
PAAM: A Framework for Coordinated and
Priority-Driven Accelerator Management in ROS 2

Daniel Enright∗, Yecheng Xiang∗, Hyunjong Choi†, Hyoseung Kim∗
∗ University of California, Riverside
{denri006, yxian013, hyoseung}@ucr.edu

† San Diego State University
{hyunjong.choi}@sdsu.edu

Abstract—This paper proposes a Priority-driven Accelera-
tor Access Management (PAAM) framework for multi-process
robotic applications built on top of the Robot Operating System
(ROS) 2 middleware platform. The framework addresses the
issue of predictable execution of time- and safety-critical callback
chains that require hardware accelerators such as GPUs and
TPUs. PAAM provides a standalone ROS executor that acts
as an accelerator resource server, arbitrating accelerator access
requests from all other callbacks at the application layer. This
approach enables coordinated and priority-driven accelerator
access management in multi-process robotic systems. The frame-
work design is directly applicable to all types of accelerators
and enables granular control over how specific chains access
accelerators, making it possible to achieve predictable real-time
support for accelerators used by safety-critical callback chains
without making changes to underlying accelerator device drivers.
The paper shows that PAAM also offers a theoretical analysis that
can upper bound the worst-case response time of safety-critical
callback chains that necessitate accelerator access. This paper
also demonstrates that complex robotic systems with extensive
accelerator usage that are integrated with PAAM may achieve
up to a 91% reduction in end-to-end response time of their critical
callback chains.

I. INTRODUCTION

The Robot Operating System (ROS) is a popular middle-
ware platform for robotic applications that supports modular
integration of software. With the development of its second
version, ROS 2, people’s perception of this platform has
changed that it could be used for serious industrial robotic
applications beyond toy examples and lab experiments. For
example, many autonomous driving (AD) companies have
adopted Autoware [1] that is an open-source AD stack built
upon ROS. NASA has recently announced its plan to utilize
ROS in space robotics and has partnered with Open Robotics
and Blue Origin to develop the Space ROS framework that ex-
tends ROS 2 with verification and validation requirements [2].

To keep up with these needs, the real-time systems commu-
nity has recently published several pioneering papers [3–9].
In ROS, applications can be composed of processing chains
of callbacks, which are executed by executors. Executors are
processes of the underlying OS and communicate through Data
Distribution Service (DDS); hence, ROS can be said to offer a
multi-process execution model. Prior studies have successfully
analyzed the worst-case end-to-end response time of a callback
chain and improved real-time performance and predictability

of ROS-based applications, but with the assumption that these
chains use only CPU resources.

The high computational demands of modern robotic ap-
plications necessitate the use of hardware accelerators, in-
cluding GPUs, TPUs, and FPGAs. However, such a prolific
exploitation of accelerator resources poses several issues to
guaranteeing timely execution of safety-critical chains. Current
ROS-based applications such as Autoware utilize an unman-
aged model for accelerator access, resulting in direct hardware
resource invocation. While this may be acceptable for some
applications, it leads to several challenges in real-time pre-
dictability (see Sec. III for more details). Although work has
been done to enhance the analyzability and predictability of
real-time robotic systems [3–7], the introduction of unman-
aged access for accelerators compromises their integrity, i.e.,
analysis results no longer hold, as the execution order is not
explicitly regulated by the OS and device drivers.

This paper presents PAAM, a Priority-driven Accelerator
Access Management framework for multi-process robotic ap-
plications built on ROS 2. In conventional robotic software
design, the callbacks of each executor directly invoke acceler-
ators to execute kernels. Our approach changes this paradigm
and offers accelerator access as a service to robotic applica-
tions. PAAM utilizes a standalone ROS 2 executor that acts
as an accelerator resource server, handling accelerator access
requests from all other callbacks at the application layer.
Hence, any callbacks of chains requiring access to a specific
accelerator send requests to the PAAM server corresponding to
that accelerator, and these requests are scheduled by the PAAM
server with an explicit consideration of their chain priorities
and the degree of device-level prioritization and concurrency
provided by the target accelerator. This enables coordinated
and priority-driven accelerator management in ROS 2 and
even allows applications to seamlessly access accelerators on
remote machines. In addition, theoretical analysis of the worst-
case response time of chains that include accelerator access is
made feasible with our framework design.

The goal of the proposed framework is to provide pre-
dictable and analyzable real-time support for accelerators
used by safety-critical chains, effectively allowing predictable
execution to occur without making changes to underlying
accelerator device drivers. Handling accelerator scheduling
in the ROS 2 application layer rather than leaving it to the

danie
New Stamp

OS or accelerator driver enables granular control over how
specific chains access accelerators, because chain criticality
and execution behavior are best observed and respected at the
middleware level. We implement this framework specifically
for Nvidia GPUs and Google Coral TPUs, but it is directly
applicable to other types of accelerators. We evaluated the
performance of complex robotic systems with extensive accel-
erator usage when interfaced with PAAM. We found PAAM
to provide up to a 91% decrease in the end-to-end response
times of their most critical callback chains.

II. BACKGROUND AND SYSTEM MODEL

A. ROS 2 Architecture

This work considers heterogeneous multi-core platforms
with integrated and/or discrete accelerators as well as ROS 2 as
a middleware for application development. ROS 2 supports a
modular integration of software in the form of nodes. Each
node consists of callbacks, each of which executes as a
response to a particular event or message arrival. Callbacks are
executed non-preemptively by an executor that the node has
been assigned to. By default, each callback within an executor
has a priority that is implicitly determined first by the callback
class (i.e., timer, subscription, service, client, waitable) and
then within each class by the declaration order in the code [3,
4, 7]. Executors in ROS 2 are OS-level processes and can
either be single-threaded or multi-threaded. Callbacks from
one or more nodes can be executed by each executor process,
depending on the nodal implementation. From the executor’s
point of view, it does not matter which node callbacks came
from, so for ease of presentation, we will not explicitly
mention the nodes unless necessary.

Our PAAM framework is designed to work with standard
ROS 2 abstractions such as nodes as standalone modules with
sets of callbacks assigned to single-threaded or multi-threaded
executors. Accelerators for this framework can be local or
remote execution units, e.g., GPUs, NPUs, and FPGAs, which
provide APIs for direct invocation. In this paper, we specifi-
cally focus our implementation of this framework on Nvidia
GPUs with CUDA workloads and Google Coral Edge TPUs
with inferencing workloads.

B. Processing Chains

We consider applications as a set of processing chains of
callbacks that must interact in a specific order to complete their
missions. For example, in an autonomous vehicle’s software
stack, a LiDAR-based perception pipeline application may
have several chains of data-dependant callbacks that filter
ground points, cluster remaining points into detectable objects,
filter objects by regions of interest, feature detect on the
remaining objects, and finally track objects over time. Fig. 1
shows the chain configuration of the Autoware reference
system developed by Apex.AI [10]. Multiple chains from
various nodes are partitioned into four executors, indicated
by different node box colors in the figure). Chains have
high to low criticality, and any callback from any chain may
necessitate access to accelerator resources.

As shown above, each chain at the application level has
a criticality although it is not explicitly considered or repre-
sented in the standard ROS 2 framework. Recall each callback
has a priority implicitly assigned within its executor and
each executor is a process scheduled by the OS scheduler.
These callback and executor priorities at different layers of
the software stack are not aligned with their chain criticalities,
and the lack of awareness of chain criticality in ROS 2 is
coupled with the fairness-oriented callback scheduling policy
of the executor [3, 5, 12]. These on the one hand help
ensure starvation freedom [5], but on the other hand, make
the execution of critical chains unnecessarily delayed by that
of non-critical ones [7].

To address this issue, PiCAS [7] introduces a mechanism
that assigns callback priorities explicitly based on their re-
spective chain criticalities, following the criticality-as-priority
(CAPA) assignment [13], and schedules callbacks strictly
based on their assigned priorities. We adopt this mechanism in
this paper as a starting point due to its superior performance
over the vanilla ROS 2. However, as discussed later in Sec. III,
the use of accelerators brings several new challenges that
cannot be solved by PiCAS and other existing solutions.

C. System Model

Fundamental ROS 2 abstractions utilized by our framework
include executors, callbacks, and chains. We specify related
properties such as periods, deadlines, and priorities.

Callbacks. Callbacks are the smallest schedulable entities in
the ROS 2 middleware. Each of these callbacks is triggered
by some local event such as a timer or incoming message.

The execution of a callback τi can be viewed as an alter-
nating sequence of CPU and accelerator execution segments.

