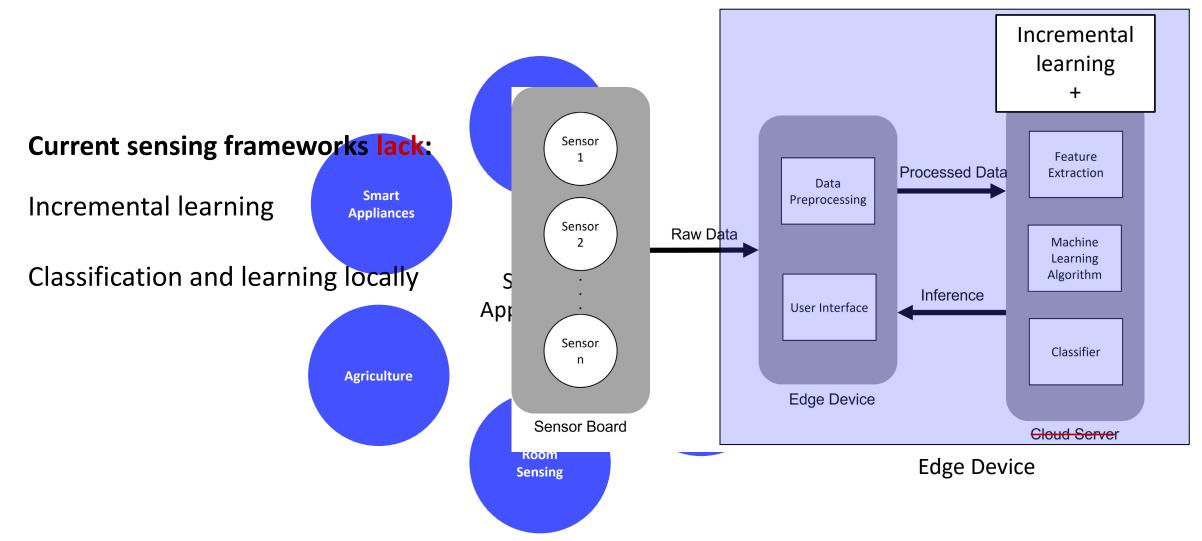
An Open-World Time-Series Sensing Framework for Embedded Edge Devices

ABDULRAHMAN BUKHARI, SEYEDMEHDI HOSSEINIMOTLAGH AND HYOSEUNG KIM

UNIVERSITY OF CALIFORNIA, RIVERSIDE

{ABUKH001, SHOSS007, HYOSEUNG}@UCR.EDU

Motivational Example



Introduction - Motivation

What is Incremental Learning

Supervised vs Open-world

Incremental learning: continuously learning new classes from a stream of data

COST: the classifier will forget old classes **→ Catastrophic Forgetting**¹

This is a **supervised** approach if the new classes are **labelled**

Unlabeled data from unknown classes **>** Open-world problem

Recognize unknown samples and cluster them into new classes

[1] McCloskey et al. Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. (1989)

Introduction - Background

Classification and Clustering the Unknowns

Classical classifier cannot recognize unknown samples

We can do that:

- Adding a threshold to the classifier output
- Use an open-world classifier
 - OpenMax¹
 - Extreme Value Machine (EVM)²

To Cluster unknown samples

• Unsupervised clustering algorithms → FINCH³ Algorithm

[1] Bendale et al. Towards Open Set Deep Networks. (CVPR, 2016)

[2] Rudd et al The Extreme Value Machine. (2018)

[3] Saquib et al. Efficient parameter-free clustering using first neighbor relations. (CVPR, 2019)

Introduction - Background

Time-Series Sensing Data

Synthetic Sensors¹

- A single sensor board can capture multiple environmental facets
- Can be deployed into different environments to recognize different sets of events
 Limitations

 requires access to a server for training and classification

DeepSense²

- A unified framework for time-series sensing data
- Achieve high inference performance for both classification and regression problems
 Limitations

 network architecture changes based on #of sensors

BOTH

• Cannot incrementally learn new classes for a data-stream

[1] Laput et al. Synthetic Sensors: Towards General-Purpose Sensing. (HFCS, 2017)
 [2] Yao et al. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing. (ICWWW, 2017)

Introduction - Prior Work

Incremental Learning

(Supervised) Incremental Classifier and Representation Learning¹

- Sets of exemplars to represent previously learned classes
- The model is updated with (new samples + exemplars sets)
- Fixed-Representation class incremental learning (FRCI)

(Unsupervised) Open-World Learning without Labels (OWL)²

- Uses Extreme Value Machine (EVM) as a classifier
- Cluster unknown samples using Finch Alg.

