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Motivation

" In a multi-GPU system, workload allocation methods can be
categorized to:

* Load distribution
= [dle energy consumption from computing units causes energy inefficiency

* Load concentration
= Different tasks have different energy-preferred GPU

* The problem 1s more complicated in a real-time system
» Real-time tasks have different arriving patterns with different timing constraints
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Related Work

= Real-time GPU Scheduling

» Temporal multitasking' 2 *: focus on the time-sharing of the GPU
= Poor energy efficiency and lack of support for heterogeneous GPUs

= Spatial multitasking?
= No consideration of energy efficiency as well as multi-GPUs

= GPU Energy Efficiency” ¢’

= Focuses on regulating the number of active SMs
= Problem: SM-level power gating is not yet available in today’s GPUs

= QOur previous work — sBEET framework?®

= Combines spatial and temporal multitasking to balance energy consumption and schedulability
= We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration
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Contributions

We propose sSBEET-mg:
v' An energy-efficient real-time GPU scheduling framework for heterogeneous
multi-GPU systems

= Analyzed the power usage characteristics on a multi-GPU system with our customized power
monitoring tool

= Proposed a framework to address the timeliness and energy efficiency simultaneously in a
heterogeneous multi-GPU environment

= Developed a custom power monitoring tool that obtains precise power measurements

= The proposed work outperforms the conventional load concentration and distribution approaches in
both real hardware and simulation

[1]Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in GPU scheduling,” in 2021 IEEE Real-Time Systems Symposium (RTSS), 2021
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Proposed Work Overview

= Custom power sensing tool

= Scheduling framework

= Centralized scheduler — one single CUDA context
= Two worker threads dedicated for each GPU
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System Model

= Platform Model

= A single-ISA system II consisting with w
heterogeneous GPUs

= A GPU 7, containing M;, SMs

» Task Model
= A taskset I' consists of n periodic GPU tasks:
= Non-preemptive
= W/ Constrained deadlines
T; = (Gy, Ty, Dy)
WCET, period, deadline

= Each task 7; consists of a sequence of jobs J; ;

= Each job can execute with a different number
of SMs on a different GPU
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WCET of ajob J; ;:
G j(m,my) = G (my) + Gii(m,m) + G ()

Memcpy H2D G (m,) Memcpy D2H G ()

CPU

. //

System Model

- m SMs

GPU execution G ;(m, )



T
Power and Energy Model

" Power model
= Power model: P = PS + p4 4 ptdle

n n
" Forasetofjobs] = {1, Jo, ., Jnk:  p_psy zpid(mi) 4 pidle () — Zmi)
i=1 i=1

= For a taskset I', energy consumption in [t1, t2]:

t2
Ey(t1, t2) = f (P;? +Z
tq

* Energy consumption of all GPUs:

E([tl:tz]) — Z Ek([tlr tz]) xim(t) :{

Vg €Ell

0, 7; is not active on SM,
1,7; is active on SMy,

11/22/22 Power and Energy Model 7



B —_—
Insights on Conventional Approaches (1)

» Baseline Scheduling Approaches

" Load Concentration
= [t assigns a GPU job to the most packed GPU

* Load Distribution
= [t chooses an 1dling GPU first (or a GPU with the highest number of idling SMs)

11/22/22 Insights on Conventional Approaches 8



Insights on Conventional Approaches (2)

Table III: Taskset in Examples and

* Homogeneous GPUs
Task Application G¢(mo,6) G¢(mo,4) G$(mo,3) G¢(mo,2)

- Examp le 1 71 = 172 Histogram 32.67 ms 4795 ms 63.724 ms 95.53 ms
Load distribution Load Concentration
6 6 - -
GTT(;]OO 0 [ ol
f= 1425MHz 0 20 40 60 ] 0 20 40 60
)
GPU | 6 -
T400 0 l: I

1 1 1 1 1 1 -, I 1 1 I 1
0 20 40 60 0 20 40 60

f=1425MHz N
[ E=2.3] [ E=2.05J J

[Load concentration is better in this case

11/22/22 Insights on Conventional Approaches



Insights on Conventional Approaches (3)