τi := (Ei, Ai, ri, ηi)

• Ei: The worst-case execution time (WCET) of CPU seg-
ments of one instance (job) of τi.

• Ai: The WCET of accelerator segments of a job of τi, i.e.,
Ai =

∑
Ai,j where Ai,j is the WCET of the j-th accelerator

segment of τi.
• ri: The set of accelerators used by τi, i.e., ri =

⋃
ri,j where

ri,j denotes the accelerator used by Ai,j .
• ηi: The number of accelerator segments in a job of τi.
The WCET of CPU and accelerator segments, Ei and Ai,
represent the execution time of τi when there are no other
interfering tasks on the CPU and accelerators. If a callback τi
does not use any accelerator, Ai = 0, ri = ∅, and ηi = 0.

Processing Chains. We consider the processing chain model
widely used in recent real-time ROS 2 studies [3, 4, 7, 8].
Specifically, a chain Γc is characterized as follows:

Γc := ([τc1 , τc2 , ..., τcn], Tc, Dc, δc)

• [τc1, τc2, ..., τcn]: The sequence of callbacks executed by
each instance of a chain Γc. As in prior work [3, 4, 7,
8], we assume that τci+1

can start execution only when its
predecessor τci completes.

23

FrontLidarDriver

22

RearLidarDriver

25 24

26
19

EuclideanClusterSettings

21

IntersectionOutput
28

RayGroundFilter

29

EuclideanClusterDetector
35

MPCController

34

VehicleInterface 25

VehicleDBWSystem

1

PointCloudMap

6

Visualizer

9

Lanelet2Map

10

Lanelet2MapLoader 12

ParkingPlanner

16

BehaviorPlanner

13

LanePlanner

27

20
30

ObjectCollisionEstimator

3
PointCloudMapLoader

2
VoxelGridDownsampler

4

NDTLocalizer

7

Lanelet2GlobalPlanner

5

8

18

25

14 15

17

32

33

: Nodes (color = executor ID) > >
High LowMed

p p : Callbacks (p = priority)Chain criticality:

PointsTransformerFront PointsTransformerRear

PointCloudFusion

Fig. 1: Chain configuration of Apex.AI’s Autoware reference system [10]: the numbers in rounded boxes are relative callback
priorities (higher means higher priority); node colors mean node-to-executor allocation when four single-threaded executors
are used; both priority assignment and executor allocation follow the ones provided in [11]

• Tc: The period of a chain Γc. This is determined by the
first callback τc1 , which is triggered by either a timer or an
incoming message.

• Di: The relative deadline of Γc. We assume chains have
constrained deadlines (Dc ≤ Tc) for admission control.

• δc: The total number of accelerator segments in each in-
stance of Γc, i.e., δc =

∑
τi∈Γc

ηi.
In this model, as discussed in prior work [3, 7], callbacks can
be shared among multiple chains and an application can be
decomposed into multiple linear processing chains to analyze
the end-to-end response time of individual execution flow.
Executors. Executors are a ROS abstraction that serves as a
schedulable entity at the OS level. In this work, we use the
priority-driven callback scheduling mechanism of [7]. Hence,
an executor schedules its callbacks based on their assigned
callback priorities, but just like the default ROS 2 executor, it
is non-preemptive. Executors are scheduled on CPU cores by
the OS scheduler based on their process priority.
Priority Assignment. We employ the criticality-as-priority
assignment (CAPA) scheme [13]. Hence, chain priorities align
with their criticalities, i.e., chains with higher priorities are
more critical, and callbacks from a higher-criticality chain have
higher callback priorities than those from a lower-criticality
one. Priority assignments for callbacks, chains, and executors
remain static at runtime. The function π() indicates the priority
of a given entity, e.g., π(τi), π(Γc), and π(ek) for callback,
chain, and executor priorities, respectively. Every entity has
a unique priority with an arbitrary tie-breaking rule, e.g., if
Γc ̸= Γ′

c, π(Γc) ̸= π(Γ′
c).

III. CHALLENGES

Growing adoption of shared accelerators across complex
software stacks can compromise real-time guarantees essential
for safety-critical operations. This section delves into the
challenges that arise from accelerator integration into open
and closed-source real-time robotic applications.

A. Priority Inversion and Unbounded Blocking

For systems that utilize accelerators, requests to use that
accelerator from lower priority chains can block those requests
from higher priority chains because the OS and device drivers

are oblivious to the concept of processing chains and chain
priorities in robotic middleware. Moreover, the default driver
behavior for many accelerators is to execute requests in
FIFO order without regard to chain or executor priorities.
In the worst case, under the direct invocation model, where
callbacks within a ROS system directly invoke the shared
accelerator using the driver API, the accelerator request of the
highest-priority chain may be delayed by the requests of all
lower-priority chains, causing excessive and violently variable
blocking time. None of the existing real-time chain scheduling
and analysis for ROS 2 [3–8] has considered this problem.

B. Poor Accelerator Resource Utilization

The direct invocation approach causes kernels to be
launched from different process contexts. In the case of GPUs,
the default device driver behavior interleaves the execution of
those kernels from various process contexts but does not exe-
cute them concurrently on the hardware [14–16]. This creates
unnecessary GPU context-switching events and usually results
in a larger overall execution time for all interleaved kernels.
While the interleaved execution provided by the device driver
prevents starvation from happening, it can be a significant
cause of unpredictable timing behavior. Furthermore, if the
system includes non-real-time, best-effort kernels that do not
fully use the accelerator’s resources, the total utilization can
be much less than what it could be. In the case of other
accelerators, such as the Coral Edge TPU used in this work,
the problem could be much more significant since some of
them even limit access by multiple processes [17].

C. Disparity in Chain and Executor Priorities

To address the aforementioned two problems, several so-
lutions have been developed to schedule accelerator requests
based on the priority of calling processes, particularly in the
context of shared GPUs [18–21]. One may think that such
solutions, when applied to ROS-based systems, could offer
comparable performance enhancements as witnessed in other
systems. However, in the ROS 2 ecosystem, the priority of
chains and callbacks does not always align with the priority
of the executor process. Such disparity in process and chain
priorities leads to conditions where critical callback chains

Node

Callback #1

Executor Process #1

Node

Node

PAAM Server

Accelerator

ROS 2 Middleware Stack

OS and Driver Stack

Clients

CPU GPU TPU

Callback #2
CPU GPU

Callback #3

Callback #4
CPU TPU

CPU GPU TPU

Control Plane

Data Plane

Shared
Memory

Shared
Memory

Shared
Memory #1

GPU TPU

Client
Registration

Accelerator
Request

…

…

DDS

Client
Registration

Registration
Callback

Admission
Control

Bucket
Assignment

Memory
Allocation

Deregistration

Runtime Monitor

Garbage
Collection

Large kernel data

Zero-Copy w/o
Serialization

Control messages

Hierarchical Request Management

Request
Callback

Requests w/ chain priority

Priority
Downsampling

…

Bucket 1 Bucket 2 Bucket n

…

Device-level priority

Thread-local
priority queue

Fig. 2: ROS 2 PAAM Framework
Client Server

Admission control
Initialization :

Runtime :

Termination:
Deallocate Shared

Memory

Allocate shared
memory

Registration Request:
uint8 UUID[16]
string kernels[]
uint64 keys[]
uint8 chain_priority
and other chain params Worker

Assignment

Registration
Response:
string kernels[]
uint64 shmem_ids[]

Clean Request
Queues

Destroy Unique
Structures

Queueing

Execution and
Notification via
Shared Memory

Access Request:
uint64 kernel_id
uint8 chain_priority
uint8 UUID[16]

De-Registration
Request:
uint64 PID
uint8 UUID[16]

Shared Memory
Data Structure

Population

Wait for
Completion

Continued
Execution

Fig. 3: Client Registration Sequence

necessitating accelerator resources cannot access them in a
timely manner, facilitating unpredictable timing behavior.
Goals: The primary objectives of our work are to minimize the
end-to-end response time of a critical chain in the presence of
accelerators and to build a framework that makes it amenable
to derive a worst-case bound while achieving efficiency.

IV. PAAM ARCHITECTURE

PAAM introduces an accelerator management server run-
ning as a standalone executor at the ROS 2 application layer
and providing accelerator access as a service to clients.1

Fig. 2 presents an overview of our framework. PAAM creates
one server executor per accelerator, each with one or more
worker threads. In the following, we will present the details
of the key components of PAAM: (i) client registration, (ii)
data transport with control and data planes, (iii) hierarchical
request management, (iv) client/server execution flow control,
(v) GPU- and TPU-specific considerations, and (vi) admission
control with analytical bounds.