They only applied the algorithms on computer vision applications

Have not been extended to time-series sensing data Or evaluated on embedded edge devices

[1] Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. (CVPR, 2017)[2] Jafarzadeh et al. Open-World Learning Without Labels. (2020)

Introduction - Prior Work

Contributions

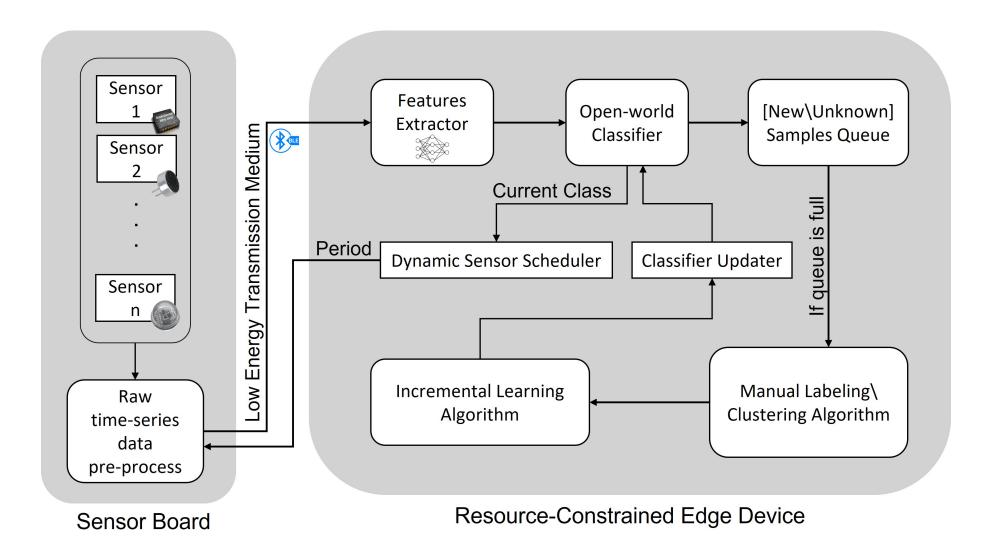
OpenSense: an open-world sensing framework for time-series data for embedded edge devices

- We present a sensing framework that can run different incremental learning algorithms for both supervised and unsupervised time-series sensing data problems
- We propose an **efficient DNN architecture** called sDNN, which outperforms the state-of-art architecture in both inference performance and resource efficiency for timeseries activity classification
- We demonstrate the implementation of **OpenSense** on a resource-constrained edge device and its effectiveness in open-world incremental learning of time-series data.

Outline

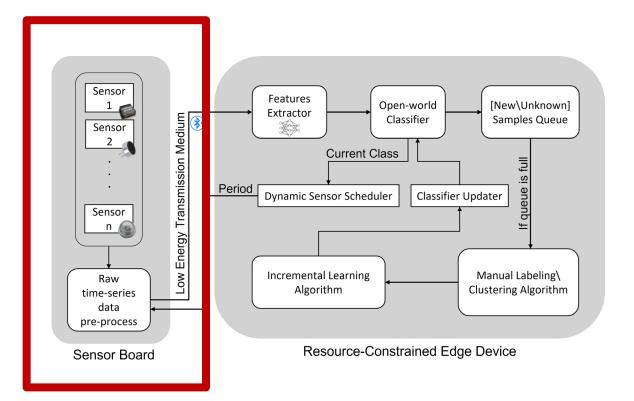
- Introduction
- OpenSense Framework
 - Sensor board
 - Embedded edge device
- Evaluation
 - Inference and learning performance
 - Latency and energy consumption performance
- Conclusion

