
An Open-World Time-Series Sensing Framework
for Embedded Edge Devices

ABDULRAHMAN BUKHARI , SEYEDMEHDI HOSSEINIMOTLAGH AND HYOSEUNG KIM

UNIVERS ITY OF CAL IFORNIA , R IVERS IDE

{ABUKH001, SHOSS007, HYOSEUNG}@UCR.EDU

Agriculture

Human
Activities

Health
Monitoring

Beehive
Health

Smart
Appliances

Sensing
Applications

Room
Sensing

2Introduction - Motivation

Motivational Example

Current sensing frameworks lack:

Incremental learning

Classification and learning locally

Edge Device

Incremental
learning

+

Introduction - Background 3

What is Incremental Learning
Supervised vs Open-world

Incremental learning: continuously learning new classes from a stream of data

COST: the classifier will forget old classes Catastrophic Forgetting1

This is a supervised approach if the new classes are labelled

Unlabeled data from unknown classes Open-world problem

Recognize unknown samples and cluster them into new classes

[1] McCloskey et al. Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. (1989)

Introduction - Background 4

Classification and Clustering the Unknowns

Classical classifier cannot recognize unknown samples

We can do that:
• Adding a threshold to the classifier output
• Use an open-world classifier

• OpenMax1

• Extreme Value Machine (EVM)2

To Cluster unknown samples
• Unsupervised clustering algorithms FINCH3 Algorithm

[1] Bendale et al. Towards Open Set Deep Networks. (CVPR, 2016)
[2] Rudd et al The Extreme Value Machine. (2018)
[3] Saquib et al. Efficient parameter-free clustering using first neighbor relations. (CVPR, 2019)

Introduction - Prior Work 5

Time-Series Sensing Data

Synthetic Sensors1

• A single sensor board can capture multiple environmental facets
• Can be deployed into different environments to recognize different sets of events

Limitations requires access to a server for training and classification

DeepSense2

• A unified framework for time-series sensing data
• Achieve high inference performance for both classification and regression problems
Limitations network architecture changes based on #of sensors

BOTH
• Cannot incrementally learn new classes for a data-stream

[1] Laput et al. Synthetic Sensors: Towards General-Purpose Sensing. (HFCS, 2017)
[2] Yao et al. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing. (ICWWW, 2017)

Introduction - Prior Work 6

(Supervised) Incremental Classifier and Representation Learning1

• Sets of exemplars to represent previously learned classes
• The model is updated with (new samples + exemplars sets)
• Fixed-Representation class incremental learning (FRCI)

(Unsupervised) Open-World Learning without Labels (OWL)2

• Uses Extreme Value Machine (EVM) as a classifier
• Cluster unknown samples using Finch Alg.

They only applied the algorithms on computer vision applications
Have not been extended to time-series sensing data

Or evaluated on embedded edge devices

Incremental Learning

[1] Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. (CVPR, 2017)
[2] Jafarzadeh et al. Open-World Learning Without Labels. (2020)

Introduction 7

Contributions
OpenSense: an open-world sensing framework for time-series data for embedded
edge devices

• We present a sensing framework that can run different incremental learning
algorithms for both supervised and unsupervised time-series sensing data
problems

• We propose an efficient DNN architecture called sDNN, which outperforms the
state-of-art architecture in both inference performance and resource efficiency
for timeseries activity classification

• We demonstrate the implementation of OpenSense on a resource-constrained
edge device and its effectiveness in open-world incremental learning of time-
series data.

8

Outline
• Introduction
• OpenSense Framework

• Sensor board
• Embedded edge device

• Evaluation
• Inference and learning performance
• Latency and energy consumption performance

• Conclusion

9

Overview of OpenSense

OpenSense Framework

10

Sensor Board

OpenSense Framework

• Collect raw data from sensors

• Preprocess them as time-series data

• Transmit the data periodically

• The period managed by the dynamic
sensor scheduler

11

Embedded Edge Device

OpenSense Framework

•Features extraction

•Classification

•Incremental learning

•Sensor period and model updating
scheduling

12

Features Extractor

OpenSense Framework - Embedded Edge Device

Further data preprocessing based on the sensor
data:

• High-sampling rate Fast Fourier Transform

• Low-sampling rate Statistical information

The feature extractor is based on the DNN
model

Features are extracted by taking the output data
of the last layer before the output layer

We need a light-weight DNN model that extract
reliable features at low computational cost

13

Our Proposed DNN

OpenSense Framework - Embedded Edge Device

We call it a simple DNN (sDNN)
• Convolutional Layers spatial relationship
• LSTM Layers temporal relationship
• f is the filter size
• An output layer