A. Client Registration

PAAM requires that ROS 2 clients that must use accelerator
resources register with the server at their startup. This proce-

1A client can be seen as a node in program code, but the entity that issues
requests at runtime is an executor process.

dure is facilitated through a message exchange sequence that
relays the client information: chain priority, accelerator ser-
vices (kernels) to use, callback’s UUID, and client’s executor
process ID. An example of a client registration sequence and
associated message types is shown in Fig. 3. Once a chain
registration request is received, the PAAM server performs an
admission control test based on the method given in Sec. IV-F.
If the clients are local to the PAAM server, meaning that
they live within the same system, shared memory regions
are created and associated with specific accelerator services.
If remote, only their chain priorities, system UUID, callback
UUID, executor PID, and accelerator services are logged.

Mapping Clients to Buckets. During client registration, the
server also maps the chain priority to “buckets” that corre-
spond to accelerator-supported priority job queues. We assume
that chain priorities are fixed, and the subsequent requests
from that callback will be assigned to the same bucket. If
this is not the case, however, the clients can simply de-
register from the server and re-register with a different chain
priority. We discuss more details of buckets and queueing in
Sec. IV-C. After client registration, the PAAM server responds
with shared memory IDs that the client can attach to in order
to take advantage of the zero-copy unserialized data plane
provided by the PAAM server (Sec. IV-B).

Client Data Management. It is possible for different call-
backs of the same client to make requests for the same kernel.
To distinguish such requests and prevent data conflicts, PAAM
uses callback UUIDs and allocates separate shared memory
regions for each of them. In Fig. 4 we show a diagram of the
server-local data structure that is used to keep track of client
callbacks within a chain, shared memory regions assigned
to them, their anticipated kernels, and other important client
metadata. During the client registration procedure, the server
will allocate one client data structure per callback requesting
accelerators. The structure is then populated, as explained
above, with information about the client, as well as pointers
to shared memory regions. The server uses an unordered map
to link callback UUIDs to client registration structures for use
when executing accelerator workloads on specific data. The

Map Entry

Client Data Structure

Registered Kernel List

GEMM Shm Pointer

Pointers to Shared
Memory Regions

YOLO Shm Pointer

Histogram Shm Pointer

Vec-add Shm Pointer

Reduction Shm Pointer

TPU Shm Pointer

Shared Memory Key List

Shared Memory ID List

Chain Priority

Executor PID

Data In Use Flag

Remote Machine Flag

Callback Priority

Callback Map

Pointer to Client
Data Structure

Callback UUIDKey:

Value:

…

Fig. 4: Server Data Structure of Client Information

client registration structure stores a list of applicable pointers
to server-generated shared memory regions, sorted by request
type, in addition to a list of anticipated kernels, shared memory
keys and IDs (used for client de-registration and garbage
collection), chain priority, executor process information, data
status flags (used to prevent deallocation and destructive kernel
cancellation), and a remote machine flag (used to indicate
whether the client callback belongs to a networked system).

Runtime Monitor. With the framework design being targeted
at highly dynamic software systems with multiple clients
registering, de-registering, and unexpectedly exiting, we have
included a runtime monitor for all clients that have registered
with the server. When the server is idle, the runtime monitor
checks on the status of processes that have registered and will
garbage-collect allocated memory that was left stranded by
improper nodal de-registration. Note that the runtime monitor
is independent of the critical path of accelerator workload
execution by the PAAM server, and thus runs with non-real-
time priority to minimize interference.

B. Data Transport

By default, the ROS 2 environment does not distinguish
data and control messages. Such a combined model can lead
to excessively large messages being transported via DDS,
introducing long transmission time, data serialization, multiple
copy operations, and the additional overhead from the ROS-
DDS interfacing layer. To mitigate the communication cost
between clients and the PAAM server, we opted to establish
separate data and control planes in our framework design. This
separation ensures that the server can access the necessary data
through shared memory without serialization, while control
messages are formed in a fixed size and sent over DDS.
Furthermore, this approach allows us to bypass the ROS-DDS
interface layer, which appears to be a major source of overhead
as highlighted in Sec. V-C, for large data transmission.

Control Plane. The control plane involves local client acceler-
ator access request messages of small fixed size (72 bytes) that
can automatically leverage zero-copy capabilities of existing
DDS implementations such as Iceoryx-enabled [22] Cyclone
DDS [23]. Other variable-sized control-plane messages in-
clude client registration requests, server registration responses,
and remote client accelerator access requests.

Data Plane. In the data plane, we pre-allocate memory based
on the maximum data size for each request type during client
registration. This approach allows us to manage variable-sized
data from callbacks of the same node in shared memory,

Fig. 5: Sample Shared Memory Region

eliminating the overhead associated with resizing these re-
gions. For local clients, once the server allocates memory
and relays the shared memory IDs back to the client, client
callbacks can then dynamically attach to and populate input
data structures before submitting a request. It is worth noting
that, since each shared memory region is unique to each client
callback, there is no data conflict even if many callbacks of
the same client make the same request type simultaneously.
Leveraging shared memory in a separate data transport plane
eliminates the copy operations that would otherwise take place
in DDS message transport; hence, data can be directly assigned
to the pre-established memory regions, without needing to
allocate objects or serialize them for the DDS transport. While
callbacks have to initially write data to shared memory, such a
write is necessary for any data-producing callback regardless
of PAAM’s presence. Upon the completion of a kernel, the
server-side kernel wrapper updates a flag in the corresponding
shared memory region, notifying the client callback of the
kernel completion and enabling it to resume its execution path.

In Fig. 5 we describe a sample shared memory region that
is allocated by the server and attached to a client. The shared
memory region maintains distinguished request and response
data regions, allowing for a simple programming interface that
is consistent across the client and server programs. Each shared
memory region also contains locks for data protection as well
as condition variables used to awaken sleeping client callback
threads. The ready flag is used to verify that the result from
the PAAM server is ready, especially if the client experiences
a spurious wakeup. It is also worth noting that these data
structures are customizable and can be tailored to any type
of local request using the PAAM framework.
Remote Clients. The use of shared memory in the data
plane is infeasible in this case. Instead, we rely on standard
serialization and DDS message transport of variable-sized
data structures over network sockets. While this incurs higher
overhead than the shared memory-based data plane, it allows
for accelerator-less devices to remotely utilize accelerator
resources for heavy processing workloads, with their chain
priorities still being respected.

C. Two-level Hierarchical Request Management
The PAAM architecture employs a two-level hierarchi-

cal prioritization structure for incoming request (accelerator

job) queue management: buckets and thread-local queues.
To leverage hardware-supported prioritization and preemption,
the PAAM server creates n worker threads, which we call
buckets, where n is the number of priority levels provided by
the associated accelerator hardware, e.g., CUDA on Nvidia
Jetson AGX Xavier provides up to six stream priorities. While
not many accelerators except for GPUs support device-level
prioritization and preemption as of yet, the computer archi-
tecture community is recently introducing such capabilities in
NPUs [24]. The number of buckets is specific to accelerator
hardware and is gathered during the server initialization phase.
Within each bucket, there is a thread-local priority queue to de-
termine execution order in accordance with the corresponding
chain’s priority. Each bucket has access to the server executor
process memory, including all of the shared memory regions
assigned during the registration process of clients. With this
structure, we can efficiently reap the benefits of our zero-copy
data plane for local clients when executing accelerator services
on client-assigned data.

