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Motivation
§ In a multi-GPU system, workload allocation methods can be 

categorized to:
§ Load distribution
§ Idle energy consumption from computing units causes energy inefficiency

§ Load concentration
§ Different tasks have different energy-preferred GPU

§ The problem is more complicated in a real-time system
§ Real-time tasks have different arriving patterns with different timing constraints
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Related Work
§ Real-time GPU Scheduling

§ Temporal multitasking¹ ² ³: focus on the time-sharing of the GPU
§ Poor energy efficiency and lack of support for heterogeneous GPUs

§ Spatial multitasking⁴
§ No consideration of energy efficiency as well as multi-GPUs

§ GPU Energy Efficiency⁵ ⁶ ⁷
§ Focuses on regulating the number of active SMs

§ Problem: SM-level power gating is not yet available in today’s GPUs

§ Our previous work – sBEET framework⁸
§ Combines spatial and temporal multitasking to balance energy consumption and schedulability

§ We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration
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Contributions

§ Analyzed the power usage characteristics on a multi-GPU system with our customized power 
monitoring tool

§ Proposed a framework to address the timeliness and energy efficiency simultaneously in a 
heterogeneous multi-GPU environment

§ Developed a custom power monitoring tool that obtains precise power measurements

§ The proposed work outperforms the conventional load concentration and distribution approaches in 
both real hardware and simulation
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We propose sBEET-mg:
ü An energy-efficient real-time GPU scheduling framework for heterogeneous 

multi-GPU systems

[1] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in GPU scheduling,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021 



Proposed Work Overview
§ Custom power sensing tool
§ Scheduling framework

§ Centralized scheduler – one single CUDA context
§ Two worker threads dedicated for each GPU
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System Model
§ Platform Model

§ A single-ISA system 𝚷 consisting with 𝝎
heterogeneous GPUs

§ A GPU 𝝅𝒌 containing 𝑴𝒌 SMs

§ Task Model
§ A taskset 𝜞 consists of 𝒏 periodic GPU tasks:
§ Non-preemptive 
§ W/ Constrained deadlines

𝜏" ≔ (𝐺", 𝑇", 𝐷")
WCET, period, deadline

§ Each task 𝜏" consists of a sequence of jobs 𝐽",$
§ Each job can execute with a different number 

of SMs on a different GPU
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Power and Energy Model
§ Power model

§ Power model: 𝑃 = 𝑃) + 𝑃' + 𝑃"'*(

§ For a set of jobs J = {𝐽+, 𝐽,, … , 𝐽-}:

§ For a taskset Γ, energy consumption in [t1, t2]: 

§ Energy consumption of all GPUs: 
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Insights on Conventional Approaches (1)

11/22/22 Insights on Conventional Approaches 8

§Baseline Scheduling Approaches

§ Load Concentration
§ It assigns a GPU job to the most packed GPU

§ Load Distribution
§ It chooses an idling GPU first (or a GPU with the highest number of idling SMs)



Insights on Conventional Approaches (2)
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§Homogeneous GPUs
§ Example 1
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Insights on Conventional Approaches (3)
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§Homogeneous GPUs
§ Example 2
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§ Same taskset, but 𝜏+ executes slightly earlier with 4 SMs
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A small difference made load distribution the winner



Insights on Conventional Approaches (4)
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§Heterogeneous GPUs
§ Example 1
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Insights on Conventional Approaches (5)
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§Heterogeneous GPUs
§ Example 2
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Insights on Conventional Approaches (6)
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§ To improve energy efficiency…

§ Neither approaches should be preferred regardless of whether the GPUs are 
homogeneous or not

§ If we can make all tasks on the same GPU finish at similar time, active-idle 
power consumption of unused SMs can be minimized

§ However, it is hard to realize with real-time tasks since they have different 
arrival patterns and timing constraints



Energy-Efficient Multi-GPU Scheduling (1)

§ Energy Optimality:

§ Definition 1. (Energy optimal SMs) The energy-optimal number of SMs 𝑚%,"
./0, for a task 𝜏" on 

a GPU 𝜋% is defined as the number of SMs that leads to the lowest energy consumption when it 
executes in isolation on the GPU during an arbitrary time interval.