Overview of OpenSense

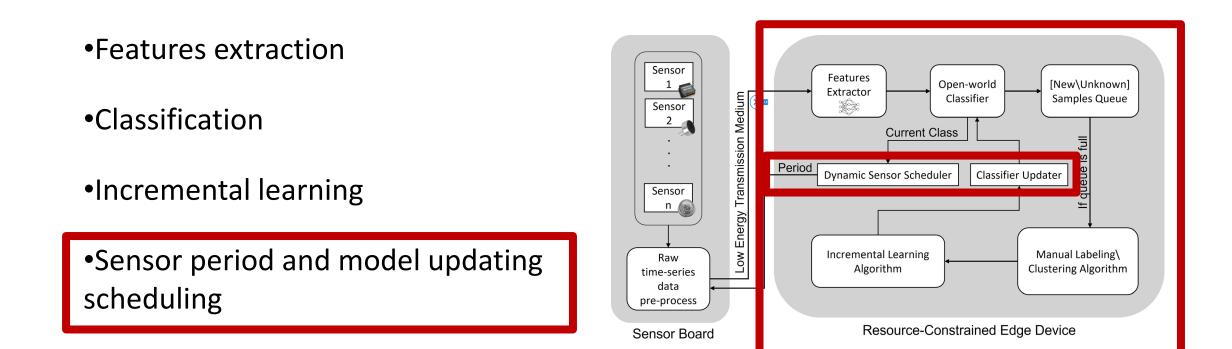


Sensor Board

- Collect raw data from sensors
- Preprocess them as time-series data
- Transmit the data periodically
- The period managed by the dynamic sensor scheduler



Embedded Edge Device



Features Extractor

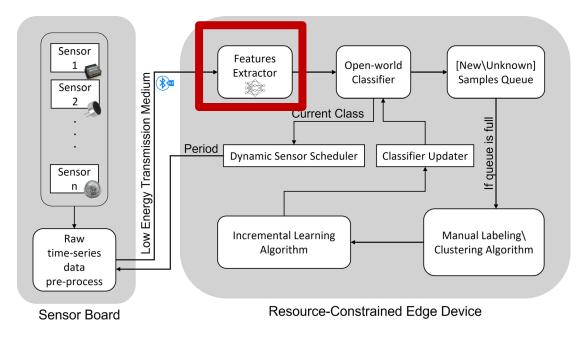
Further data preprocessing based on the sensor data:

- High-sampling rate → Fast Fourier Transform
- Low-sampling rate → Statistical information

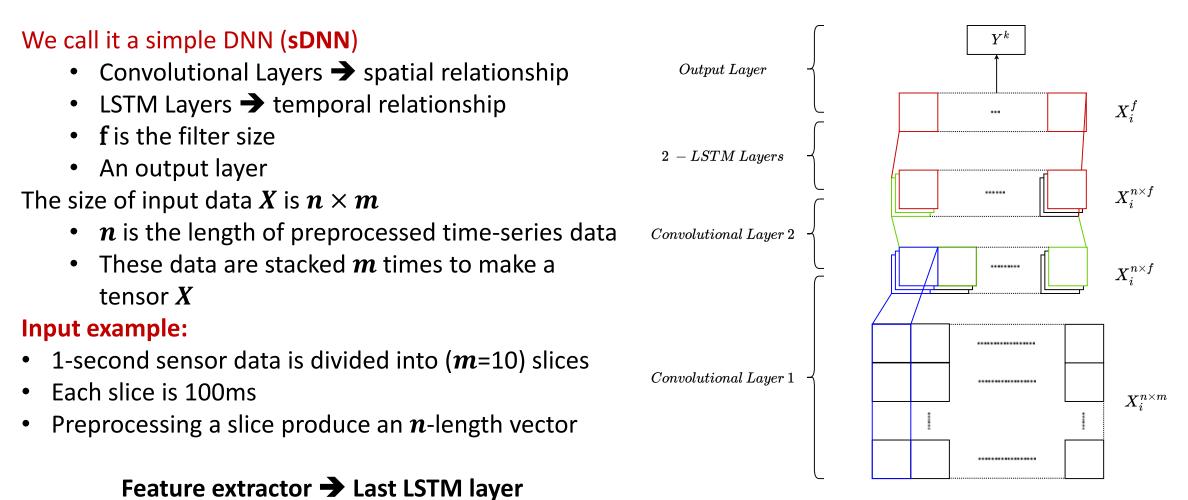
The feature extractor is based on the DNN model

Features are extracted by taking the output data of the last layer before the output layer

We need a light-weight DNN model that extract reliable features at low computational cost



Our Proposed DNN



 $Sensor \ Data \ at \ T \ = \ i$

OpenSense Framework - Embedded Edge Device

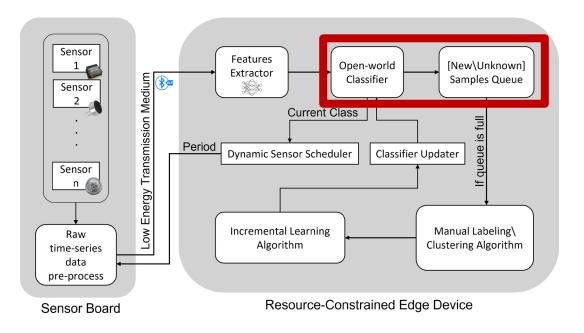
Open-World Classifier

Requirements for an open-world classifier:

- 1. Accurately classify samples from known classes
- 2. Recognize and reject unknown samples

For supervised approach \rightarrow a classical classifier

The rejected samples will be collected in a queue for incremental learning



Incremental Learning Algorithm

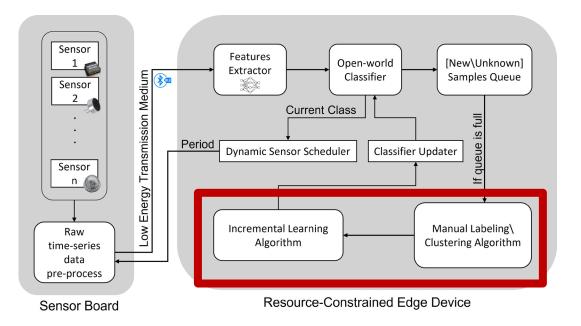
A true incremental learner must meet **3 criteria**:

- 1. Can be trained from a stream of data with new classes
- 2. The inference performance must stay competitive
- 3. Updating the model must meet the resource requirements of the system

We evaluated three algorithms on our framework:

- The naïve approach (NA)
- Fixed-Representation class incremental learning¹ (FRCI)
- OpenSense based on EVM²

For unsupervised learning we use Finch algorithm to cluster the unknown samples



[1] Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. (CVPR, 2017)[2] Jafarzadeh et al. Open-World Learning Without Labels. (2020)

OpenSense Framework - Embedded Edge Device

Sensor Dynamic Scheduler

Goal: change the sensor data transmission period to:

- Reduce the energy consumption on the sensor board
- Increase the idle time → free time for other tasks (e.g., learning)

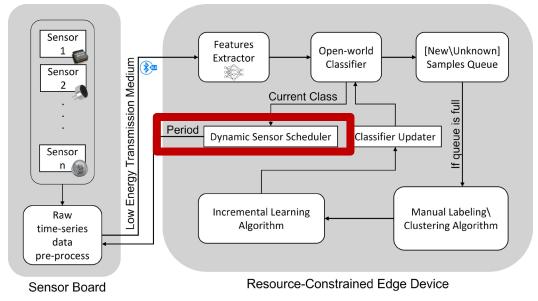
Propose a Class-based Sensor Dynamic Scheduler:

The sensor data update period T_{sp} to detect an event **C** must meet the following condition:

$$n \times T_{sp} - T_e \leq CL$$

n: $\#T_{sp}$ repeated until a new event occurs T_e : the time when the current event **C** ends Classification Latency (*CL*) constraint: the maximum time for the current class to change to a different class while the sensor is idling

OpenSense Framework - Embedded Edge Device



Algorithm 1

We propose a searching algorithm to find the maximum feasible sensor update period (T_{sp}) that does not exceed CL

Such as:

$$n \times T_{sp} - T_e \le CL$$

- 1. Select minimum time among all time intervals for a class C as a base idle period T_{sp}
- 2. The base period is compared with all other time intervals such that the difference after *n* cycles does not exceed *CL*
- 3. If does not meet the condition \rightarrow decrement T_{sp} by 1

```
Algorithm 1: Sensor Dynamic Scheduler
```

```
Input : T_e: All time intervals for class C
              CL: User allowable classification latency
   Output: T_{sp}: Sensor idle period for class C
1 T_e \leftarrow AscendingSort(T_e)
2 T_{sp} \leftarrow FindMinimum(T_e)
3 L1 \leftarrow T_{sp}
4 L2 \leftarrow Length(T_{sp})
5 i \leftarrow 0; j \leftarrow 0
6 for i \leq L1 do
        for j < L2 do
             n \leftarrow Ceil(T_e[j]/T_{sp})
 8
             Thresholds \leftarrow T_e[j] + CL
 9
             if n \times T_{sp} \geq Threshold then
10
                 T_{sp} \leftarrow T_{sp} - 1
11
                  break
12
             end
13
             j + +
14
        end
15
        i + +
16
17 end
18 if T_{sp} > 1 then
       return T_{sp}
19
20 else
        return fail
21
22 end
```

Model and Classifier Updater

The model will be updated when number of samples of a new class meet the minimum requirement

