
An Open-World Time-Series Sensing Framework
for Embedded Edge Devices

Abdulrahman Bukhari, Seyedmehdi Hosseinimotlagh, and Hyoseung Kim
University of California, Riverside

abukh001@ucr.edu, shoss007@ucr.edu, hyoseung@ucr.edu

Abstract—The rapid advancement of IoT technologies has
generated much interest in the development of learning-based
sensing applications on embedded edge devices. However, these
efforts are being challenged by the need to adapt to unforeseen
conditions in an open-world environment. Updating a learning
model suffers from the lack of training data as well as the high
computational demand beyond that available on edge devices.
In this paper, we propose an open-world time-series sensing
framework for making inferences from time-series sensor data
and achieving incremental learning on an embedded edge device
with limited resources. The proposed framework is able to
achieve two essential tasks, inference and learning, without
requiring access to a powerful cloud server. We discuss the
design choices made to ensure satisfactory learning performance
and efficient resource usage. Experimental results demonstrate
the ability of the system to incrementally adapt to unforeseen
conditions and to effectively run on a resource-constrained device.

Index Terms—IoT, embedded edge devices, time-series sensing,
open-world learning

I. INTRODUCTION

Smart sensors have been widely used in environmental, in-
dustrial and personal level applications. With the advancement
of computational power and machine learning algorithms,
IoT systems are able to achieve smart sensing, from data
acquisition to data inference, and report the outcomes to users
in nearly a real-time manner. In health monitoring applications,
user activities, e.g., number of steps, running, or standing, are
reported using accelerometer and gyrometer sensors on smart
watches or smartphones. Although such systems can provide
accurate results for known classes, i.e., input data belonging
to one of the classes of training data, they require access to a
server to update the learning model due to the lack of ability
to distinguish unseen data.

In conventional smart sensing applications, the raw sensor
data acquired from the environment is transferred to an edge
device for additional processing. Some applications require
learning algorithms to grasp a higher level of interaction
between the sensor data and the application requirements. For
example, Synthetic Sensors [1] collect and process raw data on
an embedded device before sending it to the server for SVM-
based learning and inference; DeepSense [2] can be applied
to accelerometer and gyroscope data to learn and recognize
human activities through a deep neural network (DNN). If
these sensing frameworks encounter unlabeled data that belong
to a new, unseen class by the learning model, it will be
incorrectly classified as one of the existing classes. Finding

new classes in the environment and incorporating them into the
model has traditionally been performed by manually labeling
new data and retraining the whole model using both old and
new labeled data.

Updating a model over time is an active research problem,
called incremental learning, and it has been widely studied
especially for vision applications. Although incremental learn-
ing algorithms such as iCaRL [3] can add new classes and
update network parameters for them, those new classes must
be identified by the user and unseen data must be labeled
accordingly before each model update. Thus, in this paper, we
specifically call them supervised incremental learning. These
limitations introduce an open-world learning problem [4],
where the system has to differentiate by itself whether new
data belong to an unknown class or a known class and update
the model accordingly without sacrificing the inference perfor-
mance. Since open-world learning methods do not require any
human intervention, we call them unsupervised incremental
learning. The open-world algorithms also have received a huge
interest within the image classification community.

Recent works in both supervised and unsupervised in-
cremental learning have shown significant performance ad-
vancement in image classification. However, most of these
approaches are computationally hungry and require powerful
machines for training. Additionally, they critically depend
on the base machine-learning model, e.g., a DNN, in order
to run effectively on the given application. To extend the
sensing framework to incrementally learn new classes in both
supervised and an unsupervised fashions, this paper proposes
OpenSense, an open-world sensing framework for resource-
constrained embedded edge devices. OpenSense can identify
(thus reject from inference) unknown samples, assign new
classes to these rejected samples, incorporate the new classes
and update the model incrementally on an edge device. The
contributions of this work are as follows:

• We present the OpenSense framework that can run differ-
ent incremental learning algorithms for both supervised
and unsupervised time-series sensing data problems.

• We propose an efficient DNN architecture called sDNN,
which outperforms the state-of-art architecture in both
inference performance and resource efficiency for time-
series activity classification.

• We demonstrate the implementation of OpenSense on a
resource-constrained edge device and its effectiveness in
open-world incremental learning of time-series data.



II. RELATED WORK

A. Supervised Incremental Learning

Incremental learning techniques have to overcome two chal-
lenges to maintain their performance. The first challenge is to
learn new classes from a stream of data without “catastrophic
forgetting” [5], in which the new data causes the neural
network to forget what has been learned from the previous
data. Early attempts made by [6], [7] tackle this challenge
by expanding the neural network model as more classes are
learned. However, these approaches introduce a new challenge
of ever-increasing computation and memory demands as the
model will keep growing incrementally, which is particularly
problematic for embedded systems.

A number of approaches have been proposed to overcome
the aforementioned problems of incremental learning. Few-
Shots Class-Incremental Learning (FSCIL) [8] aims to learn
both new and old classes with a limited number of training
data, which limits the capacity of the model while avoiding
forgetting observed classes in a stream of data. iCaRL [3] can
learn new classes with a fixed feature representation based on
the nearest mean classifier algorithm and the distillation loss
to maintain the performance without forgetting. Due to the
nature of these approaches, they perform well only under the
assumption that the data set used for training is labeled by the
user for both old and new classes.