§ Definition 2. (Energy preferred GPU) The energy-preferred GPU for a task 𝜏" in a multi-GPU 
system Π is the GPU that consumes the least amount of energy when 𝜏" executes with 𝑚%,"

./0

SMs on it.
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Energy-Efficient Multi-GPU Scheduling (2)

§ sBEET-mg Overview:
§ Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such 

that it brings the minimum expected energy consumption to all GPUs in the system

§ Approach:
§ An offline task distribution algorithm
ØAs a guideline for the runtime scheduler

§ A heuristic runtime scheduler
ØTwo worker threads per GPU to enable parallel execution of jobs
ØDecides whether to execute a job on the preassigned GPU or migrate it to another GPU
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Energy-Efficient Multi-GPU Scheduling (3)

§ Offline Task Distribution:
§ Main idea: For each task, the algorithm tries 

to assign it to the energy-preferred GPU

§ Step 1: Sort all tasks in the decreasing order 
of priority

§ Step 2: For each task, it obtains a list of 
GPUs in an order of energy-preference

§ Step 3: Simple utilization check for 
admission

§ Step 3: Assign the unassigned tasks in Step 3 
to the GPUs that will have the minimum 
utilization
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Energy-Efficient Multi-GPU Scheduling (4)

§ Runtime Job Migration:
§ Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the 

GPUs are not SM-level power-gated

§ Decide at runtime:
ØConsider the energy consumption of a given job on each GPU
ØChoose the one that can meet all deadlines with the minimum predicted energy consumption 
Ø If no GPU can meet the deadline, select the one with the minimum energy consumption
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Energy-Efficient Multi-GPU Scheduling (5)

GPU 0 
worker 0

GPU 0 
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GPU 0 
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The first instance 
of !" is migrated

The first instance of !! is schedulable

ü All three jobs are schedulable w/ 
migration

§ Runtime Job Migration – Case Study 1



Energy-Efficient Multi-GPU Scheduling (6)
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ü Energy consumption in two 
schedules:
• w/o migration - 6.51 J
• w/ migration - 6.49 J

§ Runtime Job Migration – Case Study 2



Evaluation
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§ Multi-GPU System
§ NVIDIA RTX3070 + NVIDIA T400
§ Ubuntu 18.04 + CUDA 11.6

§ Benchmark pool & Power parameters

§ Scheduling Approaches
§ sBEET-mg
Ø The complete version of the proposed 

framework
§ sBEET-mg Offline Only 
Ø The offline part of the proposed 

framework
§ LCF (“Little-Core-First”)
§ BCF (“Biggest-Core-First”)
Ø Load concentration

§ Load-Dist (load distribution): 
Ø Load distribution



Hardware Setup
§ Multi-GPU System

§ NVIDIA RTX3070 @ 1725 MHz
§ NVIDIA T400 @ 1425 MHz

§ Custom Power Measurement Tool
§ nRF52832 SoC
§ INA260 power sensor
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Performance Evaluation
§ Taskset Generation

§ 100 randomly generated tasksets
§ Running for 15s on our multi-GPU 

system

§ Experiment Settings
§ 24 SMs are allowed on RTX3070
§ Results of other settings can be found in 

the paper
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ü Up to 23% and 18% less deadline misses 
compared to Load-Dist and BCF

ü sBEET-mg has lower energy consumption



Power Prediction Accuracy
§ Randomly generated one taskset under each utilization
§ Average mean-absolute-error is 10.80 W (≈6% of 180W)
§ More results can be found in the paper
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Comparison with Previous Work - sBEET
§ Taskset Generation

§ 100 randomly generated tasksets
§ Running for 15s on our multi-GPU system

§ Experiment Settings
§ 24 SMs are allowed on RTX3070

§ Scheduling Approaches
§ Proposed approaches

§ sBEET-mg, sBEET-mg Offline Only
§ sBEET w/ other allocation methods

§ WFD, FFD, BFD
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ü Note that the results of BFD+sBEET and 
FFD+sBEET are overlapped 

ü sBEET-mg has the lowest deadline miss ratio



Simulation w/ Multiple GPUs
§ Simulating a Multi-GPU System

§ RTX3070 w/ 12 SMs
§ RTX3070 w/ 12 SMs
§ T400 w/ all 6 SMs
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Conclusion
§ We observed that the existing simple task allocation approaches are not a preferred option for 

energy efficiency regardless of whether the GPU is homogeneous or heterogeneous

§ We extended the prior work and proposed sBEET-mg, the multi-GPU scheduling framework that 
improves both schedulability and energy efficiency

§ We designed a power monitoring setup for precise power measurement for our experiments

§ Various experiments on both real hardware and simulation shows our proposed work can 
simultaneously reduce deadline misses and energy consumption
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Source code available at https://github.com/rtenlab/sBEET-mg/

https://github.com/rtenlab/sBEET-mg/
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Thank you!
https://github.com/rtenlab/sBEET-mg/

https://github.com/rtenlab/sBEET-mg/