" Homo geneous GPUs Table III: Taskset in Examples and
Task Application G¢(mo,6) G¢(mo,4) G$(mo,3) G¢(mo,2)

" EXample 2 71 = 72 Histogram 32.67 ms 47.95 ms 63.724 ms 95.53 ms

= Same taskset, but 7, executes slightly earlier with 4 SMs

Load distribution Load Concentration
6 6
Tao | of | Uz
= 1425MHz 0 20 40 0 20 40 60 80
6 6
GPU 1 _
T400 O [ ||_ 1 1 > 0 F 1 1 1 1 1 1 1 1 1
—— . >
0 20 40 0 20 40 6 80

f=1425MHz OR
E=2.12] [ E=2.18] J

A small difference made load distribution the winner
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Insights on Conventional Approaches (4)

Table 1V: Taskset in Example [3|and
Task  Application G$(30,m9) G$(16,m) G£(6,7m1)

» Heterogeneous GPUs

[ ] T1 MatrixMul 11.98 ms 21.55 ms
Examp le 1 ) Hotspot 12.00 ms 22.31 ms 73.188 ms
Load distribution Load Concentration
T
GPU O %%
RTX3070

f=1725MHz

)

oo | of L Tl ]
0 20 40 60
f=1425MHz
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Insights on Conventional Approaches (5)

» Heterogeneous GPUs
= Example 2

Table 1V: Taskset in Example and

Task  Application G$(30,m9) G$(16,m) G£(6,7m1)
T MatrixMul 11.98 ms 21.55 ms
T Hotspot 12.00 ms 22.31 ms 73.188 ms

Load distribution Load Concentration

46
)

RTX3070
—

)

T400
—

f=1425MHz

E="7.19]

f=1725MHz ¢ |

-

GPU 0 30F &

i

GPU 1 6
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Insights on Conventional Approaches (6)

" To improve energy efficiency...

* Neither approaches should be preferred regardless of whether the GPUs are
homogeneous or not

» [f we can make all tasks on the same GPU finish at similar time, active-idle
power consumption of unused SMs can be minimized

* However, it is hard to realize with real-time tasks since they have different
arrival patterns and timing constraints
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Energy-Efficient Multi-GPU Scheduling (1)

* Energy Optimality:

= Definition 1. (Energy optimal SMs) The energy-optimal number of SMs m,oﬁt, for a task 7; on

a GPU m, 1s defined as the number of SMs that leads to the lowest energy consumption when it
executes 1n 1solation on the GPU during an arbitrary time interval.

= Definition 2. (Energy preferred GPU) The energy-preferred GPU for a task 7; in a multi-GPU
system II is the GPU that consumes the least amount of energy when 7; executes with mZ?t
SMs on it.

)
argmin/ P + P (m) + Pi(My, — mi¥))dt
mr€ll JO ’ ,

11/22/22 Energy-Efficient Multi-GPU Scheduling 14



Energy-Efficient Multi-GPU Scheduling (2)

* SBEET-mg Overview:

= Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such
that it brings the minimum expected energy consumption to all GPUs in the system

= Approach:

= An offline task distribution algorithm
» As a guideline for the runtime scheduler
= A heuristic runtime scheduler
» Two worker threads per GPU to enable parallel execution of jobs

» Decides whether to execute a job on the preassigned GPU or migrate it to another GPU
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Energy-Efficient Multi-GPU Scheduling (3)

= Offline Task Distribution:

= Main idea: For each task, the algorithm tries
to assign it to the energy-preferred GPU