Upon receiving an accelerator access request from a client,
the PAAM server will determine the appropriate bucket to
handle the incoming request. Original bucket assignment is
performed during the client registration process and is deter-
mined through a simple down-sampling heuristic that divides
chain priorities into n evenly sized groups; the highest priority
chains are assigned the highest priority buckets. If n = 1,
i.e., the associated accelerator does not provide any device-
level priority and preemption, all requests are handled by
the thread-local priority queue of a single worker thread. If
the multi-bucket (worker) implementation for multi-stream
capable accelerators is utilized, the requests that are run on
a higher priority stream can preempt those executing on lower
priority streams. If all requests are assigned to the same bucket,
then preemption cannot happen. This will be the case for other
accelerators that do not support multiple hardware priority
levels, such as TPUs. Our analysis for admission control
in Sec. IV-F considers such preemption among buckets and
blocking within the same bucket. During runtime, the chain
priority is cached on the server and can be quickly referenced
to rapidly transport the request into the right bucket’s job
queue. The execution and subsequent completion notification
of the accelerator service is explained in more detail in
Sec. IV-D

D. Client and Server Execution Control Flows

PAAM preserves the client’s original execution control
flows to minimize code changes. Callbacks can directly make
a request as if it were making a direct invocation of an
accelerator resource. In Fig. 6a and 6b, we show that the
execution flow for synchronous and asynchronous accelerator
invocation performed by client callbacks is not disrupted by
the use of PAAM. Our wrappers assign data to shared memory
regions, encapsulate the control plane messages, and send the
requests to the PAAM server. For synchronous requests, the
client executor either suspends or spins on a status flag in
shared memory that serves as a notification from the server.

synchronous_client_callback

{

 ….

 launch_kernel(); // direct invocation

 ….

 publish_results;

}

PAAM Wrapper

Write request data to shared memory;

Send request to PAAM server;

Spin or suspend until request is done;

Resume Execution;

(a) Synchronous Request
asynchronous_client_callback

{

 ….

launch_kernel(); // direct invocation

….

 other_tasks();

 …

 device_synchronize();

 memcopy();

 ...

 publish_results;

}

PAAM Wrapper

Write request data to shared memory;

Send request to PAAM server;

PAAM Wrapper

Wait for result in shared memory;

Resume execution

(b) Asynchronous Request

Fig. 6: PAAM Wrapper for Callback Accelerator Requests

Worker Thread n

Worker Thread Queue

Request
1

Request
2

Request
n

Request Callback

Determine
Bucket

Push Request
to Queue

Wake Worker
Thread While queue is not empty

Pop Request

Execute and Notify

Sleep

Fig. 7: Server Execution Flow

Upon receiving a notification from the server, the client will
resume its normal execution. For asynchronous callbacks, the
client can perform other CPU-based workloads that are not
dependent on the accelerator result while the PAAM server is
handling the request.

In the server process, as shown in Fig. 7, we show a
simple structure of how a client request is enqueued into the
proper bucket queue and executed in chain priority order. Upon
receiving a request from a client callback, the incoming request
callback on the server will immediately determine the worker
thread that the request should belong to, enqueue the request
to that worker’s local request queue, and wake the worker
thread if it was previously sleeping. The worker thread then
pops the request from its thread-local queue and executes it.
Once the execution of the accelerator service is complete, the
server either wakes up the client executor or updates the status
variable in shared memory – indicating that the result in shared
memory is ready. When waking up the clients, the server will
leverage the mutex and condition variable associated with the
client callback that was allocated during client registration and
stored in shared memory as shown in Fig 5.

E. GPU- and TPU-specific Considerations

1) GPU: For accelerators that support hardware-level prior-
itization of kernels (e.g. GPUs), we establish buckets (worker
threads) for prioritized streams that can preemptively execute
kernels and reduce blocking time, without detracting from the
dependability of the application. In the case of Nvidia GPUs,
each bucket corresponds to a unique CUDA stream with a
unique stream priority. Recall that, during client registration,
clients are assigned to buckets based on their callback chain

priorities, which effectively down-samples the chain priorities
into CUDA stream priorities as discussed in Sec. IV-C. If
there are two or more kernels assigned to the same bucket
with the same chain priority, PAAM executes them one at a
time in arrival order. Hence, blocking time still exists, but this
approach of associating prioritized streams to buckets allows
us to exploit the preemptive mechanisms provided by driver
APIs. In this way, the kernels executed by buckets associated
with higher chain priorities can preempt any executing kernels
from lower-priority buckets.

For balanced real-time performance and resource efficiency,
we allow the concurrent execution of kernels [16, 25–27] in
the lowest priority bucket such that non-critical or best-effort
chains can better utilize GPU’s internal compute resources at
the expense of possible non-deterministic slowdowns in their
execution. This approach, however, does not cause slowdowns
to kernels in higher-priority buckets because of stream-level
preemption. By leveraging a single accelerator context main-
tained by the PAAM design, we utilize device driver features
that interleave instructions for multiple processes’ requests
without requiring an expensive change of the GPU context or
using an additional closed-source layer like Nvidia MPS [28].2

2) TPU: To showcase PAAM’s compatibility with multiple
types of accelerators, we also integrated the Coral Edge TPU
with PAAM. Unlike Nvidia GPUs, the Coral TPU provides
no hardware-level concurrency prioritization. In addition, it
can only support one process context and invocation at any
given time [17], meaning that other processes cannot use the
TPU until the one that is currently using the TPU terminates.
This could be a significant limitation in multi-process robotic
environments, effectively limiting the utilization of the TPU
to one client executor. PAAM solves this issue and allows
multiple clients to seamlessly share the TPU at runtime.

The TPU-specific design considerations include a single
worker (bucket) for handling the requests for TPU usage. This
simplifies the design of the worker to include a non-preemptive
and non-concurrent priority-based execution order. Similar to
the design of the GPU workers, we create a single worker
with a priority queue for incoming requests that is pinned to a
separate CPU separate from the GPU workers and maintains
real-time priority in Linux.

3) Managing Multiple Accelerators: If the system has
multiple units of the same accelerator type, e.g., 2 TPUs,
the PAAM server creates sets of workers, where each set
corresponds to one accelerator unit. The assignment of each
callback/accelerator segment to a specific unit of the requested
accelerator type is performed at the registration phase us-
ing bin-packing heuristics such as WFD. This approach is
analogous to partitioned multiprocessor scheduling, and help
improve the responsiveness of critical chains by assigning
them to a separate, designated accelerator.

F. Admission Control
For any new client, the PAAM server performs admission

control to determine its acceptance. One approach would be

2As of this writing, MPS is still not available for the ARM architecture.

to simply assess the utilization of clients’ accelerator requests.
However, to guarantee end-to-end performance, we derive the
worst-case response time of a chain that includes callbacks ac-
cessing accelerators through PAAM. As mentioned in Sec. II,
we adopt the priority-driven chain execution mechanism of
PiCAS [7]. Hence, our approach extends the analysis from
[7], incorporating the delays induced by accelerator access.
While PAAM supports various client executors, for analysis
purposes, we follow the same assumptions as in [7]: clients use
single-threaded executors, each statically assigned to a CPU
core with a distinct real-time process priority. Our analysis
focuses on chains with constrained deadlines.

Let us consider a chain Γc executing in one executor. This
chain could be a sub-chain of a larger chain Γ∗ that spans
across multiple executors on different CPU cores. We will
first upper-bound the response time of Γc and then show how
the end-to-end response time of Γ∗ can be obtained.

In PAAM, the key behavior rules that affect the request han-
dling time for accelerator access are summarized as follows.
• R1: For each accelerator device, one server is created and

runs on a dedicated CPU. Hence, different PAAM servers do
not interfere with each other on both CPU and accelerator.

• R2: When an PAAM server receives a request, it is sent
to one of n buckets through priority downsampling and
handled by the corresponding worker thread of the server.

• R3: The worker thread executes requests in its bucket non-
preemptively in the order of requests’ chain priority.

• R4: If the server has multiple buckets, requests in a higher-
priority (HP) bucket can preempt those in a lower-priority
(LP) one.

R1 allows us to analyze the request handling time for one
accelerator independent of other accelerators in the system.
R2-R4 are resulted from our two-level hierarchical request
management. By R2 and R3, a chain Γc’s request can be
delayed by up to one request from an LP chain that the
accelerator is already executing. R4 adds interference from HP
chains during the handling time of Γc’s request. In addition,
there are two types of overhead to consider: (i) ϵ, which is the
overhead imposed on every request (accelerator segment) by
the PAAM server (δc segments for Γc), and (ii) κ, which is
the device-level preemption cost that can occur before and
after each segment (at most 2κ per segment). We define
A∗

i,j = Ai,j +2κ to incorporate the preemption delay into the
execution time of the j-th accelerator segment of a callback τi.
Based on this, the maximum time to complete all accelerator
requests of the chain Γc with overhead is given by:

H∗
c = Hc + δc · ϵ (1)

where Hc is the cumulative request handling time for all
accelerator segments of Γc under PAAM (incl. delay R2-R4).

Before bounding the handling time Hc, let us analyze how
many accelerator requests an PAAM server can receive from
an interfering segment τk,q during an arbitrary time interval t.