B. Unsupervised Incremental Learning

Contrary to the supervised approaches, classifiers for un-
supervised incremental learning (a.k.a. open-world learning)
must be able to distinguish unknown (unlabeled) samples
in the input data stream and classify them as new classes,
while maintaining the performance of classifying old classes.
Early works [9], [10] have established a stepping stone toward
this. In [9], the authors introduce the open-set problem for
DNNs and propose a layer called OpenMax that extends the
softmax layer to find the likelihood that an input sample is
of an unknown class. A more sophisticated scheme called
the Extreme Value Machine (EVM) is proposed by Ethan et
al. [11] based on the Extreme Value Theorem [12]. EVM can
fit an initial set of data into extreme vectors (EVs) using
the Weibull distribution. Once EVM is trained, it can be
updated incrementally by obtaining new EVs. In addition to
its inference performance in open-world settings, the major
advantage of EVM is the ability to limit the size of the model
by setting the number of EVs in the model.

In [4], the authors extend the concept of EVM and re-define
the evaluation protocol for open-world learning. They claim
that an open-world learner must recognize both known and
unknown classes and classify the unknown classes into new
classes without forgetting classes previously learned. They
also proposed a new metric, the Open-World Metric (OWM),
since the testing set should include both known and unknown
classes, thereby requiring a novel measurement that captures
both the accuracy of the known classes and the classification
of unknown classes. The authors in [13] introduce the notion

of self-supervised features for open-world learning in order
to avoid the overlap between known and unknown classes
in the supervised feature space. Another work by Joseph et
al. [14] extends the open-world learning to the problem of
identifying an unknown object in images, by using an energy-
based model [15] to create a separation between known and
unknown objects in the energy space.

Although these approaches have shown acceptable perfor-
mance in image classification, to the extent of our knowledge,
none has been applied to time-series multisensor IoT sensing
applications which this paper focuses on.

C. Time-Series Sensing Frameworks

Extending supervised or unsupervised incremental learning
to sensing frameworks requires a state-of-the-art classifier that
on one hand has a high inference performance across different
applications, and on the other hand is deployable on embedded
edge devices such as Raspberry Pi.

There are mainly two approaches for sensing applications:
special-purpose [16]–[20] and general-purpose sensing [1],
[21]–[24]. The special-purpose sensing approach uses a sin-
gle sensor to measure one aspect of the environment, e.g.,
temperature. Setting a threshold in these sensors is usually
sufficient for controlling or monitoring applications and does
not require complex learning-based techniques. The general-
purpose sensing approach uses a combination of two or more
sensors to recognize multiple events or activities in the scene,
often through machine learning. Laput et al. [1] propose a
custom sensor tag including 9 sensors to detect 38 different
events, such as kettle on/off, door open/close, phone ringing,
etc., using a simple SVM trained for each event. DeepSense [2]
is a DNN-based time-series mobile sensing framework that
can be applied to regression and classification problems by
extracting both spatial and temporal features/relationships us-
ing CNN and RNN. DeepSense outperforms other traditional
learning methods in different classification problems such as
human activity recognition and user identification. However,
it requires longer training time due to the complexity of the
architecture and does not support incremental learning in open-
world settings. We address these limitations in this paper.

III. OPENSENSE FRAMEWORK

The main objectives of the proposed OpenSense framework
are to characterize raw time-series sensor data into informative
labels to the user and to incrementally learn new classes that
have not been seen by the classifier in both supervised and
unsupervised manners. The framework consists of two units:
a sensor board attached to the point of interest to acquire data
from the application environment, and a resource-constraint
edge device that is responsible for performing inference and
incrementally learning novel classes as shown in Fig. 1. Unlike
traditional time-series sensing frameworks, this framework
does not require a cloud server to learn new classes and update
the model. Except for the initial DNN training, all procedures
are running on the edge device.

2



Fig. 1: Block diagram of the proposed OpenSense framework

A. Sensor Board and Edge Device

Sensor Board: The sensor board collects and preprocesses
raw sensor data samples, and then transmits them periodically
in a specific size of window to the edge device. There can
be one or more sensor boards in the scene. Each sensor
board consists of a single sensor or an array of sensors
and a low energy transmission medium with a processing
unit to buffer and prepare the raw time-series data. The
number and type of sensors in the board is decided based on
application requirements. Multiple different sensors are used
in most recent applications; for example, a combination of
accelerometer, microphone, and illumination sensors enable
capturing events in the kitchen, such as whether the faucet,
kettle, microwave, air vent are running or turned off.

The processing unit prepares raw data based on the fre-
quency of the corresponding sensor to reduce noise and
overhead on data transmission without impacting the overall
framework performance. A simple moving average window
has shown reliable performance for sensors with high sam-
pling frequencies, e.g., accelerometer. After prepossessing
the sensors data, they are stacked together and transmitted
periodically to the edge device through a low-energy data
transmission medium, such as Bluetooth Low Energy (BLE).
The transmission period between the sensor board and the edge
device is set by the dynamic scheduler (Sec. III-E).

Edge Device: The resource-constraint edge device is the heart
of the framework. When sensor data samples are received,
the edge device processes them for feature extraction using a
DNN trained network (Sec. III-B). The open-world classifier
(Sec. III-C) then uses these features to distinguish whether a
sample belongs to an existing class provided by the pretrained
dataset or it is a new or an unknown class that has not been
seen the classifier. Such samples are collected in a queue to be
either manually labeled (supervised) or clustered into different
classes (unsupervided) for the classifier to incrementally learn
them through an incremental learning algorithm (Sec.III-D).
In addition, the dynamic sensor scheduler (Sec. III-E) and the
classifier updater (Sec. III-F) are included to change the sensor
transmission period and trigger model updates, respectively.
The rest of this section describes each component in detail.