Algorithm 1 Offline Task Distribution
1: procedure TASK DISTRIBUTION

: : ~ (2: Sort tasks in I' in decreasing order of priority )
(= Step 1: Sort all tasks in the decreasing order 3. form €T do b
of pI‘iOI’ity 4: Get a list II; of GPUs in non-increasing order of expected
s . - : 4 _energy consumption for 7; )
= Step 2: For each task, it obtains a list of /5 for ?UE( H3 ‘o : ) < 1 )
. 6: i ) + iﬂ-k’mz,z’ < en
_ GPUs 1n an order of energy-preference = il gty
. eq e . ) o
" = Step 3: Simple utilization check for B break
. . 9 end if
. admission ) o _e;.d for t - J
/ i . . . Y : if 7; is not assigned then
. Step 3. ASSlgl’l the unaSSIgned tasks in Step 3 2: Assign 7; to the GPU that has a minimum utilization
to the GPUs that will have the minimum : after 7; lsda§;1gned
oq o . : ena 1 J
_utilization ) 1% end for

15: end procedure
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Energy-Efficient Multi-GPU Scheduling (4)

= Runtime Job Migration:

= Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the
GPUs are not SM-level power-gated

= Decide at runtime;:

» Consider the energy consumption of a given job on each GPU
» Choose the one that can meet all deadlines with the minimum predicted energy consumption
» If no GPU can meet the deadline, select the one with the minimum energy consumption
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Energy-Efficient Multi-GPU Scheduling (5)

= Runtime Job Migration — Case Study 1

0s - Oms

)
GPU 0
worker 0
—
)
GPU 0
worker 1
—
)
GPU 1
worker 0
—
)
GPU 1
worker 1

Table VII: Taskset used in case study 1

Task D; =0.5xT; (ms) Offset (ms) GPU assigned by Alg. 1]

1 60 0 RTX3070
T2 45 1 RTX3070
T3 40 2 RTX3070

—_

~—————
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. Tq . T, |:| T3 ﬂ Job release/deadline
Pt |1 |

+920ms +940ms +960ms +980ms 1s +20ms +40ms +60ms +80ms +100ms +120ms +140ms +16

pthread_cond_wait

pthread_cond_wait pthre..| |pthrea

The first instance
of 75 is skipped

v" All three jobs are schedulable w/
migration

)
GPU 0
worker 0
—
)
GPU 0
worker 1
—
)
GPU 1
worker 0
—
)
GPU 1
worker 1

~———

s 20ms  +940ms

. Ty - P |:| T3 ﬂ Job release/deadline
P b1

__4960ms  +980ms _ 1s ____ +20ms +40ms +60ms +80ms +100ms _ +120ms __ +140ms __ +16

:l The first instance of 75 is schedulable ]

pthread_cond_wait

Energy-Efficient Multi-GPU Scheduling

The first instance
of T, is migrated
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Energy-Efficient Multi-GPU Scheduling (6)

= Runtime Job Migration — Case Study 2

Table VIII: Taskset used in case study 2

Task D; =0.5+T; (ms) Offset (ms) GPU assigned by Alg. 1]
1 100 0 RTX3070
To 100 1 T400

On [ ﬂ Job release/deadline o [ n Job release/deadline
N I R v Energy consumption in two
Y
orys avo | | e schedules:
worker 0 worker 0
. .
— | S * w/0 migration - 6.51 ]
GPUO 1 f GPU 0 : . .
worker 1 Migrated for ° _
vorkert | 1 e - [;ergy efﬁciemy} w/ migration - 6.49 J
GPUL 11 GPUT | | —_
worker 0 worker 0
P— —
Y ——
GPU 1 GPU 1
worker 1 worker 1
— )
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Evaluation

= Multi-GPU System

= NVIDIA RTX3070 + NVIDIA T400
= Ubuntu 18.04 + CUDA 11.6

* Benchmark pool & Power parameters

(a) Dynamic power of benchmarks

Benchmark; Ps;(1)  PE(1)

MatrixMul 37T W 206 W
Stereodisparity 1.63 W 098 W
Hotspot 1.14 W 081W
DXTC 1.67W 1L15W
BFS 098 W 1.07W
Histogram 091W 119W

(b) Idle and static power of each GPU

GPU,, P piate
mo (RTX 3070) 46 W 0445 W
w1 (T400) 8W 0652 W
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= Scheduling Approaches
= SBEET-mg