The size of input data 𝑿𝑿 is 𝒏𝒏 × 𝒎𝒎
• 𝒏𝒏 is the length of preprocessed time-series data
• These data are stacked 𝒎𝒎 times to make a

tensor 𝑿𝑿
Input example:
• 1-second sensor data is divided into (𝒎𝒎=10) slices
• Each slice is 100ms
• Preprocessing a slice produce an 𝒏𝒏-length vector

Feature extractor Last LSTM layer

14

Open-World Classifier

OpenSense Framework - Embedded Edge Device

Requirements for an open-world classifier:

1. Accurately classify samples from known classes
2. Recognize and reject unknown samples

For supervised approach a classical classifier

The rejected samples will be collected in a queue
for incremental learning

15

Incremental Learning Algorithm

OpenSense Framework - Embedded Edge Device

A true incremental learner must meet 3 criteria:

1. Can be trained from a stream of data with new
classes

2. The inference performance must stay competitive

3. Updating the model must meet the resource
requirements of the system

We evaluated three algorithms on our framework:

• The naïve approach (NA)
• Fixed-Representation class incremental learning1

(FRCI)
• OpenSense based on EVM2

For unsupervised learning we use Finch algorithm to
cluster the unknown samples

[1] Rebuffi et al. iCaRL: Incremental Classifier and Representation
Learning. (CVPR, 2017)
[2] Jafarzadeh et al. Open-World Learning Without Labels. (2020)

16

Sensor Dynamic Scheduler

OpenSense Framework - Embedded Edge Device

Goal: change the sensor data transmission period to:

• Reduce the energy consumption on the sensor board
• Increase the idle time free time for other tasks

(e.g., learning)

Propose a Class-based Sensor Dynamic Scheduler:

The sensor data update period 𝑇𝑇𝑠𝑠𝑠𝑠 to detect an event C
must meet the following condition:

𝑛𝑛 × 𝑇𝑇𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑒𝑒 ≤ 𝐶𝐶𝐶𝐶

𝑛𝑛: #𝑇𝑇𝑠𝑠𝑠𝑠 repeated until a new event occurs
𝑇𝑇𝑒𝑒: the time when the current event C ends
Classification Latency (𝐶𝐶𝐶𝐶) constraint: the maximum time
for the current class to change to a different class while
the sensor is idling

17

Algorithm 1

OpenSense Framework - Sensor Dynamic Scheduler

We propose a searching algorithm to find the maximum
feasible sensor update period (𝑇𝑇𝑠𝑠𝑠𝑠) that does not exceed CL

Such as:

𝑛𝑛 × 𝑇𝑇𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑒𝑒 ≤ 𝐶𝐶𝐶𝐶

1. Select minimum time among all time intervals for a
class C as a base idle period 𝑇𝑇𝑠𝑠𝑠𝑠

2. The base period is compared with all other time
intervals such that the difference after 𝑛𝑛 cycles does
not exceed 𝐶𝐶𝐶𝐶

3. If does not meet the condition decrement 𝑇𝑇𝑠𝑠𝑠𝑠 by 1

18

Model and Classifier Updater

OpenSense Framework - The Embedded Edge Device

The model will be updated when number of samples of
a new class meet the minimum requirement

BUT: resource-constraint edge devices cannot update
the model with all new samples

We propose a model updating scheduler:
to partially update the model during the 𝑇𝑇𝑠𝑠𝑠𝑠 set by the
dynamic scheduler

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚: the minimum average time to train 1 sample

19

Experiment Sets

Evaluation

Classification and learning performance

1. Compare DeepSense vs. Proposed sDNN vs. Proposed sDDN + EVM

2. Evaluate incremental learning algorithms in a supervised setting

3. Evaluate open-world learning algorithms in an unsupervised setting

Latency and energy consumption performance

4. Compare the execution time for different tasks from experiment #3

5. Run the open-world learning based on OWL-EVM on an embedded device and compare the
execution time of different tasks

6. Evaluate the latency performance of the sensor dynamic scheduler

7. Evaluate the energy consumption of the sensor dynamic scheduler

8. The Model Updater Scheduler Performance

20

Evaluation
Evaluation platforms:

• Intel i7 with a dedicated NVIDIA GeForce GTX 1060 GPU [experiments: 1-4]
• Raspberry Pi 4 Model B with 2GB memory as an edge device [experiment: 5]
• TI CC2640R2 LAUNCHXL Board as a sensor board [experiment: 6-8]

