Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi and Hyoseung Kim

University of California, Riverside

IEEE Real-Time Systems Symposium (RTSS) 2022

Motivation

- In a multi-GPU system, workload allocation methods can be categorized to:
 - Load distribution
 - Idle energy consumption from computing units causes energy inefficiency
 - Load concentration
 - Different tasks have different energy-preferred GPU
- The problem is more complicated in a real-time system
 - Real-time tasks have different arriving patterns with different timing constraints

Related Work

- Real-time GPU Scheduling
 - Temporal multitasking^{1 2 3}: focus on the time-sharing of the GPU
 - Poor energy efficiency and lack of support for heterogeneous GPUs
 - Spatial multitasking⁴
 - No consideration of energy efficiency as well as multi-GPUs
- GPU Energy Efficiency^{5 6 7}
 - Focuses on regulating the number of active SMs
 - Problem: SM-level power gating is not yet available in today's GPUs
- Our previous work sBEET framework⁸
 - Combines spatial and temporal multitasking to balance energy consumption and schedulability
 - We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration

^[1] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Systems, 48:34-74, 05 2012

^[2] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach for predictable GPU access control. RTCSA, 2017

^[3] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar. RGEM: A responsive GPGPU execution model for runtime engines. RTSS, 2011

^[4] S. K. Saha, Y. Xiang, and H. Kim. STGM: Spatio-temporal GPU management for real-time tasks. RTCSA, 2019

^[5] P. Aguilera, K. Morrow, and N. S. Kim, "QoS-aware dynamic resource allocation for spatial-multitasking GPUs," in 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014

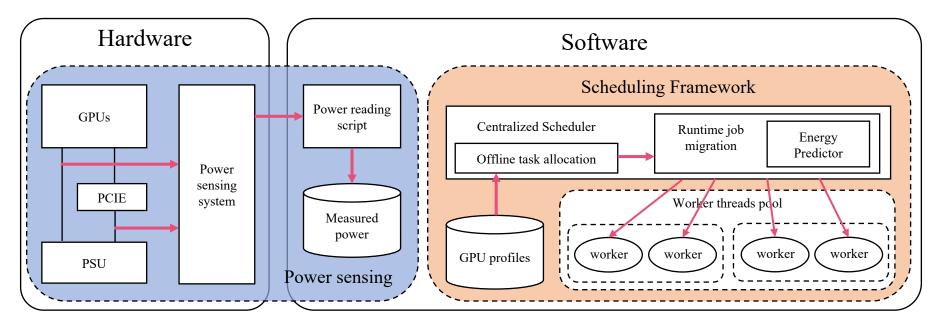
^[6] Z.-G. Tasoulas and I. Anagnostopoulos, "Improving GPU performance with a power-aware streaming multiprocessor allocation methodology," *Electronics*, vol. 8, no. 12, 2019.

^[7] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng. Power gating strategies on GPUs. TACO, 2011

^[8] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, "Balancing energy efficiency and real-time performance in GPU scheduling," in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021

Contributions

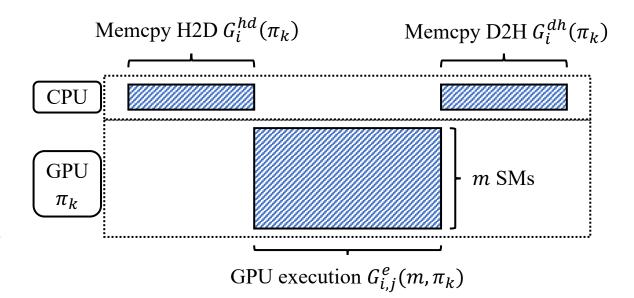
We propose sBEET-mg:


✓ An energy-efficient real-time GPU scheduling framework for heterogeneous multi-GPU systems

- Analyzed the power usage characteristics on a multi-GPU system with our customized power monitoring tool
- Proposed a framework to address the timeliness and energy efficiency simultaneously in a heterogeneous multi-GPU environment
- Developed a custom power monitoring tool that obtains precise power measurements
- The proposed work outperforms the conventional load concentration and distribution approaches in both real hardware and simulation