BUT: resource-constraint edge devices cannot update the model with all new samples

We propose a model updating scheduler:

to partially update the model during the T_{sp} set by the dynamic scheduler

 T_{min} : the minimum average time to train 1 sample

Al	gorithm 2: Model Update Scheduler
I	nput: T_{sp} : The sensor period for a given class
	N_u : # of samples of the new discovered class
	S_u : Samples from the new discovered class
1 N	$N_{old} \leftarrow 0$
2 W	while $N_u \neq 0$ do
3	if $T_{sp} \geq T_{min}$ then
4	$N_{ST} \leftarrow ComputeSamplesToTrain(T_{sp})$
5	$UpdateTheModel(S_u[N_{old}:N_{ST}])$
6	if $N_u \ge N_{ST}$ then
7	$N_{old} \leftarrow N_{ST}$
8	else
9	return success
10	end
11	else
12	return fail /* wait for next T_{sp} */
13	end
14 e	nd

Experiment Sets

Classification and learning performance

- 1. Compare DeepSense vs. Proposed sDNN vs. Proposed sDDN + EVM
- 2. Evaluate incremental learning algorithms in a supervised setting
- 3. Evaluate open-world learning algorithms in an unsupervised setting

Latency and energy consumption performance

- 4. Compare the execution time for different tasks from experiment #3
- 5. Run the open-world learning based on OWL-EVM on an embedded device and compare the execution time of different tasks
- 6. Evaluate the latency performance of the sensor dynamic scheduler
- 7. Evaluate the energy consumption of the sensor dynamic scheduler
- 8. The Model Updater Scheduler Performance

Evaluation

Evaluation

Evaluation platforms:

- Intel i7 with a dedicated NVIDIA GeForce GTX 1060 GPU [experiments: 1-4]
- Raspberry Pi 4 Model B with 2GB memory as an edge device [experiment: 5]
- TI CC2640R2 LAUNCHXL Board as a sensor board [experiment: 6-8]

Datasets:

- HHAR¹: the Heterogeneous Human activity recognition (~120k samples)
 [Biking, Sitting, Standing, 'Walking, Stair Up and Stair down]
- PAMAP2²: Physical Activity Monitoring Data Set (~27k samples)

[lying, sitting, standing, walking, running, cycling, Nordic walking, watching TV, computer work, car driving, ascending stairs, descending stairs, vacuum cleaning, ironing, folding laundry, house cleaning, playing soccer, rope jumping]

[1] Allan Stisen et al. Smart Devices are Different: Assessing and Mitigating Mobile Sensing Heterogeneities for Activity Recognition (SenSys, 2015)[2] Reiss et al. Introducing a New Benchmarked Dataset for Activity Monitoring. (ISWC, 2012)

DeepSense vs. sDNN vs. sDNN + EVM

Objective: compare the inference performance

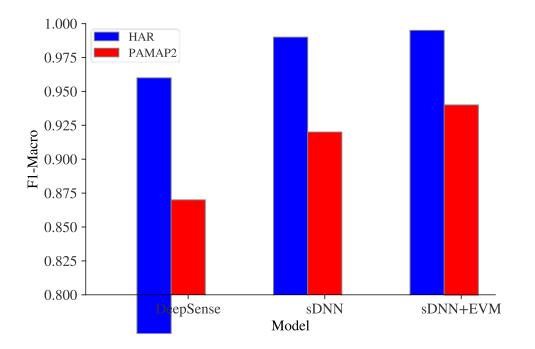
HHAR	→	6 classes
PAMAP2	→	18 classes

Metrics:

- Classification Accuracy
- F1-Macro score

The testing set is the same on all variants

Reason: DeepSense overfits the training dataset due to unnecessarily complex model



DeepSense vs. sDNN vs. sDNN + EVM

Objective: compare the training efficiency of each architecture

Dataset	HHAR		PAMAP2		
DNN Model	DeepSense	sDNN	DeepSense	sDNN	
#epochs to converge	100	10	150	50	
avg. execution time\epoch	37s	16s	18s	3s	
speed-up\epoch	2.3x		6x		
total training time	61m 40s	2m 31s	45m	2m 30s	

Supervised Incremental Learning

Objective: evaluate incremental learning algorithms:

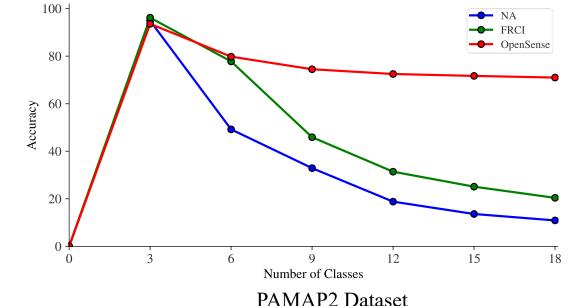
- 1. The naïve approach (NA)
- 2. Fixed-Representation class incremental learning (FRCI)
- 3. OpenSense (Ours)
- Initial training set

HHAR \rightarrow 2 classes PAMAP2 \rightarrow 3 classes # new classes in each data-stream HHAR \rightarrow 2 classes PAMAP2 \rightarrow 3 classes

Metrics:

Classification Accuracy

The testing set add classes at each increment



Open-World Incremental Learning

Objective: evaluate the same incremental learning algorithms from the previous experiment in unsupervised setting

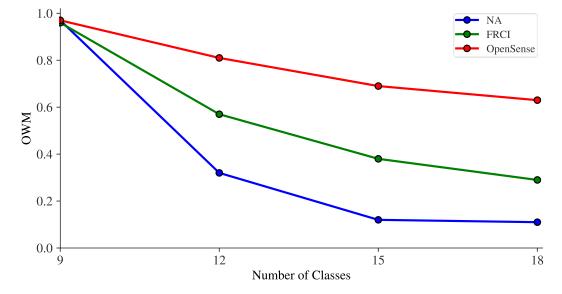
Initial training set

PAMAP2 → 9 classes #unknown classes in each data-stream PAMAP2 → 3 classes Metrics: Open-World Metric¹

 $OWM = \frac{N_{KK} Acc(X_{KK}) + N_{UU} B3(X_{UU})}{N_{KK} + N_{KU} + N_{UK} + N_{UU}}$

The testing set add classes at each increment

[1] Jafarzadeh et al. Open-World Learning Without Labels. (2020)



PAMAP2 Dataset

Algorithm	NA	FRCI	OpenSense
#discovered new classes	3/9 classes	5/9 classes	9/9 classes

Execution Time of Open-World Incremental Learning

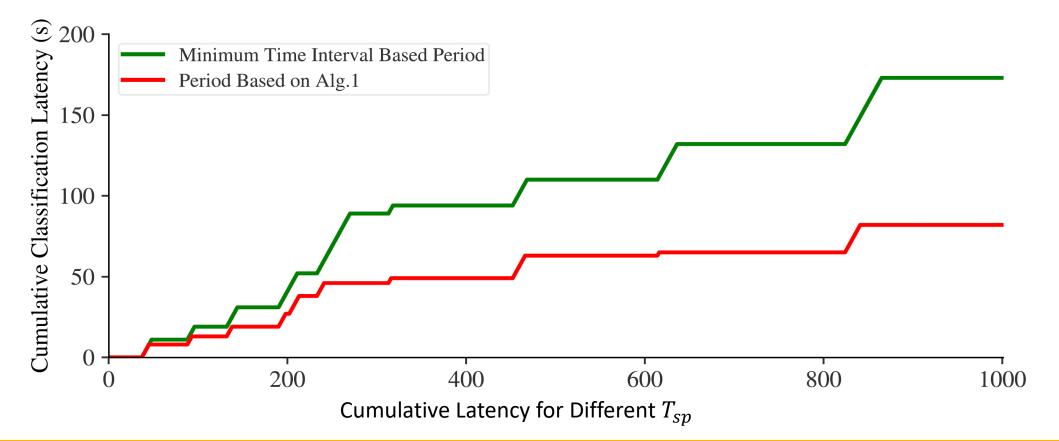
Objective: Compute the average execution time of different tasks in the framework from the previous experiment

All algorithms ran on the same training and testing datasets

Task	Inference		Incremental Learning		Total Session	
	Feature Extraction	Classification	Queuing	Clustering	Model Updating	Time
NA	0.5s	12ms	16µs	0.46s	17.4s	67.8s
FRCI	0.47s	35ms	26µs	0.27s	16.5s	64.5s
OpenSense	0.49s	31ms	18µs	0.13s	0.92s	6.1s

Sensor Dynamic Scheduler Latency Performance

- We ran the sensor board for 1000s and capture each event for a random duration
- Assign T_{sp} for each class based on the history of each event
- Used different CL for each class