Fig. 2: sDNN architecture

B. Feature Extraction

The data received from the sensor board requires further pre-
processing before extracting features for inference and novel
class detection. Time-series data from different sensors are
processed based on the sampling rate of the corresponding sen-
sor. Fast-Fourier Transform (FFT) is applied to data acquired
from high-sampling sensors to capture the frequency patterns
regardless of time dependency [2]. Statistical information,
such as mean, variance, and peaks, is used for low-frequency
sensors data like heart-rate and light-intensity sensors.

We perform feature extraction based on our simple DNN
architecture, called sDNN, which can extract reliable fea-
tures from time-series sensor data while providing runtime
efficiency in inference and training. Fig. 2 shows the sDNN
architecture. The two convolutional layers first capture spatial
relationships between preprocessed sensors data, and the fol-
lowing LSTM layers capture temporal relationships between
time-series data slices. The input size of sDNN depends on
the preprocessed sensor data, where n is the number of time-
series slices and m is the length of each slice. Compared to
other state-of-the-art architectures, such as DeepSense [2], our
proposed DNN ensures a fixed-size model and a feature vector
with length f , where f is the filter size of convolution and
LSTM layers. On the other hand, the number of layers in
DeepSense and the length of extracted features depend on the
number of sensors on the device, making it more complex and
longer as more sensors are used. Despite its simplicity, sDNN
can provide competitive and often better inference accuracy
than DeepSense as we will show in the evaluation. Note
that such properties are important for incremental learning,
especially on embedded edge devices.

sDNN is trained using available training datasets before
deployment. The trained model is then used at runtime to
extract features from preprocessed sensor data for the open-
world classifier, by taking the output of the last layer in the
DNN before the dense layer. The features extractor is also used
for the initial training dataset to train the open-world classifier.

3



C. Open-World Classifier

The purpose of an open-world classifier is not only to
recognize data samples that belong to known classes, but also
to recognize unknown samples and reject them from inference.
The open-world classifier is initially trained on the features
extracted from the training datasets and deployed to the edge
device.

The built-in classifier of sDNN might be sufficient if there
is no unknown sample. However, in the presence of unknown
samples, it can misclassify them into one of the known classes,
making it unable to use for open-world classification. To
address this issue, we adopt EVM [11] as the open-world clas-
sifier of our framework. The reasons why we chose EVM here
are that (i) it can be used for both supervised and unsupervised
incremental learning scenarios, (ii) it avoids the need to update
the entire DNN model, mitigating the catastrophic forgetting
phenomena, and (iii) it has been shown to be effective in
rejecting the samples that belong to unknown classes. We take
the last layer of sDNN before dense layers as the input features
for EVM. Then the open-world classifier notifies classification
results to the user if given samples belong to known classes,
and gives feedback to the sensor dynamic scheduler. The
samples rejected by the classifier (unknown samples) are
placed into a queue for manual labeling under supervised
learning and for clustering under unsupervised learning.

D. Incremental Learning Process

There are three criteria that an incremental learning frame-
work must meet for practical applications:

1) the model can be trained from a stream of data intro-
ducing new classes to the classifier over time.

2) the inference performance must not be significantly
lowered, especially due to the catastrophic forgetting
phenomena [5].

3) updating the model must meet the resource requirements
of the system since the framework should be able to run
on embedded devices

For supervised learning, the samples in the queue are
manually labeled and then we can update the classifier. For un-
supervised learning, we need to identify and assign new classes
to the unknown samples in the queue via a clustering algorithm
before updating the classifier. Since this is a clustering problem
where the number of groups is unknown, our framework uses
the Finch algorithm [25] which is a parameter-free clustering
method. The Finch algorithm provides different partitioning
results for the given samples. Then our framework chooses
the partition with the minimum number of clusters and only
select clusters with at least a certain number of samples as new
classes and label them accordingly [4]. The open-world model
updater will incorporate these new classes into our classifier
based on EVM.

One advantage of using the EVM-based classifier is that it
only needs the extracted features of the new samples to update
the classifier without the need to retrain the entire DNN,
enabling more effective and efficient incremental learning.

Algorithm 1: Sensor Dynamic Scheduler
Input : Te: All time intervals for class C

CL: User allowable classification latency
Output: Tsp: Sensor idle period for class C

1 Te ← AscendingSort(Te)
2 Tsp ← FindMinimum(Te)
3 L1← Tsp

4 L2← Length(Tsp)
5 i← 0; j ← 0
6 for i ≤ L1 do
7 for j ≤ L2 do
8 n← Ceil(Te[j]/Tsp)
9 Thresholds← Te[j] + CL

10 if n× Tsp ≥ Threshold then
11 Tsp ← Tsp − 1
12 break
13 end
14 j ++
15 end
16 i++
17 end
18 if Tsp > 1 then
19 return Tsp

20 else
21 return fail
22 end

Another advantage is controlling the model size by selecting
the minimum number of points needed to cover a known class,
which is known as the set cover problem [26] and important
for incremental learning on resource-constrained devices.

E. Sensor Dynamic Scheduler
The sensor dynamic scheduler is responsible for assigning

the transmission period between the sensor board and the
edge device such that the sensor board can be idle for the
longest possible period to minimize the energy consumption
of the sensor board while freeing resources on the edge
device for open-world learning tasks. We propose a scheduler
based on the classification such that the idle period does not
exceed a given classification latency constraint (CL) that is
the maximum time for the current event class to change to
a different class while the sensor is idling. CL imposes the
following condition to be satisfied:

n × Tsp − Te ≤ CL (1)
where Tsp is the idle sensor period assigned by the scheduler
for a current event, Te is the time when the current event
actually ends, and n is the number of times the idling period
has repeated until the classifier recognizes a new event. In
order to find Tsp that does not exceed CL, a naı̈ve approach
would be using the greatest common factor of all occurrence
intervals of an event, which would result in only one second of
period for most cases. Therefore, we propose an algorithm that
approximates the largest factor of all periods and guarantees
the CL condition to be met.