[1] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, "Balancing energy efficiency and real-time performance in GPU scheduling," in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021

Proposed Work Overview


- Custom power sensing tool
- Scheduling framework
 - Centralized scheduler one single CUDA context
 - Two worker threads dedicated for each GPU

System Model

- Platform Model
 - A single-ISA system I consisting with *w* heterogeneous GPUs
 - A GPU π_k containing M_k SMs
- Task Model
 - A taskset Γ consists of n periodic GPU tasks:
 - Non-preemptive
 - W/ Constrained deadlines
 - $\tau_i \coloneqq (G_i, T_i, D_i)$
 - WCET, period, deadline
 - Each task τ_i consists of a sequence of jobs $J_{i,j}$
 - Each job can execute with a different number of SMs on a different GPU

WCET of a job $J_{i,j}$: $G_{i,j}(m, \pi_k) = G_i^{hd}(\pi_k) + G_{i,j}^e(m, \pi_k) + G_i^{dh}(\pi_k)$

Power and Energy Model

Power model

• Power model: $P = P^s + P^d + P^{idle}$

• For a set of jobs
$$J = \{J_1, J_2, \dots, J_n\}$$
: $P = P^s + \sum_{i=1}^n P_i^d(m_i) + P^{idle}(M - \sum_{i=1}^n m_i)$

For a taskset Γ, energy consumption in [t1, t2]:

$$E_{k}(t_{1},t_{2}) = \int_{t_{1}}^{t_{2}} \left(P_{k}^{s} + \sum_{J_{i} \in J} \left(P_{k,i}^{d} \left(\sum_{m=1}^{M_{k}} x_{i}^{m}(t) \right) \right) + P_{k}^{idle} \left(M_{k} - \sum_{J_{i} \in J} \sum_{m=1}^{M_{k}} x_{i}^{m}(t) \right) \right) dt$$

• Energy consumption of all GPUs:

$$E([t_1, t_2]) = \sum_{\forall \pi_k \in \Pi} E_k([t_1, t_2])$$

 $x_{i}^{m}(t) = \begin{cases} 0, \tau_{i} \text{ is not active on } SM_{k} \\ 1, \tau_{i} \text{ is active on } SM_{k} \end{cases}$

Insights on Conventional Approaches (1)

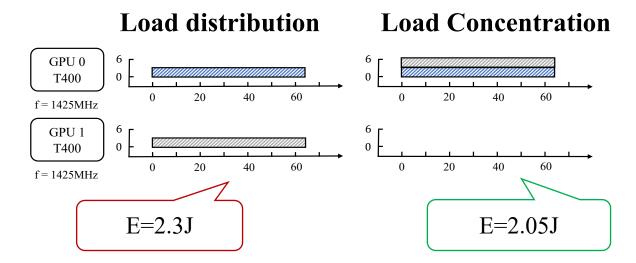
Baseline Scheduling Approaches

Load Concentration

• It assigns a GPU job to the most packed GPU

Load Distribution

• It chooses an idling GPU first (or a GPU with the highest number of idling SMs)


Insights on Conventional Approaches (2)

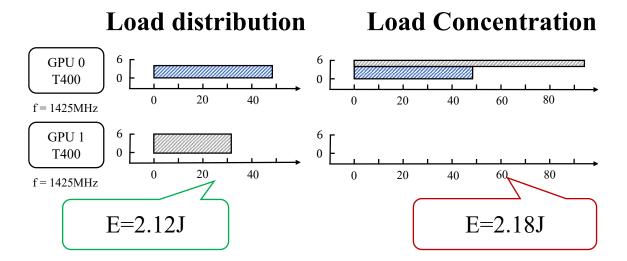
Homogeneous GPUs

• Example 1

Table III: Taskset in Examples 1 and 2

Task	Application	$G^e_i(\pi_0,6)$	$G_i^e(\pi_0,4)$	$G^e_i(\pi_0,3)$	$G^e_i(\pi_0,2)$
$ au_1 = au_2$	Histogram	32.67 ms	47.95 ms	63.724 ms	95.53 ms