Lemma 1 (arrival bound). The maximum number of requests
that an accelerator segment τk,q from a schedulable chain Γc′

can generate in an arbitrary interval t is bounded by

µk,q(t)←
⌈ t

Tc′

⌉
+ 1 (2)

Proof. The requests of a segment τk,q are made in a periodic
manner based on its chain period, with a possible jitter
j1 < Tc′ due to that τk,q can start as soon as its preceding
segment or callback completes. If the interval t is aligned with
the release time of the chain Γc′ , this gives ⌈ t+j1

Tc′
⌉ (recall

µ() is not a response time test; it is to bound the number of
arrivals of requests during t). However, as t is an arbitrary
interval, there can be carry-in execution of τk,q in the interval
t due to delayed execution. For instance, the start of the
execution of τk,q’s job can be delayed by other callbacks on
the same executor (e.g., blocking or self-pushing effect of non-
preemptive scheduling) or by OS-level preemption from HP
executor processes on the same CPU core. While this may
introduce a more number of jobs of τk,q in the interval t than
⌈ t
Tc′
⌉, it is known to be limited to most once in a schedulable

system with the constrained deadline model [29] and its effect
can be taken into account as a jitter, i.e., j2 < Tc′ . The
sum of these jitters j1 and j2 cannot exceed Tc′ since Γc′

is schedulable, and therefore ⌈ t+j1+j2
Tc′

⌉ ≤ ⌈ t
Tc′
⌉ + 1. It is

worth noting that the well-known self-pushing effect of non-
preemptive scheduling can be upper bounded by at most one
carry-in job in the interval t because Γ′

c is schedulable.

To bound Hc, we follow the double-bounding approach [19,
30] that derives two separate but safe bounds and takes the
minimum between them. We will present each approach in
a respective subsection and then derive the response time
analysis of a chain. We will use the following notation:
• hps(τi,j) (and lps(τi,j)): the set of accelerator segments

that are from HP (and LP) chains than the chain of τi,j and
use the same accelerator as τi,j .

• b(τi,j): the bucket of the PAAM server assigned to τi,j .
1) Bound by Per-segment Handling Time: First, the han-

dling time Hc of a chain can be obtained by calculating the
handling time of each accelerator segment τi,j , Hc,i,j , and
then adding them up, i.e., Hc =

∑
τi∈Γc

∑
1≤j≤ηi

Hc,i,j .

Lemma 2 (handling time per segment). The maximum han-
dling time of the j-th accelerator segment of a callback τi ∈ Γc

under PAAM is upper-bounded by the recurrence:

Hc,i,j ← A∗
i,j + max

τk,q∈lps(τi,j)
∧b(τk,q)=b(τi,j)

A∗
k,q +

∑
τk,q∈hps(τi,j)

µk,q(Hc,i,j)·A∗
k,q (3)

The recurrence starts with the first two terms.

Proof. As explained earlier, the handling time Hc,i,j of the
accelerator segment of τi,j is determined by three factors. First,
τi,j’s own execution time inflated with the preemption cost,
A∗

i,j . Secondly, blocking time occurs when the accelerator is
already handling a request from an LP chain in the same
bucket, which is the first term of the equation. Note that
those in other buckets do not cause blocking because they
can be preempted (recall PAAM creates more than one bucket

only when the accelerator supports device-level preemption).
Thirdly, an additional delay is imposed by HP requests during
the handling time of Hc,i,j , the number of which is bounded by
µk,q(Hc,i,j). Therefore, the delay caused by requests from Γh

is bounded by
∑

µk,q(Hc,i,j) ·A∗
k,q , and the maximum han-

dling time can be obtained by adding these three factors.

2) Bound by Per-chain Handling Time: Unlike the first
approach, the second approach takes into account the total
amount of interfering requests during the chain Γc’s execution.

Lemma 3 (handling time per chain job). The maximum
handling time of all accelerator segments from all callbacks
of a chain Γc under PAAM is upper-bounded by:

Hc←
∑

τi,j∈Γc

(
A∗

i,j + max
τk,q∈lps(τi,j)

∧b(τk,q)=b(τi,j)

A∗
k,q

)
+

∑
τk,q∈

⋃
τi,j∈Γc

hps(τi,j)

µk,q(Rc)·A∗
k,q (4)

where Rc is the response time of Γc. This can be solved during
the iterative calculation of Γc’s response time Rc given next.

Proof. Each accelerator request made by a segment τi,j of Γc

may experience blocking time from an LP request in the same
bucket, and the total blocking time for Γc can be bounded by
the summation of each blocking time for all segments of Γc,
as shown in the first term that also includes the execution time
of Γc’s own requests. During Γc’s response time, the number
of requests from an HP chain Γh is bounded by µk,q(Rc),
and the second term of the equation bounds the delay from
HP chains.

It is worth noting that the two approaches given in Lem-
mas 2 and 3 do not dominate each other. While the blocking
time from LP chains is the same, the amount of interference
from HP chains is different. For instance, if the number of
accelerator segments of a chain Γc under analysis is relatively
small, Lemma 2 can give a tighter bound since it only
considers HP interference during the segments’ handling time;
in the opposite case, Lemma 3 can give a better result since its
second term is not subject to the number of segments Γc has.
Since both approaches upper bounds the handling time, we
can take the minimum between them to obtain the handling
time Hc, and use this in Eq. (3) to compute H∗

c , the time to
complete all accelerator requests of Γc with overhead.

As mentioned before, we analyze a chain or sub-chain Γc

that has all of its callbacks running on a single executor, and
then discuss how chains spanning across multiple executors
can be analyzed. We use the following notation to specify
other interfering chains:
• hp(Γc) (and lp(Γc)): the set of HP (and LP) chains than Γc

running in the same executor as Γc.
• hpp(Γc): the set of chains running in executors on the same

CPU as e(Γc) and with higher process priority than e(Γc).
Let us first review the response time test of PiCAS [7], the
priority-driven execution mechanism adopted in PAAM.

Lemma 4 (chain with no accelerator segment [7]). The
worst-case response time (WCRT) of a chain Γc without any

accelerator segment under the priority-driven chain execution
mechanism is bounded by the following recurrence:

Rc ←Bc + Ec +
∑

Γh∈hp(Γc)

µh(Rc) · Eh +
∑

Γh∈hpp(Γc)

µh(Rc) · Eh (5)

where Bc = maxΓl∈lp(Γc) maxτj∈Γl Ej is the blocking time
from an LP chain, Ec =

∑
τi∈Γc

Ei is the sum of WCET of
all callbacks of Γc, and µh(Rc) = ⌈Rc

Th
⌉ + 1 is analogous to

Lemma 1. The recurrence starts with the first two terms.

In the above analysis, the first term captures blocking time
due to the non-preemptive callback scheduling of ROS 2.
As the priority-driven execution mechanism prevents further
execution of callbacks from LP chains until Γc completes,
there can be at most one blocking from a callback of an
LP chain on the same executor. The second term Ec is the
execution time of Γc itself. The third term is the interference
from HP chains on the same executor. An interesting part is the
fourth term. This captures the fact that the executor process of
Γc can be preempted by other HP executor processes running
on the same CPU core (i.e., OS-level preemption), each of
which is activated by the arrival of any chain it has.

We now derive the response time of a chain Γc with ac-
celerator segments under the PAAM framework by extending
the above analysis. The additional factors we need to consider
are: (i) accelerator segment execution time Hc of the chain
Γc under analysis, (ii) interference due to accelerator usage
of HP chains on the same executor, and (iii) executor-level
interference from other executors on the same CPU core.

Theorem 1 (PAAM). The worst-case response time (WCRT)
of a chain Γc with accelerator segments under the PAAM
framework is bounded by the following recurrence:

Rc ← Bc + Ec +H∗
c +

∑
Γh∈hp(Γc)

µh(Rc) · (Eh +H∗
h)

+
∑

Γh∈hpp(Γc)

µh(Rc) · (Eh + spin(Γh))
(6)

where spin(Γh) = H∗
h if Γh spins (busy waits) on the CPU

while waiting for the completion of accelerator requests, and
spin(Γh) = δh · ϵ otherwise (Γh suspends). The recurrence
starts with the first three terms, i.e., Rc = Bc + Ec +H∗

c .

