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ABSTRACT
Incremental learning on embedded edge devices is feasible nowa-
days due to the increasing computational power of these devices and
the reduction techniques applied to simplify the model. However,
edge devices still require significant time to update the learning
model and such time is hard to be obtained due to other tasks, such
as sensor data pulling, data preprocessing, and classification. In
order to secure the time for incremental learning and to reduce en-
ergy consumption, we need to schedule sensing activities without
missing any events in the environment. In this paper, we propose a
reinforcement learning-based sensor scheduler that dynamically
determines the sensing interval for each classification moment
by learning the patterns of event classes. The initial results are
promising compared to the existing scheduling approach.
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1 INTRODUCTION
Many smart IoT systems require continuous learning. This can be
achieved by performing both inference and learning tasks, includ-
ing feature extraction, classification, clustering and updating the
learning model, directly on local edge devices or offloading some
heavy workloads (e.g., model updating) to remote cloud servers.

Consider an event classification system with incremental learn-
ing capabilities for smart homes (see Fig. 1). This system consists of
a set of sensors and one edge device, with each sensor communicat-
ing with the edge device that performs inference and incremental
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Figure 1: Time-series sensing and incremental learning sys-
tem [2]

learning. The edge device determines when and how often to pull
sensor data from the sensors, which we call sensor scheduling. This
is a challenging problem. The edge device can classify the current
event in the environment only when the new sensor data arrives,
so a shorter sensing interval is better for classification performance.
On the other hand, a longer interval is better to reduce energy for
data transmission and to use the resulting idle time to run incre-
mental learning tasks that are essential to detect new event types.

In this work, we propose a reinforcement learning-based dy-
namic sensor scheduler that aims to minimize the sensing interval
while keeping the classification performance within the user’s ex-
pectations. In the past, we studied a scheduling approach [2] that
determines sensing periods for individual event classes. However,
that approach yields a fixed period that does not change at runtime,
which makes it not suitable for changing environments and leads
to energy wastage. There are other studies that used reinforce-
ment learning for sensing systems [1, 3], but their focus is mainly
on learning energy patterns, not on sensor scheduling and event
classification. Our proposed approach addresses these limitations.

2 PROPOSED METHOD
We present the proposed scheduler that uses Q-learning. The pur-
pose of the Q-learning model is to determine a suitable sensing
interval, 𝑇𝑠𝑝 , given the state of the current event and the previous
𝑇𝑠𝑝 values. We define the current state as the time it takes for the
current event to change to a different event, with the knowledge of
prior classification results. This time is defined as 𝑇𝑖𝑑𝑒𝑎𝑙 . We want
to maximize 𝑇𝑠𝑝 such that,

𝑇𝑠𝑝 − 𝑇𝑖𝑑𝑒𝑎𝑙 ≤ 𝐶𝐿 (1)

where 𝐶𝐿 is the classification latency constraint, i.e., the maximum
delay a user can tolerate to detect a new event.

Eq .(1) is considered as the first criterion 𝐶𝑟1 in training the
Q-learning model. The purpose of this is to make the scheduler
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Table 1: Q-learning model with different 𝐶𝑟1 and 𝐶𝑟2 re-
ward/penalty (R/P) ratios

𝐶𝑟1 (R/P) 𝐶𝑟2 (R/P) % Trans. Reduction 𝐶𝐿 Missed

50/10 5/1 12% 7
10/50 5/1 19% 0
50/50 5/1 12% 1
50/10 10/1 13% 2
50/10 1/10 6% 20
50/10 50/10 4% 34
50/50 20/20 8% 13
20/20 50/50 1% 34
50/50 30/30 12% 1

pick a 𝑇𝑠𝑝 value between the range of values that meet the CL
constraints, e.g., 𝑇𝑠𝑝 ∈ [0 − 100] seconds. The second criterion
𝐶𝑟2 is that the scheduler should try to choose a 𝑇𝑠𝑝 value that is
larger than or equal to the previous𝑇𝑠𝑝 in order to increase the idle
time until the class of the current event changes. Each criterion is
parameterized by the ratio between a reward and a penalty when
the condition is met. The ratios within each criterion and between
them impact the performance of the proposed scheduler to meet
the user’s preference: increasing the energy efficiency or lowering
the classification delay.

3 EVALUATION
We performed two experiments to evaluate the proposed learning-
based scheduler. The first one is to understand the impact of the
reward/penalty ratio of each criterion on the scheduler. The second
experiment is to compare the classification latency and energy
efficiency (idle time) under the proposed learning-based dynamic
scheduler and our prior static scheduling approach [2].

Dataset We used a simulated dataset that contains six different
classes of events that can be captured by commodity IoT sensors
from a user environment. The six classes include [None, Microwave,
Kettle, Faucet, Waste Disposer, Vent Fan] and the CL value selected
for each class is [5,12,15,5,8,15] seconds, respectively. The train-
ing set contains 7,000 seconds of sensor reading at each second,
randomly generated with different durations for each event. The
testing dataset is randomly generated at each test, with a range of
different lengths between 5,000-8,000 seconds.

3.1 Model Criteria Study
In the first experiment, we train the Q-learning model with different
penalty/reward ratios in different set-ups. We fix 𝐶𝑟2 and alter 𝐶𝑟1,
and vice-versa, to see the effect of each criterion. We also alter both
ratios simultaneously to understand their performance impact. In
Table 1, we only show the combinations that have a large impact
on the scheduler performance. In the first 6 rows of Table 1, we see
that changes in 𝐶𝑟1 do not impact the performance significantly
while changes in 𝐶𝑟2 do. However, 𝐶𝑟1 can regulate 𝐶𝑟2 to achieve
the desirable results, as can be seen in the last 3 rows.

3.2 Classification Latency and Idle Time
We compare the classification latency of the proposed learning-
based dynamic scheduler and the existing static scheduler. In Fig. 2a,
we simulate 2,000 seconds of data transmission between the sensor
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(a) Classification latency of static and dynamic schedulers (ground truth = fixed
period of 1s)
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(b) Accumulated classification latency under static and dynamic schedulers

Figure 2: Classification latency comparison

and an edge device. Although both schedulers are able to follow the
original pattern of the sensor data, the proposed dynamic scheduler
slightly outperforms the static one. It is more clear in Fig. 2b that
the static scheduler accumulates more latency over time.

In addition, the proposed dynamic scheduler needed only 9% of
active time for the edge device, i.e., the device can idle or sleep for
the remaining time, which is 1% better than the static scheduler.
Although the difference is small, the proposed scheduler is superior
in meeting the 𝐶𝐿 constraint (Eq. (1)), with only 4 𝐶𝐿 misses over
the entire test time span while the static scheduler missed 21 CL.

4 CONCLUSION
This work proposes a reinforcement learning-based dynamic sensor
scheduler for event classification on embedded edge devices. The
evaluation results are promising compared to our prior work. The
model can be further improved by optimizing the reward/penalty
ratio. We plan to investigate the cost of running Q-learning on edge
devices compared to the static scheduler with a real dataset rather
than the simulated data we used.
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