Alg. 1 gives the pseudo code of our algorithm. It selects the
minimum time interval among all time intervals for a class C
as a base idle period, Tsp. The base period is compared with
all other time intervals such that the difference after n cycles
does not exceed CL. If the base period Tsp does not meet this

4



Algorithm 2: Model Update Scheduler
Input: Tsp: The sensor period for a given class

Nu: # of samples of the new discovered class
Su: Samples from the new discovered class

1 Nold ← 0
2 while Nu ̸= 0 do
3 if Tsp ≥ Tmin then
4 NST ← ComputeSamplesToTrain(Tsp)
5 UpdateTheModel(Su[Nold : NST ])
6 if Nu ≥ NST then
7 Nold ← NST

8 else
9 return success

10 end
11 else
12 return fail /* wait for next Tsp */
13 end
14 end

condition, the algorithm decrements Tsp by one and continues
the search. If Tsp becomes one or smaller, it means there is no
feasible Tsp that satisfies the user’s latency requirement and
thus the algorithm returns fail. Then, the user can increase
CL to increase the search space and rerun the algorithm. In
the worst case where no feasible Tsp is found, the user may
decide to set CL to the minimum value of one, which ensures
Tsp to be at least two, i.e., CL = 1 and Tsp = 2.1 This still
ensures the sensor board to be idle for at least half the total
operation time, reducing energy consumption by up to half.2

The user has the freedom to choose a single CL for all events
or specify different values for individual events based on the
importance and tolerated latency.

F. Model and Classifier Updater

Once the unknown samples are clustered into new classes,
given that the number of samples of the new class meets the
minimum requirement, the model will be updated. However,
due to the fact that the framework is designed for resource-
constraint edge devices, we propose a model updating sched-
uler, Alg. 2, such that the model will be only updated partially
with a certain number of samples from the new class based
on the sensor transmission period set by the sensor dynamic
scheduler. We fit a polynomial to the average execution time
of updating the model for different number of samples to
approximate the number of samples to update the model for the
current sensor period, given that it meets the minimum average
time to train at least one sample (Tmin). Note that Tsp may
not satisfy the condition (Tsp ≥ Tmin). Therefore, different
approaches to choose Tsp can be used to extend the length of
the sensor idling time without significantly compromising the
latency performance of the scheduler, as can be seen in the
last experiment in Sec. IV.

After the model is updated, the classifier updater will deploy
the new open-world classifier to enable the framework to

1With Tsp = 2, the difference between n× Tsp and any other number is
always 0 or 1, thereby satisfying Eq. (1).

2The actual amount of energy savings in such a worst-case condition Tsp =
2 may vary depending on the idle energy consumption of the board.

recognize the newly learned classes and discover new classes
from the upcoming time-series data from sensor boards.

IV. EVALUATION

There are two essential performance metrics to evaluate the
overall performance of our proposed framework on resource-
constrained edge devices: classification and incremental learn-
ing, and latency and energy consumption. For classification
and incremental learning, we first compare the inference and
efficiency performances of our proposed sDNN to DeepSense.
After that we investigate the effectiveness of OpenSense in
both supervised and unsupervised settings and compare it to
other methods. We analyze the efficiency of each algorithm
as an open-world learner by comparing the execution time
of different tasks and evaluate our design choices on an
embedded device. Lastly, we show the latency and energy con-
sumption performances for different sensor dynamic scheduler
approaches. In this section, we also provide more details on
the evaluation platforms and the dataset.

A. Evaluation Platforms

OpenSense was implemented and evaluated on a Raspberry
Pi 4 Model B for the framework’s runtime performance on
a realistic embedded edge device. Experiments on model
accuracy were conducted on a Linux-based machine equipped
with Intel i7-8650U, 16GB memory and a dedicated NVIDIA
GeForce GTX 1060 GPU with 6GB VRAM.

B. Datasets

We used two datasets,HHAR and PAMAP2, that have been
widely used in the literature of time-series human activity
recognition. These datasets consist of time-series human ac-
tivities data captured by different sensors and classified into
distinct classes based on the activities of the wearer. The
details of each dataset and preprocessing are as follow.
HHAR: The heterogeneous human activity recognition
(HHAR) [27] dataset records 6 activities performed by 9
different users. The data is collected using the accelerometer
and gyroscope embedded on smartphones and smartwatches.
We followed the preprocessing suggested by DeepSense [2]
to reproduce similar results for evaluation: time-series data
is divided into 5-seconds non-overlapping windows, each
window is divided into 0.25 second segments, and FFT is
applied to each segment to compute the frequency response.
The number of samples after preprocessing is around 120K
and we divided them into training (70%), validation (10%)
and testing (20%) sets.
PAMAP2: The physical activity monitoring data set
(PAMAP2) [28] is collected using 3 inertial measurement
units (IMU) sampled at 100Hz, each capturing temperature,
acceleration, gyroscope and manometer, attached at wrist,
chest and ankle of the user, and a heart sensor at 9Hz (total
of 13 sensors data). The data is recorded by monitoring 18
activities performed by 9 users. The time-series data is divided
into 1-second windows, each window is divided into ten
segments each is 0.1 second. FTT is applied to each segment

5



(a) Accuracy

(b) F1-Macro Score

Fig. 3: Inference performance of DeepSense, sDNN,
sDNN+EVM

TABLE I: DNN Model Efficiency
Dataset HHAR PAMAP2
DNN Model DeepSense sDNN DeepSense sDNN
#epochs to
converge 100 10 150 50

average execution
time \epoch 37 sec 16 sec 18 sec 3 sec

speedup \epoch x2.3 x6
total training
time

61 min
40 sec

2 min
31 sec 45 min 2 min

30 sec

to calculate the frequency response. The number of samples
after preprocessing is around 27K divided into training (60%),
validation (20%) and testing (20%) sets since the number of
samples is much smaller per class compared to HHAR.