Proof. The equation is an extension of Eq. (5). The term
H∗

c is the handling times for accelerator segments of Γc

itself. For HP chains running in the same executor as Γc (the
first summing term), additional interference caused by each
instance of an HP chain Γh due to its accelerator execution
time H∗

h needs to be considered. This is because, while any
accelerator request of a callback of Γh is being handled by
PAAM, this callback remains uncompleted and the executor
cannot execute any other callback. On the other hand, for
chains running on other executors with higher process priority
on the same CPU core, the amount of additional interference
per chain instance depends on whether that chain spins or
suspends during accelerator requests. In case of spinning, the
executor actively consumes CPU cycles, so all components of

H∗
h given by Eq. (1) need to be taken into account. In case

of suspension, the corresponding executor suspends and the
interference is limited to δh · ϵ, which is the total overhead
caused by PAAM. In the literature, self-suspending behavior
of an HP task is known to introduce additional penalty to its
LP tasks and such penalty can be bounded by a jitter term [31,
32]. As µh(Rc) already takes into account the maximum
possible jitter for the constrained deadline model, no additional
penalty needs to be considered. As there is no other source of
interference or blocking delay possible for Γc, the summation
of these terms can upper bound the response time.

As known in the literature [33, 34], a sufficient schedu-
lability test for non-preemptive scheduling can be obtained
by adding the blocking term to the response time test for
preemptive scheduling, and our analysis follows this approach.
This is safe but pessimistic. We believe a tighter (or exact if
possible) analysis could be derived by considering the level-
i active period that can precisely capture the self-pushing
phenomenon of non-preemptive scheduling.

Processing Chain over Multiple Executors. Using The-
orem 1, we can obtain the end-to-end latency of a chain
Γ∗ that consists of multiple sub-chains Γc ∈ Γ∗, each of
which is executed by different executors. This can be directly
computed by adding all the response times of sub-chains with
communication cost ϵ′ (ϵ′ < ϵ; see Sec. V for the breakdown
of the PAAM overhead ϵ), i.e., R∗ =

∑
Γc∈Γ∗ Rc + ϵ.

This works because, although subsequent sub-chains may
experience release jitters when the preceding sub-chains finish
earlier than their WCRT, the negative impact of such jitters on
LP chains has been already considered as a carry-in (“+1” in
Lemma 1). This approach has been used by other prior work
for ROS 2 [3, 7].

V. EVALUATION

In this section, we assess the effectiveness of our proposed
framework over the state-of-the-art and explore the perfor-
mance characteristics and associated overhead. The evaluation
was done on the Nvidia Jetson AGX Xavier platform that has
1 integrated GPU and 1 Google Coral Edge TPU. We con-
figured all CPU and accelerator cores to run at the maximum
frequency and disabled dynamic clock frequency scaling to
minimize measurement fluctuations. Each experiment was run,
uninterrupted, for 10 minutes at a time. 3

A. Case Study 1: GPU-enabled Robotic System

System Setup. This scenario is derived from the PiCAS case
study [7], which is inspired by the F1/10 robotic platform,
but introduces additional accelerator segments. The chain
configuration of this scenario can be found in Fig. 8. There are
8 processing chains, divided into two categories: critical chains
(chains 1-6) and non-critical or best-effort chains (BE 1-2).
For the critical chains, chain 1 has the highest priority, while
chain 6 has the lowest priority. Each callback contains one

3The source code of our implementation is available at https://github.com/
rtenlab/reference-system-paam.git.

local_plan

pre_processing object_detection

object_tracking
local_costmapLIDAR

CAMERA1

Global_planner

Local_planner

Timer callback (T: period, E: execution time)

Regular callback Data dependency

E=2 ms

E=6 ms

E=8 ms E=9 ms

E=8 ms E=4 ms E=8 ms

Critical Chains:

Best-effort (non-critical chains):

global_costmap
E=6 ms

𝜏6 𝜏7 𝜏8

𝜏9 𝜏10 𝜏11

𝜏12

𝜏5

depth_estimation traffic_predictionCAMERA2
E=5 ms E=7 ms E=2 ms

Γ1:=[𝜏1, 𝜏2]

Γ1 & Γ2:

T=120 ms

Γ3:

T=220 ms

Γ4:

T=260 ms

Γ2:=[𝜏1, 𝜏3, 𝜏4]

Γ3:=[𝜏5, 𝜏6, 𝜏7, 𝜏8]

ΓBE_2:=[𝜏16, 𝜏17, 𝜏18, 𝜏19]ΓBE_1:=[𝜏14, 𝜏15]

Γ4:=[𝜏9, 𝜏10, 𝜏11]

Γ6:=[𝜏12, 𝜏13]

Γ5:=[𝜏12, 𝜏13, 𝜏14]

𝜏13

𝜏14

generate_state
extract_robot_model

TF
E=2 ms E=1 ms

E=7 ms

Γ5:

T=320 ms

𝜏12 𝜏13

dead_rekonerIMU

E=2 ms E=7 msΓ6:

T=360 ms

Fig. 8: Chain configuration of GPU-enabled robotic system

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 BE 1 BE 2
0

50

100

150

200

250

300

350

E
nd

-t
o-

en
d

la
te

nc
y

(m
s)

ROS 2 PiCAS PAAM Analysis

Fig. 9: Case study 1: Maximum observed chain latency

GPU segment with the WCET of 10 ms, i.e., ∀τi, Ai = 10.
Callbacks have CPU workloads with various execution times,
depicted by E in the figure. To compare the maximum end-to-
end latency observed from experiments against the worst-case
bound from our analysis, we applied the analysis’ assumptions
to this case study: (i) the PAAM server and its six worker
threads were pinned to core 0 with real-time priority, and
(ii) chain clients were executed by multiple single-threaded
executors pinned to other cores. Specifically, the chains were
partitioned into four executors, in the same manner as in [7];
the executors including critical chains 1-6 were pinned to
cores 2-7; the BE chains were assigned to separate executors
pinned to cores 2-3 to stress high-criticality chains. BE 1 and
2 are duplicates of chains 1 and 3, respectively. Hence, the
BE chains are also periodic, but their response times do not
need to be within their periods.

For comparison, we consider the following methods:
• ROS 2: Clients run on the default ROS 2 executors and use

the direct invocation method for accelerator access.
• PiCAS [7]: Clients execute as in ROS 2, but on the PiCAS

executors with the direct invocation method.
• PAAM: Our proposed framework.
• Analysis: The worst-case end-to-end latency (response

time) computed by our analysis given in Sec. IV-F.

Results. Fig. 9 compares the maximum chain latency observed
from experiments under each method, along with the worst-
case latency computed by our analysis. Fig. 10 reports the
distributions of observed chain latencies under respective

Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 Chain 6 BE 1 BE 2
0

50

100

150

200

250

E
nd

-t
o-

en
d

la
te

nc
y

(m
s)

ROS 2 PiCAS PAAM

Fig. 10: Case study 1: Chain latency distributions

methods. We observed that the maximum observed chain
latency under PAAM was always bounded by our theoretical
analysis. This observation is juxtaposed with the unbounded
response time of the highest-criticality chains without PAAM.
In addition, the maximum observed latency of critical chains
under PAAM is much shorter than ROS 2 and PiCAS (e.g.,
more than 50% reduction for chain 1), which demonstrates the
effectiveness of our proposed framework.

B. Case Study 2: Autoware Reference System w/ GPU & TPU
System Setup. To evaluate the benefit of PAAM in a more
complex scenario, we used the Apex.AI’s Autoware reference
system [10]. The system resembles the lidar-based perception
pipeline of Autoware.Auto [35], as illustrated in Fig. 1.
We augmented this system by incorporating GPU and TPU
segments into every callback, excluding the seven dedicated
to the behavior planner to prevent accelerator overload. Recall
that the Coral TPU does not allow for more than one context
to exist at a time; so, to fairly evaluate the impact of PAAM on
the reference system, we assigned a TPU inferencing workload
to the single rear lidar points transformer callback. This setup
permitted a straightforward comparison between the PAAM
and direct invocation methods, with the latter requiring only
one TPU context. The reference system produces several Key
Performance Indicators (KPIs):
• Hot Path Latency: The hot path, outlined in Fig. 1, is

composed of the chain of callbacks from the lidar sensor to
the collision estimator. This is the most critical chain in the
system as it indicates the time to react to obstacles.

• Behavior Planner Period: The behavior planner is set to
execute with a period of 100 ms. If the execution is blocked,
the actual period may be prolonged. Lower variations in the
measured period from the planner period are better.

• Hot Path Message Drops: Dropped hot path messages
show how many callbacks in the hot path missed their
input messages in the current instance of the chain. A lesser
amount of dropped messages indicates better performance.
Unlike the first case study, we evaluate each method with

both single-threaded (ST) and multi-threaded (MT) executors.
• 4×ST: We partitioned the reference system workload to four

ST executors, each pinned to a separate CPU core.
• MT: The system runs in one MT executor. To use the same

number of cores as 4×ST, we configured the number of
threads to 4 and pinned the threads to to 4 cores.