Load concentration is better in this case

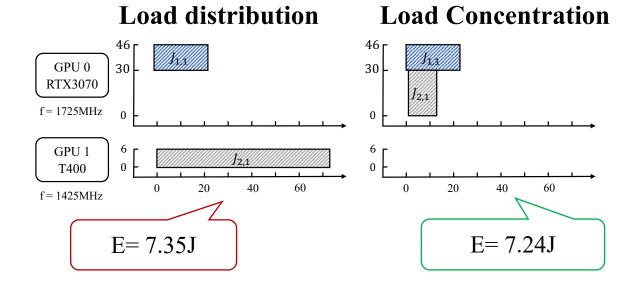

Insights on Conventional Approaches (3)

- Homogeneous GPUs
 - Example 2

Table III: Taskset in Examples 1 and 2

TaskApplication $G_i^e(\pi_0, 6)$ $G_i^e(\pi_0, 4)$ $G_i^e(\pi_0, 3)$ $G_i^e(\pi_0, 2)$ $\tau_1 = \tau_2$ Histogram32.67 ms47.95 ms63.724 ms95.53 ms

• Same taskset, but τ_1 executes slightly earlier with 4 SMs


A small difference made load distribution the winner

Insights on Conventional Approaches (4)

- Heterogeneous GPUs
 - Example 1

Table IV: Taskset in Example	and	4	
------------------------------	-----	---	--

Task	Application	$G^e_i(30,\pi_0)$	$G^e_i(16,\pi_0)$	$G_i^e(6,\pi_1)$
$ au_1$	MatrixMul	11.98 ms	21.55 ms	-
$ au_2$	Hotspot	12.00 ms	22.31 ms	73.188 ms

Insights on Conventional Approaches (5)

- Heterogeneous GPUs
 - Example 2

Table IV: Taskset in Example 3 and 4

Task	Application	$G_i^e(30,\pi_0)$	$G^e_i(16,\pi_0)$	$G^e_i(6,\pi_1)$
$ au_1$	MatrixMul	11.98 ms	21.55 ms	-
$ au_2$	Hotspot	12.00 ms	22.31 ms	73.188 ms

Insights on Conventional Approaches (6)

- To improve energy efficiency...
 - Neither approaches should be preferred regardless of whether the GPUs are homogeneous or not
 - If we can make all tasks on the same GPU finish at similar time, active-idle power consumption of unused SMs can be minimized
 - However, it is hard to realize with real-time tasks since they have different arrival patterns and timing constraints

Energy-Efficient Multi-GPU Scheduling (1)

- Energy Optimality:
 - Definition 1. (*Energy optimal SMs*) The energy-optimal number of SMs $m_{k,i}^{opt}$, for a task τ_i on a GPU π_k is defined as the number of SMs that leads to the lowest energy consumption when it executes in isolation on the GPU during an arbitrary time interval.
 - **Definition 2.** (*Energy preferred GPU*) The energy-preferred GPU for a task τ_i in a multi-GPU system Π is the GPU that consumes the least amount of energy when τ_i executes with $m_{k,i}^{opt}$ SMs on it.

$$\underset{\pi_k \in \Pi}{\operatorname{argmin}} \int_0^{\delta} P_k^s + P_{k,i}^d(m_{k,i}^{opt}) + P_k^{idle}(M_k - m_{k,i}^{opt}) dt$$

Energy-Efficient Multi-GPU Scheduling (2)