Since both datasets are imbalanced, we perform under-
sampling for each class in each dataset for the testing set
to ensure that each class weighs equally to the performance,
especially in the incremental learning experiments.

C. Learning Algorithms to Compare

We evaluate OpenSense and compare it to 2 learning
algorithms in both supervised and unsupervised settings.

Naı̈ve approach (NA): The based DNN model is updated
using only the data coming in the data stream without
accessing previously trained samples.
Fixed-representation Class Incremental Learning
(FRCI) [3]: In this algorithm the DNN model with the
new samples in the data-stream but with the addition of
exemplars learned based on the Nearest Mean Class to avoid
Catastrophic Forgetting while incrementally learn without
imposing an overhead on the system.

D. Results: Classification and Learning Performance

DNN Base Models and EVM: The base DNN is very
important to the proposed framework for building a sustainable
features extractor, EVM model and a classifier for other in-
cremental learning approaches. Therefore, we compare sDNN
with a state-of-the-art architecture, DeepSense. The experi-
ment is conducted on 2 different datasets. For DeepSense,
we implemented it in Keras and successfully reproduced
the results in the original work. We then compare it with
sDNN, implemented on Keras as well, to produce consistent
evaluation. We used fixed parameters in our comparison and
used accuracy and F1-macro scores for evaluation, similar
to DeepSense [2]. We also built an EVM model based on
sDNN to evaluate it as a classifier. We used fixed parameters
as well for EVM training in all experiments. We performed
cross-validation in the early stage of development and found
out that the following EVM parameters: tail-size = 100,
cover threshold = 0.7 and distance multiplier = 0.4 produce
acceptable results across the two time-series dataset we used.
In this set of experiments, all models are trained with all
classes as known classes and the training is performed on
batches with all samples in the training dataset.

We can see that the proposed DNN, outperforms DeepSense
on both HHAR and PAMAP2 datasets in Fig. 3. We can also
see that sDNN can produce robust features, when freezing
the last layer, for the EVM model which slightly provide
better accuracy and F1-Macro score than the model on the
same testing sets. In addition to that, sDNN is faster than
DeepSense by up to x2.3 and x6 per epoch for HHAR
and PAMAP2, respectively as shown in table.I. We can see
that sDNN converges much faster than DeepSense on both
datasets. Faster DNN training can allow for more efficient
representation update in case we consider updating the base
DNN in our framework, and in other supervised incremental
learning approaches as well. When implementing DeepSense,
each sensor in the sensor board will add three individual
convolutional layers to the framework leading to a total of 12
and 45 layers for HHAR and PAMAP2, respectively compared
to a fixed 5 layers in sDNN, two convolutional layers, two
LSTM layers and an output layer. We assumed that due to the
increased complexity of DeepSense, the training data is over-
fitting the model, especially with PAMAP2 dataset that has
limited number of samples and requires longer training time
to converge.
Supervised Incremental Learning: In the supervised incre-
mental learning setup, the data-stream is divided into equally

6



batched samples with a specific number of known classes.
The known classes are incoming as an increment of 2 classes
per data-stream for HHAR and an increment of 3 classes for
PAMAP2. For OpenSense, the base DNN is trained with the
first batch of data, 2 and 3 classes from HHAR and PAMAP2
respectively. The purpose of this experiment is to compare the
performance of OpenSense to NA and FRCI algorithms, in
case we manually label new classes and incrementally update
the model. We used accuracy as a metric to compare each
algorithm since all samples are labeled.

We can see in Fig 4 that all algorithms achieve around 99%
and 95% accuracy for HHAR and PAMAP2, respectively, with
both the naı̈ve approach, noted as NA, and FRCI slightly better
accuracy than OpenSense in the initial training phase. As more
data coming in the stream, we can clearly see that OpenSense
outperforms NA and FRCI on both datasets since OpenSense
uses the features extracted by the base DNN model, in which
the features representation is fixed for all class. The EVM
model of OpenSense then use these features with labels and
incrementally assign new EVM vectors to represent each class.

For the naı̈ve approach and FRCI, their accuracy signifi-
cantly drops to 50% in HHAR dataset with much better per-
formance for FRCI in PAMAP2 dataset closely to OpenSense.
NA accuracy keeps falling as it incrementally learning to
34.8% and 10.9% for HHAR and PAMAP2, respectively. We
see that during testing after each increment in NA that it almost
completely forgets any classes that are learned in the previous
increment due the catastrophic forgetting problem. Although
FRCI performance is similar to OpenSense on HHAR dataset,
we see that, similar to NA, it reaches to a low 20.4% accuracy
by the end of the incremental learning of PAMAP2 dataset.
Updating the DNN model with a no or limited number of
samples from previously learned classes leads to a degrade in
its inference performance, making OpenSense more suitable
for incremental learning.
Open-World (Unsupervised) Incremental Learning: In the
unsupervised incremental learning setup, only the first batch
of the training dataset consists of known classes. Unlike the
supervised setup, we assume that initially we have a large
number of known classes and incrementally discover new
classes from the data-stream. Since HHAR dataset has a
limited number of classes, namely six, it is not sufficient
for the evaluation of this experiment. Therefore, we only
performed this experiment on PAMAP2 where the initial DNN
model is trained on the dataset of 9 known classes and the
remaining class are incoming as 3 unknown classes in each
data-stream. Since OpenSense is designed for open-world
problem, we added a novel class detector and unsupervised
clustering algorithm for the naı̈ve approach and FRCI by
setting a threshold on the output of the DNN, such that any
sample with a probability less than the threshold will be
rejected as an unknown sample. The threshold is chosen based
on the probability history of previously discovered classes by
taking the mean of the maximum probability of each prior
sample. The rejected samples are collected in a queue to
cluster them into novel classes and assign a label for each new

