓC = {τ⟨C,1⟩, τ⟨C,2⟩, ..., τ⟨C,∥ΓC∥⟩}
on a priority-driven ROS 2 multi-threaded executor with m
threads is upper-bounded by RC = ∆+ sbfk(E⟨C,∥ΓC∥⟩ − 1),
if dbf(∆) < sbfΠ(∆) holds for the following dbf(∆):

dbf(∆) = RHS of Eq. (11) or Eq. (14)

+

∥ΓC∥∑
j=1

m · hp strangers in group(τ⟨C,j⟩,∆)
(16)

where hp strangers in group(τ⟨C,j⟩,∆) sums up the execution
time of higher-priority callbacks instances than τ⟨C,j⟩ in the
same mutually-exclusive group as τ⟨C,j⟩ except those from the
chain under analysis, ΓC .

The hp strangers in group(τ⟨C,j⟩,∆) function is given by
Alg. 3.

Algorithm 3 hp strangers in group(τ⟨C,j⟩,∆)

1: retval = 0;
2: group = get callback group(τ⟨C,j⟩) - {τ⟨C,j⟩};
3: for all τ⟨x,k⟩ ∈ group do
4: if x ̸= C ∧ π⟨x,k⟩ > π⟨C,j⟩ then
5: retval = retval + ⌈∆+Dx−Ex

Tx
⌉ · E⟨x,k⟩

6: return retval;

Proof. The proof is similar to that for Theorem 5. The only
difference here is that higher-priority group-mate callbacks are
the ones who execute first and cause the blocking time to a
callback of interest. Also, since a callback can be blocked
by multiple instances of its higher-priority group-mates, we

need to consider the maximum possible number of instances
of higher-priority group-mates in the time interval ∆, which
is bounded by ⌈∆+Dx−Ex

Tx
⌉ for any chain Γx as shown in

Lemma 6.

F. End-to-End Response Time across Executors

The previous sections focused on the response time of a
chain on one multi-threaded executor. However, a chain may
span across multiple executors where each executor can be
either single-threaded or multi-threaded. To find the end-to-end
response time of a chain spanning across multiple executors,
one can utilize the Compositional Performance Analysis (CPA)
approach, as discussed in [1]. For a set of executors, we can
assign a reservation to each single-threaded or multi-threaded
executor. Then, we find the response time of individual sub-
chain that is executed by one executor. The analysis of such
sub-chains can be done using our analysis in this section if
executed by a multi-threaded executor, or the analysis from
previous work [1–3] if executed by a single-threaded executor.
One can also use our analysis with m = 1 for a single-threaded
executor, though it would give a more pessimistic upper bound
than those single-thread analyses. Then, to find the end-to-end
response time of a chain across multiple executors, we can sum
up the response time of all sub-chains associated with the chain
of interest plus the propagation delay between executors. This
works because the activation of each sub-chain is triggered by
the completion of the preceding sub-chain and can be delayed
by the amount of propagation delay. It is worth noting that
sub-chains on subsequent executors can have release jitters at
runtime, e.g., the preceding sub-chain finishes earlier than its
worst-case response time. One might suspect that such jitters
introduce more interference to the other chains; however, our
analysis already captures the effect of jitters with α in the
workload functions (Eq. (9) and Eq. (12)).

For example, consider a chain ΓC consisting of n sub-chains
spanning across n different executors as shown in Fig. 3. Due
to precedence dependencies among callbacks inside the chain,
callbacks of a sub-chain ΓCn can not start their execution
until the last callback of the preceding sub-chain ΓC(n−1) is
finished. Once the sub-chain ΓC(n−1) finishes, it takes δn−1

(the propagation delay between executors n−1 and n) for the
first callback of ΓCn to get ready. This pattern applies to all
sub-chains of ΓC . Therefore, RC can be obtained by the sum
of the response time of all sub-chains and their propagation
delays, i.e., RC =

∑n−1
i=1 (RCi + δi) +RCn.

It is possible that two or more sub-chains of the same
chain have been assigned to the same executor. If these sub-
chains are adjacent to each other, they can be merged into a
single sub-chain and analyzed. If they are not adjacent, we can
treat them as two independent chains; hence, each sub-chain
is considered an interfering chain to the other sub-chain for
analysis purposes.