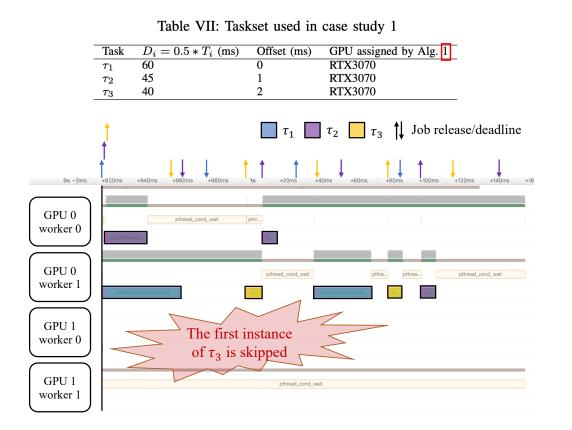
- sBEET-mg Overview:
 - Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such that it brings the minimum expected energy consumption to all GPUs in the system
- Approach:
 - An offline task distribution algorithm
 - > As a guideline for the runtime scheduler
 - A heuristic runtime scheduler
 - > Two worker threads per GPU to enable parallel execution of jobs
 - > Decides whether to execute a job on the preassigned GPU or migrate it to another GPU

Energy-Efficient Multi-GPU Scheduling (3)

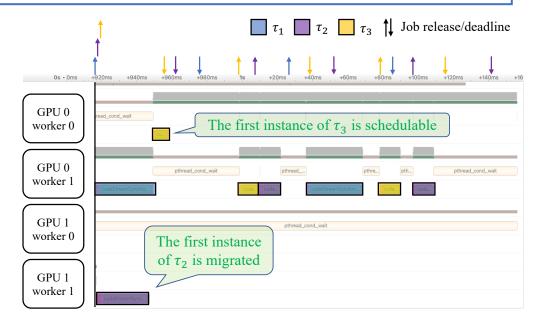
• Offline Task Distribution:

- Main idea: For each task, the algorithm tries to assign it to the energy-preferred GPU
- Step 1: Sort all tasks in the decreasing order of priority
- Step 2: For each task, it obtains a list of GPUs in an order of energy-preference
- Step 3: Simple utilization check for admission
- Step 3: Assign the unassigned tasks in Step 3 to the GPUs that will have the minimum utilization

Alg	orithm 1 Offline Task Distribution
	procedure TASK DISTRIBUTION
2:	Sort tasks in Γ in decreasing order of priority
3:	for $ au_i \in \Gamma$ do
4:	Get a list Π_i of GPUs in non-increasing order of expected
	energy consumption for τ_i
5:	for $\pi_k \in \Pi_i$ do
6:	if $U(\pi_k) + U_i(\pi_k, m_{k,i}^{opt}) \leq 1$ then
7:	Assign τ_i to π_k
8:	break
9:	end if
10:	end for
11:	if τ_i is not assigned then
12:	Assign τ_i to the GPU that has a minimum utilization
	after τ_i is assigned
13:	end if
14:	end for
15:	end procedure


Energy-Efficient Multi-GPU Scheduling (4)

- Runtime Job Migration:
 - Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the GPUs are not SM-level power-gated


- Decide at runtime:
 - Consider the energy consumption of a given job on each GPU
 - > Choose the one that can meet all deadlines with the minimum predicted energy consumption
 - > If no GPU can meet the deadline, select the one with the minimum energy consumption

Energy-Efficient Multi-GPU Scheduling (5)

Runtime Job Migration – Case Study 1

✓ All three jobs are schedulable w/ migration

Energy-Efficient Multi-GPU Scheduling (6)

Runtime Job Migration – Case Study 2

Table VIII: Taskset used in case study 2

GPU 0 pt/wad_cord_wait	Task	$D_i = 0.5 * T_i \text{ (ms)}$	Offset (ms)	GPU assigned by Alg. 1
$ \begin{array}{c c c c c c } \hline & \tau_1 & \hline & \tau_2 & \downarrow \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\$	$ au_1$	100	0	RTX3070
0s · s +520ms +540ms +580ms +600ms +62 GPU 0	$ au_2$	100	1	T400
worker 0 worker 0 GPU 0 pttread_cond_wait GPU 1 pttread_cond_wait GPU 1 pttread_cond_wait GPU 1 worker 0 GPU 1 pttread_cond_wait GPU 1 worker 0 GPU 1 gttread_cond_wait	GPU 0 worker 0 GPU 1 worker 0 GPU 1	T ₂ ↓ Job release/dea	ţ	$\begin{array}{c c} \hline & \tau_1 & \hline & \tau_2 & \uparrow \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \\$