(a) HHAR

(b) PAMAP2

Fig. 4: Comparing the accuracy of the Naı̈ve approach (NA),
FRCI and OpenSense for each step in a supervised incremental
learning set-up

class. The metric used in the unsupervised setup is the Open-
World Metric (OWM) proposed in [4] defined as follows:

OWM =
NKK ·Acc(XKK) + NUU ·B3(XUU )

NKK +NKU +NUK +NUU
(2)

where X is the targeted dataset, N refers to the number of
samples in the corresponding category, the subscripts K and
U are abbreviations for known and unknown, respectively,
e.g., NKU stands for known samples that are misclassified
as unknown, Acc() is the accuracy for the known data, and
B3() is the B3 score [29] for the unknown data.

Fig 5 shows that all algorithms are very well trained on
the initial set with around 95% accuracy, since all classes are
known at this stage. We can see that OpenSense outperforms
the other approaches with large margins (0.48 and 0.3) com-
pared to NA and FRCI. The OWM score slowly decreases,
with a rate of 0.13 scores, as more unknown samples are
discovered by OpenSense. The key to this performance is the
ability of EVM-based classifier to reject unknown samples.
This allows the clustering algorithm to produce clusters that
actually represent unknown classes and update the model
accordingly.

Since the naı̈ve approach suffers from catastrophic for-
getting, it is expected that its performance will degrade as
more unknown samples are introduced. The NA open-world
score was 0.11 after it incrementally exposed to all samples.
Although it performs better than NA, FRCI still struggle to
incrementally adapt new classes with an average decrease of

7



TABLE II: The average execution time for different tasks in the Open-World (Unsupervised) Incremental Learning experiment

Task Inference Learning Total Session TimeFeature Extraction Classification Queuing Clustering Model Updating
Naı̈ve Approach 0.5 Sec 12 mSec 16 µSec 0.46 Sec 17.4 Sec 67.8 Sec
FRCI 0.47 Sec 35 mSec 22 µSec 0.27 Sec 16.5 Sec 64.5 Sec
OpenSense 0.49 Sec 31 mSec 18 µSec 0.13 Sec 0.92 Sec 6.1 Sec

Fig. 5: Comparing the performance of NA, FRCI and
OpenSense in an Open-world set

0.23 scores as more unknown classes are coming. Moreover,
the number of discovered classes are only 3 and 5 out of 9
classes for NA and FRCI, respectively, wherein OpenSense
discovered 9 new classes.

There are many factors, in addition to the fact that most
incremental learning works are developed in a supervised ap-
proach, that contribute to the expected low performance. One
factor is due to the fact that the current unsupervised clustering
algorithm, Finch, is unable to cluster the preprocessed time-
series data from different classes, while using the features
extracted from the base DNN provides better representation
to the time-series data. Another important factor is the ability
of classifier to correctly reject unknown samples. Even if the
features representation is used in the clustering algorithm, it
will fail to produce the right number of clusters, or clusters that
corresponds to the right label if the rejected samples actually
belong to known classes which will lead to confusion to the
DNN when updating with new classes.

E. Results: Latency and Energy Consumption Performance

Execution Time of Incremental Learning: We compare the
execution time of different tasks in the framework for the 3
incremental algorithms in the open-world learning experiment
conducted above, as shown in Table II. The purpose of this
experiment is to demonstrate that our design choices does not
only outperform the naı̈ve approach and FRCI in unsuper-
vised incremental learning but also in latency. We compare
the execution time of the essential tasks in the framework
including preparing the samples for inference, novel class
detection, queuing unknown samples, clustering and incre-
mentally updating the model. We compare these latencies for
each algorithm running on a Linux-based machine. We also
compare the overall execution time needed to incrementally
discover and adapt new classes for a complete dataset for
each algorithm. We measure the execution time of each task
in Seconds (s).

Fig. 6: The average execution time of different tasks on the
Raspberry Pi for different batch sizes

All experiments are conducted on the same dataset and
with 100 samples per batch for the inference task. Note
that the number of samples may differ in subsequent tasks
depending on classification results. For example, the number
of samples in the queue depends on how many samples are
classified as unknown by the classifier in the prediction task.
The last column in the table represents the total time consumed
during a complete training session. It takes on average 6
seconds for OpenSense to finish updating the model with all
discovered classes from the training dataset, faster by at least
x10.5 from NA and FRCI. We see that the features extraction
latencies are similar across all algorithms since they are based
on the same DNN architecture, and lower classification and
queuing latencies for the naı̈ve approach compare to FRCI
and OpenSense.