VI. EVALUATION

We evaluate our proposed work through a case study on a
real platform and schedulability experiments using randomly-
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Fig. 3: Chain ΓC spanning across multiple executors
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Fig. 4: Chain set for case study

generated workloads. For the case study, we used the Galactic
version of ROS 2 on an NVIDIA Jetson AGX Xavier (AGX)
platform. Four CPU cores were used in our experiments,
each set to run at the maximum frequency (2.2 GHz). The
proposed priority-driven scheduling enhancements for multi-
threaded executors were implemented as modifications to the
rclcpp package of ROS 2.3

Chain 1 Chain 2 Chain 2 Chain 4

0

50

100

150

200

250

R
es

p
o

n
se

 T
im

e 
(m

s)

MT2: MORT MT2: WCRT MT4: MORT MT4: WCRT

(a) R-D

Chain 1 Chain 2 Chain 3 Chain 4

0

50

100

150

200

250

R
es

p
o

n
se

 T
im

e 
(m

s)

MT2: MORT MT2: WCRT MT4: MORT MT4: WCRT

(b) R-P

Chain 1 Chain 2 Chain 3 Chain 4

0

50

100

150

200

250

R
es

p
o

n
se

 T
im

e 
(m

s)

MT2: MORT MT2: WCRT MT4: MORT MT4: WCRT

(c) ME-D

Chain 1 Chain 2 Chain 3 Chain 4

0

50

100

150

200

250

R
es

p
o

n
se

 T
im

e 
(m

s)

MT2: MORT MT2: WCRT MT4: MORT MT4: WCRT

(d) ME-P

Fig. 5: Comparison of observed and analyzed response times

3Our source code is available at https://github.com/rtenlab/ros2-picas.
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Fig. 6: Chains across multiple executors

A. Case Study on AGX

The purpose of this case study is to understand the perfor-
mance characteristics of the ROS 2 multi-threaded executor
and to compare the observed response time against the worst-
case bounds obtained by analysis. Fig 4 depicts the chain set
used here, which is inspired by an autonomous robotic system.
It consists of four chains: Γ1 (π1 = 4; highest priority), Γ2

(π2 = 3), Γ3 (π3 = 2), and Γ4 (π4 = 1; lowest priority).
We ran this chain set for 5 minutes on AGX under each
executor configuration and took the 99th percentile as the
maximum observed response time (MORT) of each chain. For
the executor configurations, we considered a multi-threaded
executor with m threads, where m ∈ {2, 4}. The executor is
set to use cores equal to the number of threads they have;
hence, sbfΠ(∆) = m ·∆. For each case, we also tested with
and without our priority-driven scheduling enhancements and
mutually-exclusive callback groups. We also considered cases
where the chain set spans across two multi-threaded executors
(each with two threads) with and without priority-driven
enhancements. The total number of executor configurations
is therefore 2× 4 + 2 = 10.

For analytical bounds on the worst-case response time
(WCRT), we considered our analyses for constrained-deadline
chains on both standard (default) and priority-driven multi-
threaded executors, assuming all callbacks are in a reentrant
callback group (Theorems 1 and 2). We also examined our
analyses for mutually-exclusive callback group (Theorem. 5
and 6) by gathering callbacks of the chains Γ1 and Γ2

in a mutually-exclusive group and gathering callbacks of
the chains Γ3 and Γ4 in a reentrant group. Also, to eval-
uate our end-to-end latency analysis for chains spanning
across multiple executors (Sec. V-F), we assigned callbacks
{τ1, τ3, τ6, τ7, τ9, τ10} to a 2-threaded executor and assigned
the rest {τ2, τ4, τ5, τ8, τ11, τ12} to another 2-threaded execu-
tors. Since these two 2-threaded executors run on four cores
of the same processor, we assumed the propagation delay
between two executors is negligibly small.

Figs. 5 and 6 compare the MORT and WCRT of each
chain under different executor conditions. The caption of each
sub-graph represents: the first part “R” and “ME” for the
aforementioned settings of reentrant and mutually-exclusive
callback groups, respectively; and, the following “D” and
“P” for the ROS 2 default and the priority-driven scheduling
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Fig. 7: Observed response time of chains

schemes. The legend denotes: “MT#” for a multi-threaded
executor with # threads (e.g., MT4 is a 4-threaded executor);
“2*MT2” for the case of two 2-threaded executors.

In all cases, our analysis could safely upper-bound the
MORT. The priority-driven scheduling scheme outperforms
the default ROS 2 scheduler in both reentrant and mutually-
exclusive callback groups, especially for high-priority chains.
These results indicate that both MORT and WCRT are reduced
for high-priority chains with priority-driven scheduling and
this enhancement not only reduces analysis pessimism but
also improves the response time of critical chains at runtime.
Although the response time of low-priority chains slightly
increases with priority-driven scheduling, this is the cost to
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Fig. 8: Overhead w.r.t. the number of polling points (PP)

improve the response time of high-priority ones.
Fig. 7 illustrates more details on the observed response time

distributions of the four chains under various executor config-
urations. It is clearly shown that the use of priority-driven
scheduling reduces variations in the observed response time
of critical (high-priority) chains, thereby improving perceived
predictability.

To assess the overhead of our priority-driven scheduling
scheme, we measured the number of ReadySet updates during
5 minutes of running the case study under various executor
configurations. Fig. 8 illustrates the results. As can be seen, the
priority-driven scheduling scheme introduces less than 10% of
additional ReadySet updates compared to the default scheme.