 \checkmark Energy consumption in two schedules:

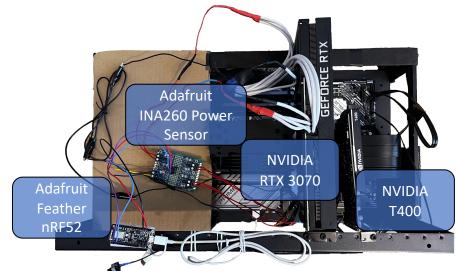
- w/o migration 6.51 J
- w/ migration 6.49 J

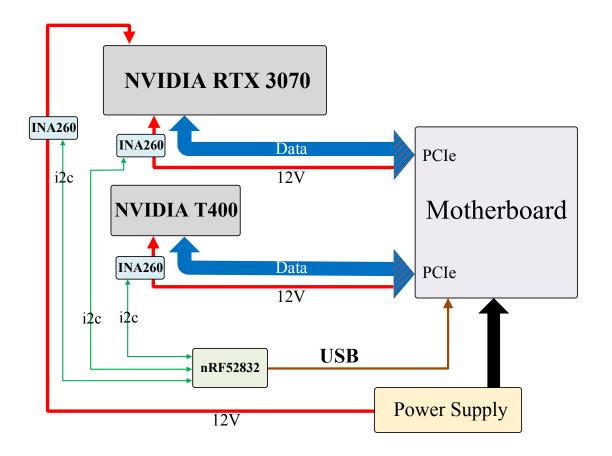
Evaluation

- Multi-GPU System
 - NVIDIA RTX3070 + NVIDIA T400
 - Ubuntu 18.04 + CUDA 11.6
- Benchmark pool & Power parameters

(a) Dynamic power of b	benchmarks
------------------------	------------

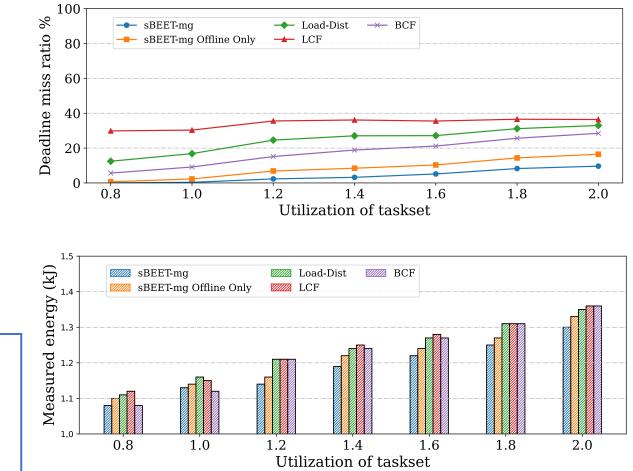
$Benchmark_i$	$P^{d}_{0,i}(1)$	$P_{1,i}^{d}(1)$
MatrixMul	3.77 W	2.06 W
Stereodisparity	1.63 W	0.98 W
Hotspot	1.14 W	0.81 W
DXTC	1.67 W	1.15 W
BFS	0.98 W	1.07 W
Histogram	0.91 W	1.19 W