In the learning task, NA requires more time for clustering
than FRCI and OpenSense due to the fact that the naı̈ve
approach forget the classes previously learned leading to a
greater rejection rate of unknown samples than other algo-
rithms, wherein OpenSense has lower clustering latency be-
cause it has a higher accuracy in predicting unknown samples.
As for the updating the model with novel classes, we see
that NA and FRCI require in average around 17 and 16
seconds, respectively, 18x slower than OpenSense. Since other
algorithms do not need additional tasks before updating the
model, we included the task of finding exemplars in the model
updating task for FRCI.

Interestingly, we can update the EVM model regardless
of how many samples we have in one epoch making this
approach even more suitable for resource-constrained systems.
This allow us to process samples periodically as they are
coming from the data-stream and choose to update the model
when there is enough time given by the dynamic scheduler.
We see that in average, it takes less than a second to update
the EVM model on a machine with GPU support.
Execution Time on Embedded Devices: We only imple-

8



(a) Sensor data at different periods

(b) Cumulative latency

Fig. 7: Classification latency of the sensor dynamic scheduler

mented OpenSense on the Raspberry Pi 4 Model B since it
outperforms the other algorithms in inference, supervised and
unsupervised incremental learning, as well as in efficiency. We
run the open-world experiment three times for different batch
sizes (1,5,10) to simulate periodic data acquisition where each
sample in the batch is processed as 1 second-window. In Fig 6,
each task execution time is measured by {Seconds, mSeconds,
µSeconds} as indicated in the x-axis labels.

For inference tasks, the latency increases as there are more
samples in the batch, but the increase is not significant making
the choice of the batch size more flexible depending on system
requirement. However, it is important to consider that less
samples per batch leads to more inference instances before
filling the queue and trigger learning. Although, the execution
time of the learning tasks is lower when there is only a sample
per batch, it does not imply that choosing lower sample rate
is better for the system. The average execution time when
clustering the rejected samples is dependent on the queue size
regardless of the batch size, while updating the model latency
depends on the size of the clusters assigned with a new label.
The framework is able to inference and learn new classes from
a stream of time-series sensor data.
Classification Latency of Sensor Dynamic Scheduler: In
this experiment, we evaluate the classification latency of the
proposed sensor dynamic scheduler (Alg. 1) in simulation,
based on the actual dataset of kitchen events collected using
the sensor board in Sec. III-A. We compare the proposed
scheduler with two different approaches: (i) Fixed Period:
using a fixed period of 1s at all time, and (ii) Minimum Class
Interval: choosing the minimum running time of each class as
the idle sensor period for that class. For the sensor dynamic
scheduler, the idling sensor period for each class is found by
Alg. 1 for different CL constraints. The largest periods are 25
seconds for the kettle and the vent-fan classes with CL of 13
and 14 seconds, respectively. For microwave, waste disposer,
faucet and none, the periods selected are 16, 14, 20 and 15
seconds with CL of 9, 7, 13 and 11 seconds, respectively.

Fig. 8: Percentage of BLE transmissions normalized to the
fixed period of 1s

Note that these periods are relatively smaller than the ones
selected by the minimum class interval approach.

Simulation results are shown in Fig. 7. The pattern gen-
erated by the proposed sensor dynamic scheduler closely
matches the fixed 1-sec period pattern with only small delays
at detecting the first three events, as shown in Fig. 7(a).
The minimum class interval method not only has a higher
classification latency, but also misses the none event between
the faucet and waste disposer events. These results indicate that
the proposed dynamic scheduler significantly outperforms the
minimum class interval method.

In Fig. 7(b), the dynamic scheduler with Tsp based on Alg. 1
has an overall cumulative latency of around 80 seconds over
one thousand seconds of simulation time, while Tsp selected
based on the minimum class interval method has over 170
seconds of cumulative latency during the same time span.
These idle periods can be used to partially update the open-
world learning model since EVM allows that.
Energy Consumption of Sensor Dynamic Scheduler: By
reducing the number of BLE packet transmission while the
sensor board is idling, the energy consumption of the sensor
board will be significantly reduced. This experiment is based
on the simulation results from the previous experiment.

Fig. 8 compares the percentage of BLE transmissions un-
der the proposed dynamic scheduler and the minimum class
interval, each normalized to the case when the fixed period
of 1s is used. The transmitted BLE packets using Alg. 1
is approximately 6% of the total number of transmissions
made by the fixed period approach, and 3% for the minimum
class interval method. Considering the latency improvement
achieved by Alg. 1 as discussed previously, we conclude that
only 3% more of polling requests is an acceptable trade-off.

Subsequently, a dynamic scheduler based on Alg. 1 im-
proves the energy performance of the overall sensing frame-
work while maintain the classification latency within the
application requirement.
The Model Updater Scheduler Performance: This experi-
ment is based on the previous one but with the assumption
that we have 200 samples of an unknown class that has been
discovered by the clustering algorithm. To evaluate the model
updater scheduler, we choose Tsp based on the minimum time
interval instead of using Alg. 1 to satisfy the least time to

9



Fig. 9: The model updater is triggered when it meets the
conditions in Alg.2

update the model with 1 sample (31s). In Fig 9, we see that
the model updater is triggered 3 times to adapt the 200 samples
into the model, during the faucet, waste disposal and air vent
events with minimum interval periods of 67s, 59s and 46s,
respectively. We can see that the model is successfully updated
with all the samples even before the last event finishes.