» The complete version of the proposed
framework

* sSBEET-mg Offline Only

» The oftline part of the proposed
framework

= LCF (“Little-Core-First”)

= BCF (“Biggest-Core-First”)
» Load concentration

" Load-Dist (load distribution):
» Load distribution

Evaluation 20
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Hardware Setup

= Multi-GPU System y
= NVIDIA RTX3070 @ 1725 MHz ‘ NVIDIA RTX 3070
= NVIDIA T400 @ 1425 MHz NAzed
{ PCI
= Custom Power Measurement Tool ) . ¢
" nRF52832 SoC NVIDIA T400| Motherboard
= INA260 power sensor
INAZ60 E_ PCle
 Adafruit /éq S 1L o USB I
| INAgggsIZc;wer , \ ) 3 inRF52832 |
: NVIDIA g = | = | Power Supply

RTX 3070

Adafruit —74, 75 Lol
Feather AN :__:“7{/;,»/'-‘ 7 ; T4OO

nRF52 I » — \\"Kﬁ—" r——
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Performance Evaluation

—»— BCF

—&— Load-Dist

—&— LCF

—#— sBEET-mg Offline Only

—e— sBEET-mg

1.4 1.6 1.8 2.0

Utilization of taskset

1.2
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0.8

o o o o
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= Running for 15s on our multi-GPU
system

= 100 randomly generated tasksets

= Taskset Generation

* Experiment Settings

m 24 SMs are allowed on RTX3070

772 BCF

Load-Dist
2 LCF

w22
w22

sBEET-mg
sBEET-mg Offline Only

w22
)

/

////

////

5
1.4

i (I3 AB1ous Uo.Smmmz

= Results of other settings can be found in
the paper

1.4

1.2

1.0

0.8

Utilization of taskset

1IN misses

v" Up to 23% and 18% less deadl

compared to Load-Dist and BCF
v' sBEET-mg has lower energy consumption
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Performance Evaluation
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Power Prediction Accuracy

» Randomly generated one taskset under each utilization
= Average mean-absolute-error 1s 10.80 W (=6% of 180W)

= More results can be found in the paper

2175 —— Measured power —— Predicted power
2,150
3125 |
S 100+ ] -~
5100 \H i ‘VUWM“\'”\\
g ML‘N‘WW‘- M—\'*-I '\‘w‘v"\ri M‘
()
= 507
g 25

0 50 100 150 200 250 300

Time (s)
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Comparison with Previous Work - sSBEET

100

= Taskset Generation 5 e mETmg e WRDEET o FEDsspEET

= 100 randomly generated tasksets g Commm e

= Running for 15s on our multi-GPU system é zz //,___/ M *
* Experiment Settings =1

= 24 SMs are allowed on RTX3070 A ol - - L Tg/l'g—_—;o

Utilization of taskset

= Scheduling Approaches
= Proposed approaches
= sBEET-mg, sSBEET-mg Offline Only

» SBEET w/ other allocation methods
= WFD, FFD, BFD

v" Note that the results of BFD+sBEET and
FFD+sBEET are overlapped
v" sBEET-mg has the lowest deadline miss ratio
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Simulation w/ Multiple GPUs
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Multi-GPU System

lating a
= RTX3070 w/ 12 SMs
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Conclusion

We observed that the existing simple task allocation approaches are not a preferred option for
energy efficiency regardless of whether the GPU 1s homogeneous or heterogeneous

= We extended the prior work and proposed sSBEET-mg, the multi-GPU scheduling framework that
improves both schedulability and energy efficiency

= We designed a power monitoring setup for precise power measurement for our experiments

= Various experiments on both real hardware and simulation shows our proposed work can
simultaneously reduce deadline misses and energy consumption

Source code available at
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https://github.com/rtenlab/sBEET-mg/

Towards Energy-Efficient Real-Time Scheduling of
Heterogeneous Multi-GPU Systems

Yi1di Wang, Mohsen Karimi, and Hyoseung Kim

Thank you!

https://github.com/rtenlab/sBEET-mg/
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