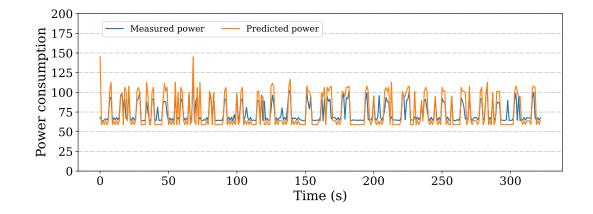

(b) Idle and static power of each GPU


GPU_k	P_k^s	P_k^{idle}
π_0 (RTX 3070)	46 W	0.445 W
π_1 (T400)	8 W	0.652 W

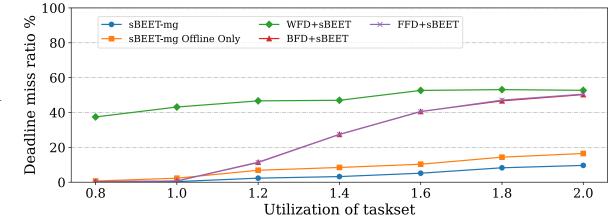
- Scheduling Approaches
 - sBEET-mg
 - The complete version of the proposed framework
 - sBEET-mg Offline Only
 - The offline part of the proposed framework
 - LCF ("Little-Core-First")
 - BCF ("Biggest-Core-First")
 - Load concentration
 - Load-Dist (load distribution):
 - Load distribution

Hardware Setup


- Multi-GPU System
 - NVIDIA RTX3070 @ 1725 MHz
 - NVIDIA T400 @ 1425 MHz
- Custom Power Measurement Tool
 - nRF52832 SoC
 - INA260 power sensor

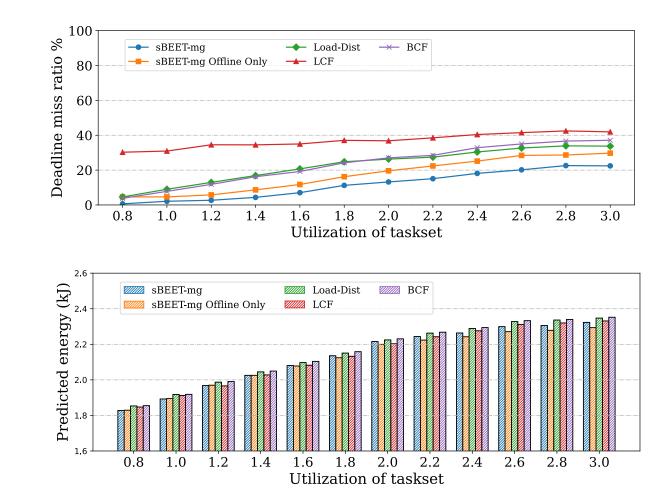

Performance Evaluation

- Taskset Generation
 - 100 randomly generated tasksets
 - Running for 15s on our multi-GPU system
- Experiment Settings
 - 24 SMs are allowed on RTX3070
 - Results of other settings can be found in the paper
- ✓ Up to 23% and 18% less deadline misses compared to Load-Dist and BCF
- ✓ sBEET-mg has lower energy consumption


Power Prediction Accuracy

- Randomly generated one taskset under each utilization
- Average mean-absolute-error is 10.80 W (≈6% of 180W)
- More results can be found in the paper

Comparison with Previous Work - sBEET


- Taskset Generation
 - 100 randomly generated tasksets
 - Running for 15s on our multi-GPU system
- Experiment Settings
 - 24 SMs are allowed on RTX3070
- Scheduling Approaches
 - Proposed approaches
 - sBEET-mg, sBEET-mg Offline Only
 - sBEET w/ other allocation methods
 - WFD, FFD, BFD

- ✓ Note that the results of BFD+sBEET and FFD+sBEET are overlapped
- $\checkmark\,$ sBEET-mg has the lowest deadline miss ratio

Simulation w/ Multiple GPUs

- Simulating a Multi-GPU System
 - RTX3070 w/ 12 SMs
 - RTX3070 w/ 12 SMs
 - T400 w/ all 6 SMs

Conclusion

- We observed that the existing simple task allocation approaches are not a preferred option for energy efficiency regardless of whether the GPU is homogeneous or heterogeneous
- We extended the prior work and proposed sBEET-mg, the multi-GPU scheduling framework that improves both schedulability and energy efficiency
- We designed a power monitoring setup for precise power measurement for our experiments
- Various experiments on both real hardware and simulation shows our proposed work can simultaneously reduce deadline misses and energy consumption

Source code available at https://github.com/rtenlab/sBEET-mg/

Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi, and Hyoseung Kim

Thank you!

https://github.com/rtenlab/sBEET-mg/