V. CONCLUSION

This paper presents the OpenSense framework that has the
capability to discover and learn new classes incrementally
from a stream of time-series sensing data in both supervised
and unsupervised settings. The EVM model adopted in our
framework is shown to be effective in rejecting unknown
samples correctly while being computationally efficient during
incremental learning compared to other algorithms. Our pro-
posed sDNN architecture not only outperforms the state-of-an-
art, but also requires fewer epochs to converge during training
the network. In addition, our sensor dynamic scheduler finds
the longest idle time that does not compromise the required
event classification latency, and our model update scheduler
enables partially updating the model during such idle time.
With these features, our framework can be successfully de-
ployed on a resource-constrained edge device. In the future, we
can further consider other resources on the edge device, such
as heterogeneous accelerators and GPUs, while minimizing the
overhead on the memory. Taking into account the intermittent
availability of batteryless energy-harvesting devices would
also be an interesting topic. These open a broad range of
research directions to improve the practicality of real-time
open-world learning on edge devices.

ACKNOWLEDGMENT

This work was sponsored by the National Science Foun-
dation (NSF) grant 1943265, the National Institute of Justice
(NIJ) grant 2019-NE-BX-0006, and the National Institute of
Food and Agriculture (NIFA) grant 2020-51181-32198.

REFERENCES

[1] G. Laput, Y. Zhang, and C. Harrison, “Synthetic sensors: Towards
general-purpose sensing,” in ACM CHI Conference on Human Factors
in Computing Systems (CHI), 2017.

[2] S. Yao et al., “DeepSense: A unified deep learning framework for time-
series mobile sensing data processing,” in International Conference on
World Wide Web (WWW), 2017.

[3] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “iCaRL:
Incremental classifier and representation learning,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[4] M. Jafarzadeh, A. R. Dhamija, S. Cruz, C. Li, T. Ahmad, and T. E. Boult,
“Open-world learning without labels,” ArXiv, vol. abs/2011.12906, 2020.

[5] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
Learning and Motivation, 1989, vol. 24, pp. 109–165.

[6] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-driven
incremental learning in deep convolutional neural network for large-
scale image classification,” in ACM Multimedia, 2014.

[7] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” 2016. [Online]. Available: https://arxiv.org/abs/1606.04671

[8] C. Zhang, N. Song, G. Lin, Y. Zheng, P. Pan, and Y. Xu, “Few-shot
incremental learning with continually evolved classifiers,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[9] A. Bendale and T. E. Boult, “Towards open set deep networks,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[10] M. Hassen and P. K. Chan, “Learning a neural-network-based represen-
tation for open set recognition,” ArXiv, vol. abs/1802.04365, 2020.

[11] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult, “The extreme
value machine,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 3, pp. 762–768, 2018.

[12] S. Kotz and S. Nadarajah, Extreme value distributions: theory and
applications. World Scientific, 2000.

[13] A. R. Dhamija, T. Ahmad, J. Schwan, M. Jafarzadeh, C. Li, and T. E.
Boult, “Self-supervised features improve open-world learning,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.07848

[14] K. J. Joseph, S. Khan, F. Khan, and V. N. Balasubramanian, “Towards
open world object detection,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021.

[15] Y. LeCun, S. Chopra, R. Hadsell, F. J. Huang et al., “A tutorial on
energy-based learning,” in Predicting structured data. MIT Press, 2006.

[16] N. Klingensmith et al., “Hot, cold and in between: Enabling fine-grained
environmental control in homes for efficiency and comfort,” in ACM
International Conference on Future Energy Systems (e-Energy), 2014.

[17] S. Kuznetsov and E. Paulos, “Upstream: Motivating water conservation
with low-cost water flow sensing and persuasive displays,” in ACM CHI
Conference on Human Factors in Computing Systems (CHI), 2010.

[18] J. Scott et al., “PreHeat: Controlling home heating using occupancy
prediction,” in ACM International Conference on Ubiquitous Computing
(UbiComp), 2011.

[19] M. Karimi, H. Choi, Y. Wang, Y. Xiang, and H. Kim, “Real-Time
Task Scheduling on Intermittently Powered Batteryless Devices,” IEEE
Internet of Things Journal, vol. 8, no. 17, pp. 13 328–13 342, 2021.

[20] M. Karimi and H. Kim, “Energy Scheduling for Task Execution on
Intermittently-Powered Devices,” ACM SIGBED Review, vol. 17, no. 1,
pp. 36–41, 2020.

[21] J. Ward et al., “Activity recognition of assembly tasks using body-
worn microphones and accelerometers,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1553–1567, 2006.

[22] A. Akl, C. Feng, and S. Valaee, “A novel accelerometer-based gesture
recognition system,” IEEE Transactions on Signal Processing, vol. 59,
no. 12, pp. 6197–6205, 2011.

[23] M. Gadaleta and M. Rossi, “Idnet: Smartphone-based gait recognition
with convolutional neural networks,” ArXiv, vol. abs/1606.03238, 2018.

[24] A. Zahin, L. T. Tan, and R. Q. Hu, “Sensor-based human activity
recognition for smart healthcare: A semi-supervised machine learning,”
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, 2019.

[25] S. Sarfraz, V. Sharma, and R. Stiefelhagen, “Efficient parameter-free
clustering using first neighbor relations,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[26] P. Slavık, “A tight analysis of the greedy algorithm for set cover,” Journal
of Algorithms, vol. 25, no. 2, pp. 237–254, 1997.

[27] A. Stisen et al., “Smart devices are different: Assessing and mitigating
mobile sensing heterogeneities for activity recognition,” in ACM Con-
ference on Embedded Networked Sensor Systems (SenSys), 2015.

[28] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in International Symposium on Wearable Comput-
ers, 2012.

[29] B. Baldwin et al., “Description of the upenn camp system as used for
coreference,” in Message Understanding Conference (MUC), 1998.

10