B. Schedulability Experiments

In this section, we explore the schedulability ratio of the
proposed RTA framework using randomly-generated chain
sets with constrained and arbitrary deadlines. The following
abbreviations are used for each of the analysis approaches:

• PWA CD: Proposed Worst-case Analysis (PWA) for chains
with Constrained Deadlines (CD) – Theorem 1

• PPWA CD: Priority-driven PWA for CD – Theorem 2
• PWA AD: PWA for Arbitrary Deadlines (AD) – Theorem 3
• PPWA AD: Priority-driven PWA for AD – Theorem 4

We used the UUniFast algorithm [27] with a total utilization
from 0.8 to 4.0 with the step of 0.4 to generate 1,000 random
chain sets, where each set includes 5 chains and each chain
has 10 callbacks. At first, chains were generated for the
constrained-deadline case with TC = DC using the UUniFast
algorithm. Then, for arbitrary deadlines, we duplicated these
chains and doubled their deadlines. The number of threads is
set to m = 4.
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Fig. 9: Varying utilization of chain sets
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Fig. 9 shows the schedulability ratio of chain sets by our
four analysis approaches as the chain-set utilization increases.
The schedulability ratio might be seen as rather low for the
given utilization. However, it is worth noting that, in chain
scheduling, the precedence dependencies among callbacks
cause resource waste and therefore lead to a less schedu-
lability ratio than conventional task scheduling with no de-
pendencies. In general, priority-driven scheduling (PPWA CD
and PPWA AD) significantly outperforms the default ROS 2
scheduling policy (PWA CD and PWA AD), with as much as
66% point higher in schedulability. This is primarily due to the
fact that high-priority chains experience less delay from lower-
priority chains under PPWA since it fetches ready callbacks
immediately and schedules them strictly based on their as-
signed priority. The results of PPWA CD and PPWA AD look
similar in this figure. However, given that PPWA AD is tested
with chain sets with doubled deadlines, it can be said that
PPWA AD has much higher pessimism than PPWA CD. This
is somewhat expected from our analysis in Theorem 4 which
had to take into account multiple outstanding (= released and
unfinished) instances of each chain.

We also explored the schedulability ratio of our analyses
as the number of threads increases. Similar to above, we
generated 1,000 random chain sets, each including 5 chains
with 10 callbacks per chain. The utilization of each chainset
is fixed at 1.0 in this experiment. The results are shown in
Fig. 10. Note that scheduling a chain set with a utilization
equal to 1.0 on a single thread is almost infeasible due to the
precedence dependencies among callbacks. The schedulability
ratio improves with a more number of threads (m ≥ 2), but the
degree of improvement appears differently for each analysis
method. For PPWA CD and PPWA AD, the schedulability
ratio increases sharply at m = 2 and becomes almost plateau
afterward. On the other hand, the increase of PWA CD and
PWA AD is slower and is almost linear to the number of
threads. We can see that our proposed priority-driven enhance-
ment can achieve better schedulability with a fewer number
of threads.

Lastly, we explored the impact of the number of chains
on schedulability. Here, we kept the total utilization to 1 and
varied only the number of chains. Each generated chain has
10 callbacks, regardless of how many chains are generated for
each chain set. Fig. 11 depicts the results. The schedulability
ratio decreases with the number of chains for all analysis
methods, meaning interference increases with the number of
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chains although the total utilization remains the same. Recall
that, due to precedence dependencies, only one callback of
each chain instance can interfere with the chain under analysis.
However, by increasing the number of chains, the number of
callbacks from chains increases, and also the number of chain
instances in a time interval ∆ could increase. However, Fig. 11
shows that priority-driven scheduling is less affected by this
issue because it limits the source of interference to only higher-
priority chains. We therefore conclude that priority-driven
scheduling brings a significant benefit to real-time chains on
ROS 2 multi-threaded executors.

VII. CONCLUSION

In this paper, we proposed a comprehensive response-time
analysis framework for chains running on ROS 2 multi-
threaded executors. We analyzed the timing behavior of the
default scheduling scheme of ROS 2 multi-threaded executors
and proposed priority-driven scheduling as an improvement
over the default one. Our framework can analyze chains with
both arbitrary and constrained deadlines and can take into
account the effect of mutually-exclusive callback groups. We
conducted the evaluation with a case study on NVIDIA Jetson
AGX Xavier and schedulability experiments using randomly-
generated chains. The results demonstrate that our analysis
framework can safely upper-bound response times under vari-
ous conditions. In addition, our priority-driven scheduling for
ROS 2 multi-threaded executors not only reduces the response
time of critical chains but also improves analysis results.

As ROS 2 is becoming more popular in academia and
industry for more complex robotic systems with safety-critical
features, more active research efforts need to be made to ensure
timing correctness and improve system efficiency in ROS-
based systems. There are several interesting future directions,
including real-time support for accelerators, synchronization,
memory-induced interference, which have been studied for
conventional systems but not in the context of ROS or similar
middleware environments. We believe that our work fills an
important knowledge gap in this area and more interesting
work could be built upon our framework.
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