Conclusion

Proposed OpenSense Framework

- We evaluated different incremental learning algorithms on our framework
- OpenSense can successfully run on the resource-constraint edge device
- sDNN outperforms DeepSense on different datasets
- The proposed sensor dynamic scheduler and model updater scheduler make the framework efficiently runnable on resource-constraint edge devices

Future work

• Extend OpenSense to consider other resources on edge devices, e.g., accelerators

Thank you Q & A

Algorithm 1

We propose a searching algorithm to find the maximum feasible sensor update period (T_{sp}) that does not exceed CL

Such as:

$$n \times T_{sp} - T_e \le Cl$$

- 1. Select minimum time interval among all time intervals for a class C as a base idle period T_{sp}
- 2. The base period is compared with all other time intervals such that the difference after *n* cycles does not exceed *CL*
- 3. If does not meet the condition \rightarrow decrement T_{sp} by 1

```
Algorithm 1: Sensor Dynamic Scheduler
   Input : T_e: All time intervals for class C
             CL: User allowable classification latency
   Output: T_{sp}: Sensor idle period for class C
1 T_e \leftarrow AscendingSort(T_e)
2 T_{sp} \leftarrow FindMinimum(T_e)
3 L1 \leftarrow T_{sp}
4 L2 \leftarrow Length(T_{sp})
5 i \leftarrow 0; j \leftarrow 0
6 for i \leq L1 do
       for j < L2 do
            n \leftarrow Ceil(T_e[j]/T_{sp})
 8
            Thresholds \leftarrow T_e[j] + CL
 9
            if n \times T_{sp} \ge Threshold then
10
                T_{sp} \leftarrow T_{sp} - 1
11
                break
12
13
        In the worst case where no feasible
14
        T_{sp} is found, the user may decide to
15
         set CL to the minimum value of one,
16
17 end
         which ensures T_{sp} to be at least two,
18 if 7
         i.e., CL = 1 and T_{sp} = 2
19
20 else
       return fail
21
22 end
```

Example: Fixed T_{sp}

Example:

Time-intervals history for the following events:

A: [5, 9, 11, 16, 19] seconds B: [3, 7, 15, 20, 23] seconds C: [10, 18, 23, 31, 39] seconds

If the following sequence of events occurred and the user set CL = 2 seconds

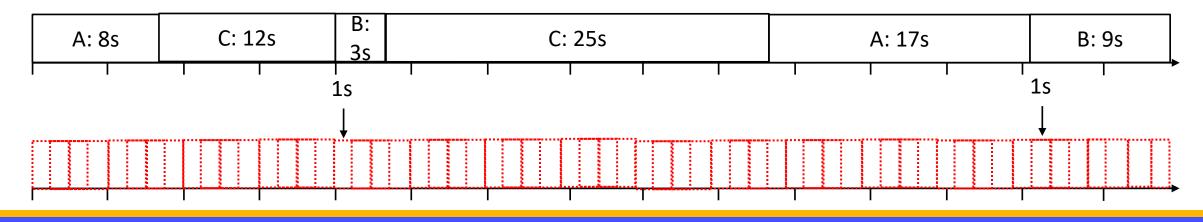
Naive approach 1: Focus on satisfying CL

at T_{sp} = 2 for all events

#Sensor transmission = 39 times

Total classification latency = 2 sec

Missing CL = 0 times



Example: Minimum Interval T_{sp}

Example:

Time-intervals history for the following events:

A: [5, 9, 11, 16, 19] seconds B: [3, 7, 15, 20, 23] seconds C: [10, 18, 23, 31, 39] seconds

If the following sequence of events occurred and the user set CL = 2 seconds

Naïve approach 2: Focus on maximizing idle time

For each event, T_{sp} = minimum interval of that

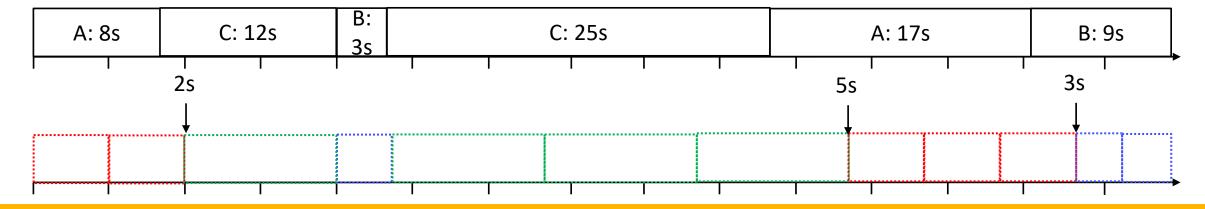
event

 $T_{sp}A = 5s$, $T_{sp}B = 3s$, $T_{sp}C = 10s$

#Sensor transmission = 12 times

Total classification latency = 10 sec

Missing CL = 2 times



Example: *T_{sp}***Based on Alg.1**

Example:

Time-intervals history for the following events:

A: [5, 9, 11, 16, 19] seconds B: [3, 7, 15, 20, 23] seconds C: [10, 18, 23, 31, 39] seconds

If the following sequence of events occurred and the user set CL = 2 seconds

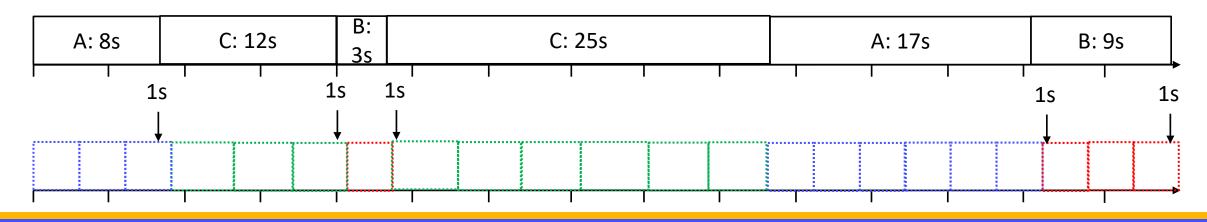
Based on the proposed algorithm

$$T_{sp}A = 3s$$
, $T_{sp}B = 3s$, $T_{sp}C = 4s$

#Sensor transmission = 22 times

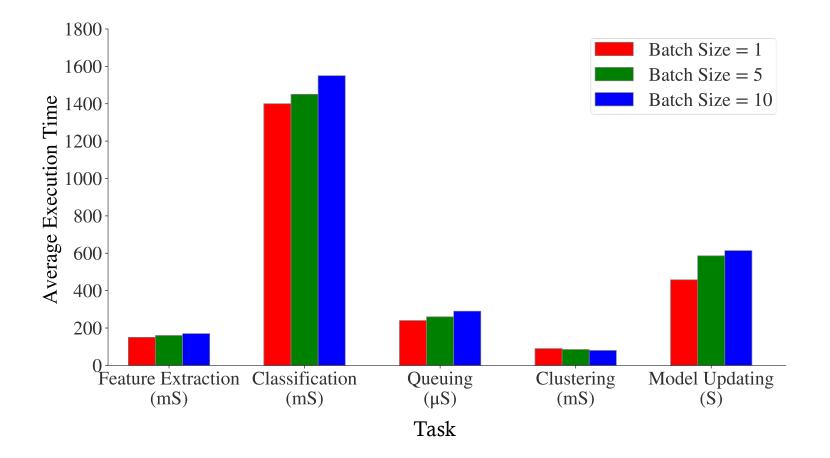
Total classification latency = 5 sec

Missing CL = 0 times



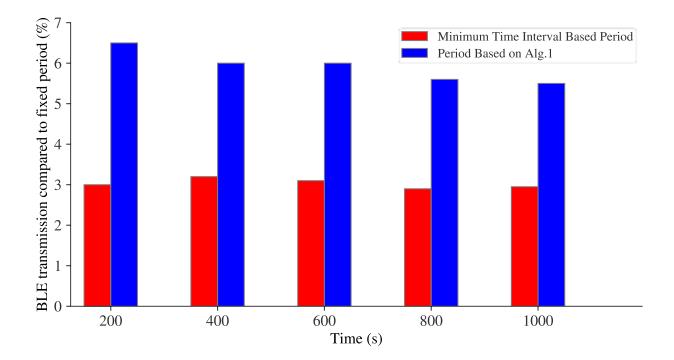
Execution Time of OpenSense on an Embedded Device

Objective: Compute the average execution time of different tasks using different batch sizes



Sensor Dynamic Scheduler Energy Consumption Performance

- The number of BLE transmissions is compared to a fixed period of 1 seconds
- The transmitted BLE packets using Alg. 1 is approximately 6% of the total number of transmissions made by the fixed period approach
- 3% more of polling requests is an acceptable trade-off



Model Updater Scheduler Performance

- We assume there are 200 samples of an unknown class
- The model updater is triggered when it meets the conditions in Alg.2
- the model updater is triggered 3 times to adapt the 200 samples into the model
- T_{sp} is based on the Minimum Time Interval Based Period