4xST MT

100

200

400

800

1200
H

ot
 P

at
h

La
te

nc
y

(m
s

in
 lo

gs
ca

le
) ROS 2

PiCAS
PAAM

(a) Hot Path Latency

4xST MT
0

50

100

150

200

250

300

P
er

io
d

(m
s)

ROS 2
PiCAS
PAAM

(b) Behavior Planner Period
4xST MT

0

1

2

3

4

5
D

ro
ps

ROS 2
PiCAS
PAAM

(c) Hot Path Drops

Fig. 11: Case Study 2: Autoware reference system results

Results. Fig. 11a depicts the end-to-end latency of the hot path
across all system configurations. Overall, PAAM outperformed
the rest, with PiCAS coming in second and ROS 2 trailing
behind. Focusing on the 4×ST case, the priority-based chain
scheduling of PiCAS achieves a 68% reduction in the maxi-
mum hot path latency over ROS 2, decreasing from 510 ms
to 163 ms. On top of this, PAAM further reduces the latency
by 51% compared to PiCAS, bringing it down to 79 ms. The
substantial improvement by PAAM can be attributed to its
ability to handle numerous low-criticality chains competing
for accelerators in the reference system. The MT case follows
the same trend, but interestingly, all three methods maintain
poorer worst-case performance than in the ST×4 case. This is
because, with ST, the hot path encounters less blocking from
low-criticality chains.

Figs. 11b and 11c show the observed distribution of behav-
ior planner period and the number of dropped messages per
hot path instance, respectively. PAAM achieves much lower
variations from the preset 100 ms period, while simultaneously
ensuring no message drops. From all these results, we con-
clude that PAAM can yield a significant improvement over the
state-of-the-art, especially in a complex robotic environment.

C. PAAM Overhead Analysis

Overhead Breakdown. We sought to unpack the overhead
associated with PAAM’s servicing of client requests, in the
context of best, average, and worst-case scenarios. As shown
in Figure 12, the overhead arising from PAAM’s utilization
spans from 198 µs in the optimal scenario to 391 µs in
the most unfavorable one. A careful analysis reveals that
a significant portion of the time is consumed by the DDS
transport, sending a request message to the server in the control

Min Average Max
0

100

200

300

400

500

E
la

ps
ed

 T
im

e
(u

s)

Client msg generation
DDS transmission

PAAM request queueing
PAAM worker wake-up

PAAM scheduling
Client notification

Fig. 12: Overhead breakdown

MatMul Reduction VectorAdd Histogram
Mean (µs) 41.21 39.55 22.78 14.95
Max (µs) 116.48 129.18 77.85 72.92
Stdev (µs) 14.16 26.65 15.13 10.77

TABLE I: GPU bucket preemption cost

plane. The Iceoryx-enabled Cyclone DDS that the PAAM
implementation uses is reported to have a latency of only a few
µs for 1 KB payload [36] [37], which is much smaller than
our control-plane message size (72 B). However, we found
that its latency increases significantly when integrated into
the ROS 2 ecosystem due to additional interface layers. This
result further reinforces the rationale behind our design choice
to have a separate data plane. Interestingly, we found that
PAAM’s request queueing, worker awakening, and scheduling,
consume the least amount of time.

GPU Preemption Delay with Multiple Buckets. Since our
framework leverages a multi-bucket approach with preemptive
execution for supported accelerators, we measured the GPU
preemption delay that is incurred when executing a kernel
on a high-priority stream while a low-priority stream is also
executing a kernel. To facilitate this, we created two prioritized
streams within the same process context, one with higher
priority than the other, allocated and assigned memory for
two identical sets of kernels, and asynchronously launched the
first kernel on the lower priority stream first, then immediately
launched the second kernel on the higher priority stream. We
used the CUDA stream event timers to capture the execution
time of both kernels and subsequently re-ran the identical
kernel on the higher priority stream to establish a baseline run-
time. We measured the preemption delay to be the difference
between the isolated high-priority kernel’s execution time and
the execution time of the high-priority kernel preempting the
lower-priority kernel. We performed this benchmark with four
separate types of kernels and reported the results of 50,000
iterations per kernel in Table I. We observed that the maximum
measured preemption delay was 129µs.

Kernel Execution Time. To assess the impact of overhead
in kernel execution, we report the execution time of several
well-known GPU benchmark kernels when each runs alone in
the system with and without PAAM. The results are depicted
in Figure 13. The round-trip execution time of kernels with
the PAAM server is only slightly longer compared to kernels
that are directly invoked without the framework. We consider
such a small increase in kernel response time acceptable given
the huge benefit achievable by our framework.

MatMul Histogram Reduction VectorAdd
0

10

20

30

40
R

es
po

ns
e

T
im

e
(m

s) ROS 2 (Direct Invocation)
PAAM

Fig. 13: Worst-case kernel execution time

2 4 6 8 10 12
0

20

40

60

80

100

S
uc

ce
ss

 r
at

es
 (

%
)

U=10%
U=20%
U=30%
U=40%
U=50%
U=60%
U=70%

(a) # of chains per chainset
1:9 2:8 3:7 4:6 5:5 6:4 7:3
0

20

40

60

80

100

S
uc

ce
ss

 r
at

es
 (

%
)

U=10%
U=20%
U=30%
U=40%
U=50%
U=60%
U=70%

(b) Accelerator util. : CPU util.

Fig. 14: Schedulability of chainsets

D. Analytical Study

To explore the performance characteristics of our analysis,
we conduct two experiments that examine the schedulability of
chainsets based on varying parameters: the number of chains
in a chainset and the accelerator-to-CPU utilization ratios.

For the first experiment, we established a fixed chain length
of 4 callbacks per chain for a system with one accelerator.
We then executed 1,000 schedulability tests for each distinct
number of chains per chainset. The chains generated had
random periodicity, but we ensured a strict 1:1 Accelera-
tor:CPU utilization ratio per period, with the total utilization
equally distributed amongst all the callbacks within the chain.
Figure 14a shows the results, conducted with a varying number
of chains per chainset.

The second experiment was designed in a similar manner,
but the ratio of accelerator utilization to CPU utilization
per chain was varied from 1:9 to 7:3. The results of these
schedulability tests are illustrated in Figure 14b. Interestingly,
even when the utilization per chain remains constant, the
schedulability of a chainset decreases as the accelerator-to-
CPU utilization ratio escalates. This can be attributed to the
contention on the singular accelerator that all chains and
callbacks share.

VI. RELATED WORK

A. Real-time Support For Robotic Applications

There have been several prior studies conducted to enhance
the analyzability and real-time performance of ROS. Casini et
al. [3] modeled the default ROS 2 single-threaded executor and
provided a response time analysis of a chain. They proposed
using the Compositional Performance Analysis (CPA) [38] to
find the end-to-end latency of a chain across executors. Tang et
al. [4] also explored the real-time scheduling of chains on the
default ROS 2 single-threaded executor and expanded upon [3]
to reduce analytical pessimism. Choi et el. [7] proposed PiCAS

to support priority-driven chain scheduling in ROS 2, enabling
it to significantly outperform standard ROS 2 executors.

Beyond executor analysis and accelerator support, there is
also some work done to enhance other aspects of ROS. Robot-
Core [39] provides a vendor-agnostic interface to facilitate
the use of heterogeneous accelerators in ROS 2 applications.
TZC [40] leverages shared memory and partial serialization
to reduce the performance overhead of message transport
between processes.

B. Real-time Accelerator Support

Accelerator servers are not a new concept and many studies
have been done to improve the real-time support of GPUs and
other accelerators at the OS or system level. Kim et al. [18, 19]
constructed a GPU server to manage real-time GPU requests
at the system level. CARSS [41] is a framework providing
an interface for soft real-time workloads to utilize shared
accelerator resources. The authors of [42] and [43] developed
techniques for concurrent and preemptive GPU execution, but
with no explicit consideration for real-time systems. Casini
et al. [44] proposed a framework for task partitioning of AD
software on heterogeneous platforms with accelerators. While
their framework offers response time bounds and is applicable
to many robotic systems, it does not consider chain scheduling
in the ROS 2 ecosystem, which is the focus of our work.