Datasets:

• HHAR1: the Heterogeneous Human activity recognition (~120k samples)
[Biking, Sitting, Standing, 'Walking, Stair Up and Stair down]

• PAMAP22: Physical Activity Monitoring Data Set (~27k samples)
[lying, sitting, standing, walking, running, cycling, Nordic walking, watching TV, computer
work, car driving, ascending stairs, descending stairs, vacuum cleaning, ironing, folding
laundry, house cleaning, playing soccer, rope jumping]

[1] Allan Stisen et al. Smart Devices are Different: Assessing and Mitigating Mobile Sensing Heterogeneities for Activity Recognition (SenSys, 2015)
[2] Reiss et al. Introducing a New Benchmarked Dataset for Activity Monitoring. (ISWC, 2012)

21

DeepSense vs. sDNN vs. sDNN + EVM

Evaluation - Classification and learning performance

Objective: compare the inference performance

HHAR 6 classes
PAMAP2 18 classes

Metrics:
• Classification Accuracy
• F1-Macro score

The testing set is the same on all variants

Reason: DeepSense overfits the training dataset
due to unnecessarily complex model

22

DeepSense vs. sDNN vs. sDNN + EVM

Evaluation - Classification and learning performance

Objective: compare the training efficiency of each architecture

Dataset HHAR PAMAP2
DNN Model DeepSense sDNN DeepSense sDNN
#epochs to
converge 100 10 150 50

avg. execution
time\epoch 37s 16s 18s 3s

speed-up\epoch 2.3x 6x
total training
time 61m 40s 2m 31s 45m 2m 30s

23

Supervised Incremental Learning

Evaluation - Classification and learning performance

Objective: evaluate incremental learning algorithms:

1. The naïve approach (NA)
2. Fixed-Representation class incremental learning

(FRCI)
3. OpenSense (Ours)

Initial training set
HHAR 2 classes PAMAP2 3 classes

new classes in each data-stream
HHAR 2 classes PAMAP2 3 classes

Metrics:
• Classification Accuracy

The testing set add classes at each increment

HHAR DatasetPAMAP2 Dataset

24

Open-World Incremental Learning

Evaluation - Classification and learning performance

Objective: evaluate the same incremental learning
algorithms from the previous experiment in
unsupervised setting

Initial training set
PAMAP2 9 classes

#unknown classes in each data-stream
PAMAP2 3 classes

Metrics: Open-World Metric1

The testing set add classes at each increment

PAMAP2 Dataset

[1] Jafarzadeh et al. Open-World Learning Without Labels. (2020)

Algorithm NA FRCI OpenSense

#discovered
new classes 3/9 classes 5/9 classes 9/9 classes

25

Execution Time of Open-World Incremental Learning

Evaluation - Latency and energy consumption performance

Objective: Compute the average execution time of different tasks in the framework from the
previous experiment

All algorithms ran on the same training and testing datasets

Task
Inference Incremental Learning Total Session

TimeFeature Extraction Classification Queuing Clustering Model Updating
NA 0.5s 12ms 16μs 0.46s 17.4s 67.8s
FRCI 0.47s 35ms 26μs 0.27s 16.5s 64.5s
OpenSense 0.49s 31ms 18μs 0.13s 0.92s 6.1s

26

Sensor Dynamic Scheduler Latency Performance

Evaluation - Latency and energy consumption performance

• We ran the sensor board for 1000s and capture each event for a random duration
• Assign 𝑇𝑇𝑠𝑠𝑠𝑠 for each class based on the history of each event
• Used different CL for each class

Sensor Dynamic Schedular at Different 𝑇𝑇𝑠𝑠𝑠𝑠Cumulative Latency for Different 𝑇𝑇𝑠𝑠𝑠𝑠

27

Conclusion
Proposed OpenSense Framework

• We evaluated different incremental learning algorithms on our framework

• OpenSense can successfully run on the resource-constraint edge device

• sDNN outperforms DeepSense on different datasets

• The proposed sensor dynamic scheduler and model updater scheduler make the

framework efficiently runnable on resource-constraint edge devices

Future work

• Extend OpenSense to consider other resources on edge devices, e.g., accelerators

28

Thank you

Q & A

29

Algorithm 1

OpenSense Framework - Sensor Dynamic Scheduler

We propose a searching algorithm to find the maximum
feasible sensor update period (𝑇𝑇𝑠𝑠𝑠𝑠) that does not exceed CL

Such as:

𝑛𝑛 × 𝑇𝑇𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑒𝑒 ≤ 𝐶𝐶𝐶𝐶

1. Select minimum time interval among all time intervals
for a class C as a base idle period 𝑇𝑇𝑠𝑠𝑠𝑠

2. The base period is compared with all other time
intervals such that the difference after 𝑛𝑛 cycles does
not exceed 𝐶𝐶𝐶𝐶

3. If does not meet the condition decrement 𝑇𝑇𝑠𝑠𝑠𝑠 by 1

In the worst case where no feasible
𝑇𝑇𝑠𝑠𝑠𝑠 is found, the user may decide to
set 𝐶𝐶𝐶𝐶 to the minimum value of one,
which ensures 𝑇𝑇𝑠𝑠𝑠𝑠 to be at least two,
i.e., 𝐶𝐶𝐶𝐶 = 1 and 𝑇𝑇𝑠𝑠𝑠𝑠 = 2

30

Example: Fixed 𝑇𝑇𝑠𝑠𝑠𝑠

OpenSense Framework - Sensor Dynamic Scheduler

Example:
Time-intervals history for the following events:

A: [5, 9, 11, 16, 19] seconds
B: [3, 7, 15, 20, 23] seconds
C: [10, 18, 23, 31, 39] seconds

If the following sequence of events occurred and the
user set 𝐶𝐶𝐶𝐶 = 2 seconds

1s 1s

Naive approach 1: Focus on satisfying CL

at 𝑇𝑇𝑠𝑠𝑠𝑠 = 2 for all events

#Sensor transmission = 39 times

Total classification latency = 2 sec

Missing CL = 0 times

A: 8s C: 12s C: 25sB:
3s A: 17s B: 9s

31

Example: Minimum Interval 𝑇𝑇𝑠𝑠𝑠𝑠

OpenSense Framework - Sensor Dynamic Scheduler

Example:
Time-intervals history for the following events:

A: [5, 9, 11, 16, 19] seconds
B: [3, 7, 15, 20, 23] seconds
C: [10, 18, 23, 31, 39] seconds

If the following sequence of events occurred and the
user set 𝐶𝐶𝐶𝐶 = 2 seconds

A: 8s C: 12s C: 25sB:
3s A: 17s B: 9s

2s

Naïve approach 2: Focus on maximizing idle time

For each event, 𝑇𝑇𝑠𝑠𝑠𝑠 = minimum interval of that

event

𝑇𝑇𝑠𝑠𝑠𝑠A = 5s , 𝑇𝑇𝑠𝑠𝑠𝑠B = 3s, 𝑇𝑇𝑠𝑠𝑠𝑠C = 10s

#Sensor transmission = 12 times

Total classification latency = 10 sec

Missing CL = 2 times

5s 3s

32

Example: 𝑇𝑇𝑠𝑠𝑠𝑠Based on Alg.1

OpenSense Framework - Sensor Dynamic Scheduler

Example:
Time-intervals history for the following events:

A: [5, 9, 11, 16, 19] seconds
B: [3, 7, 15, 20, 23] seconds
C: [10, 18, 23, 31, 39] seconds

If the following sequence of events occurred and the
user set 𝐶𝐶𝐶𝐶 = 2 seconds

A: 8s C: 12s C: 25sB:
3s A: 17s B: 9s

Based on the proposed algorithm

𝑇𝑇𝑠𝑠𝑠𝑠A = 3s , 𝑇𝑇𝑠𝑠𝑠𝑠B = 3s, 𝑇𝑇𝑠𝑠𝑠𝑠C = 4s

#Sensor transmission = 22 times

Total classification latency = 5 sec

Missing CL = 0 times

1s 1s 1s 1s 1s

33

Execution Time of OpenSense on an Embedded Device

Evaluation - Latency and energy consumption performance

Objective: Compute the average execution time of different tasks using different batch sizes

Task

34

Sensor Dynamic Scheduler Energy Consumption Performance

Evaluation - Latency and energy consumption performance

• The number of BLE transmissions is
compared to a fixed period of 1 seconds

• The transmitted BLE packets using Alg. 1
is approximately 6% of the total number
of transmissions made by the fixed period
approach

• 3% more of polling requests is an
acceptable trade-off

35

Model Updater Scheduler Performance

Evaluation - Latency and energy consumption performance

• We assume there are 200 samples of an unknown class
• The model updater is triggered when it meets the conditions in Alg.2
• the model updater is triggered 3 times to adapt the 200 samples into the model
• 𝑇𝑇𝑠𝑠𝑠𝑠 is based on the Minimum Time Interval Based Period

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