Recently, Li et al. [45] presented ROSGM, a real-time GPU
management framework for ROS 2. ROSGM is a node that
can be added to an executor process, focusing on provid-
ing multiple GPU scheduling policies and arbitrating GPU
requests from other nodes. This work, while solving partially
the problem of direct invocation through the arbitration within
an executor, does not consider end-to-end timing guarantees
on processing chains. Our work addresses this problem, sup-
ports heterogeneous accelerators, allows multiple accelerator
segments per callback, and solves fully the direct invocation
problem by supporting multiple executor processes, which is
common in AD systems such as Autoware [1], with extensive
consideration to mitigate inter-executor data exchanges.

VII. CONCLUSION

In this paper, we proposed PAAM, a coordinated and
priority-driven framework for predictable accelerator access
management in ROS 2. We demonstrated through our evalua-
tion that PAAM brings about a significant improvement over
the state-of-the-art and the default ROS 2 executors, with up
to a 91% decrease (from 917 ms to 83 ms) in the end-to-end
response time of critical chains under realistic autonomous
driving scenarios. PAAM also provides analytical bounds,
allowing users to predict and test the timing behavior of their
systems in the presence of heterogeneous accelerators. With
these, we believe that PAAM can serve as a promising solution
for modern autonomous robotic systems with accelerators.

ACKNOWLEDGMENT

This work was sponsored by the National Science Founda-
tion (NSF) grants 1943265, 1955650, and 2312395.

REFERENCES

[1] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,”
in ACM/IEEE International Conference on Cyber-Physical Systems
(ICCPS), 2018.

[2] The Robot Report, “Open Robotics developing Space ROS
with Blue Origin, NASA,” https://www.therobotreport.com/
open-robotics-developing-space-ros/, accessed October 2022.

[3] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg, “Response-
time analysis of ROS 2 processing chains under reservation-based
scheduling,” in Euromicro Conference on Real-Time Systems (ECRTS),
2019.

[4] Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi,
“Response time analysis and priority assignment of processing chains
on ROS2 executors,” in IEEE Real-Time Systems Symposium (RTSS),
2020.

[5] T. Blass, D. Casini, S. Bozhko, and B. B. Brandenburg, “A ROS 2
response-time analysis exploiting starvation freedom and execution-time
variance,” in IEEE Real-Time Systems Symposium (RTSS), 2021.

[6] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic latency management for ROS 2: Benefits, challenges, and
open problems,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[7] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven
chain-aware scheduling for ROS2,” in 2021 IEEE 27th Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2021, pp. 251–263.

[8] H. Sobhani, H. Choi, and H. Kim, “Timing Analysis and Priority-driven
Enhancements of ROS 2 Multi-threaded Executors,” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2023.

[9] A. A. Arafat, S. Vaidhun, K. M. Wilson, J. Sun, and Z. Guo, “Response
time analysis for dynamic priority scheduling in ROS2,” in Proceedings
of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 301–
306.

[10] (accessed March 2022) ROS2 Real-Time Working Group:
Reference system. https://github.com/ros-realtime/reference-system.
[Online]. Available: https://github.com/ros-realtime/reference-system

[11] H. Choi, D. Enright, H. Sobhani, Y. Xiang, and H. Kim, “Priority-driven
real-time scheduling in ros 2: Potential and challenges,” RAGE 2022,
p. 28, 2022.

[12] Y. Tang, N. Guan, Z. Feng, X. Jiang, and W. Yi, “Response time analysis
of lazy round robin,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2021.

[13] D. De Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling
of mixed-criticality real-time task sets,” in IEEE Real-Time Systems
Symposium (RTSS), 2009.

[14] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,” in IEEE
Real-Time Systems Symposium (RTSS), 2018.

[15] J. Bakita and J. H. Anderson, “Hardware Compute Partitioning on
NVIDIA GPUs,” in 2023 IEEE 29th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS). IEEE, 2023, pp. 54–66.

[16] M. Yang, N. Otterness, J. H. Anderson, and F. D. Smith, “Avoiding
pitfalls when using nvidia gpus for real-time tasks in autonomous
systems,” in Proceedings of the 30th Euromicro Conference on Real-
Time Systems, 2018.

[17] (accessed Oct 2023) Issue #645: Allowing multiple users use
a single loaded model on CORAL TPU. [Online]. Available:
https://github.com/google-coral/edgetpu/issues/645

[18] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, “A server-based
approach for predictable gpu access control,” in 2017 IEEE 23rd Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE, 2017, pp. 1–10.

[19] H. Kim et al., “A server-based approach for predictable GPU access
with improved analysis,” Journal of Systems Architecture, vol. 88, pp.
97–109, 2018.

[20] G. A. Elliott, B. C. Ward, and J. H. Anderson, “GPUSync: A framework
for real-time GPU management,” in IEEE Real-Time Systems Symposium
(RTSS), 2013.

[21] P. Patel, I. Baek, H. Kim, and R. Rajkumar, “Analytical enhancements
and practical insights for MPCP with self-suspensions,” in IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS),
2018.

[22] “Eclipse iceoryx - true zero-copy inter-process-communication,” https:
//github.com/eclipse-iceoryx/iceoryx, accessed March 2022.

[23] “Eclipse Cyclone DDS,” https://github.com/eclipse-cyclonedds/
cyclonedds, accessed October 2022.

[24] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling al-
gorithm for preemptible neural processing units,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020.

[25] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D.
Smith, A. Berg, and S. Wang, “An evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2017.

[26] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 392–405.

[27] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2017, pp.
104–115.

[28] “Nvidia multi-process service,” https://docs.nvidia.com/deploy/mps/
index.html, accessed March 2022.

[29] M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE Trans-
actions on parallel and distributed systems, vol. 20, no. 4, pp. 553–566,
2008.

[30] H. Kim, D. de Niz, B. Andersson, M. Klein, and J. Lehoczky, “Address-
ing multi-core timing interference using co-runner locking,” in IEEE
Real-Time Systems Symposium (RTSS), 2021.

[31] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen,
“Errata for three papers (2004-05) on fixed-priority scheduling with
self-suspensions,” CISTER-Research Centre in Realtime and Embedded
Computing Systems, Tech. Rep., 2015.

[32] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley et al., “Many
suspensions, many problems: a review of self-suspending tasks in real-
time systems,” Real-Time Systems, vol. 55, no. 1, pp. 144–207, 2019.

[33] G. von der Brüggen, Realistic Scheduling Models and Analyses for
Advanced Real-Time Embedded Systems. Springer, 2021.

[34] R. Davis, L. George, and P. Courbin, “Quantifying the sub-optimality
of uniprocessor fixed priority non-pre-emptive scheduling,” in 18th
International Conference on Real-Time and Network Systems, 2010, pp.
1–10.

[35] (accessed May 2022) Autoware Foundation. https://gitlab.com/
autowarefoundation/autoware.auto. [Online]. Available: https://gitlab.
com/autowarefoundation/autoware.auto

[36] (accessed Oct 2023) Eclipse iceoryx: Measuring the latency of
different IPC mechanisms. [Online]. Available: https://iceoryx.io/v1.0.
1/getting-started/examples/iceperf/

[37] “Ros 2 default rmw tsc reports,” accessed October 2023. [Online].
Available: https://osrf.github.io/TSC-RMW-Reports/

[38] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proceedings -, vol. 152, pp. 148 – 166, 04
2005.

[39] V. Mayoral-Vilches, S. M. Neuman, B. Plancher, and V. J. Reddi,
“Robotcore: An open architecture for hardware acceleration in ros 2,”
2022. [Online]. Available: https://arxiv.org/abs/2205.03929

[40] Y.-P. Wang, W. Tan, X.-Q. Hu, D. Manocha, and S.-M. Hu, “Tzc:
Efficient inter-process communication for robotics middleware with
partial serialization,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 7805–7812.

[41] I. Baek, M. Harding, A. Kanda, K. R. Choi, S. Samii, and R. R.
Rajkumar, “Carss: Client-aware resource sharing and scheduling for
heterogeneous applications,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2020, pp. 324–335.

[42] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen,
“Efficient gpu spatial-temporal multitasking,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 3, pp. 748–760, 2015.

[43] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), 2014,
pp. 193–204.

[44] D. Casini, P. Pazzaglia, A. Biondi, and M. D. Natale, “Optimized
partitioning and priority assignment of real-time applications on
heterogeneous platforms with hardware acceleration,” Journal of
Systems Architecture, vol. 124, p. 102416, mar 2022. [Online].
Available: https://doi.org/10.1016%2Fj.sysarc.2022.102416

[45] R. Li, T. Hu, X. Jiang, L. Li, W. Xing, Q. Deng, and N. Guan, “Rosgm: A
real-time gpu management framework with plug-in policies for ros 2,” in
2023 IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2023, pp. 93–105.

