
Priority-Driven Real-Time Scheduling in ROS 2: 
Potential and Challenges

Hyunjong Choi, Daniel Enright, Hoora Sobhani, 
Yecheng Xiang, and Hyoseung Kim



ROS
• One of the most prevalent robotic middleware frameworks
• Predictable end-to-end behavior of systems is essential for robotic applications

Galactic Geochelone, 
released May 2021

Revealed shortcomings in real-time support for safety-critical applications

< Example of ROS-based robotic framework
(Autoware.Ai) > †

< Chain in self-driving application >

†S. Kato et al. “Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems”, ICCPS, 2018

Violating timing constraints (e.g., end-to-end 
latency) can cause catastrophic accidents.



Limitations of current ROS 2
• Priority-unaware complex layers of abstractions

• Round-robin like callback scheduling behavior
• Prone to priority inversion

• Lack of systematic support for resource allocation
• All nodes compete for resources in a nondeterministic way

Long end-to-end latency and poor resource utilization

Ignores criticality or urgency of processing chains

We need a priority-driven paradigm for real-time support in ROS 2!



Priority-driven scheduling framework for ROS 2
• Priority-driven chain-aware scheduling (PiCAS)†: enables prioritization of critical 

computation chains across complex abstraction layers of ROS 2
• Minimizes end-to-end latency
• Ensures predictability even when the system is overloaded

< Chain-aware scheduling strategies >

< Priority assignment >

< Node-to-Executor 
allocation >

< End-to-end timing analysis 
>

†H. Choi et al. "PiCAS: New design of priority-driven chain-aware scheduling for ROS2." RTAS, 2021.



PiCAS on the reference system (1/2)
• We integrated PiCAS into the open-source reference system† for evaluation

• Evaluation criteria: Key Performance Indicators (KPIs) 
• Average end-to-end latency of hot topic path
• Number of dropped messages
• Jitter of periodic node, e.g., Behavior Planner

< Autoware model of the reference system >

†ROS2 Real-Time Working Group. Reference system. https://github.com/ros-realtime/reference-system

https://github.com/ros-realtime/reference-system


PiCAS on the reference system (2/2)
• Evaluation environment

• Raspberry Pi 4 with a fixed CPU frequency of 1.5GHz
• 4 CPU cores for multiple executors (ROS2-PiCAS) and multi-threaded executor (ROS2-default)

86%

< End-to-end latency of hot topic path > < Behavior Planner jitter >

< Number of dropped messages >



Real-time support for multi-threaded executors
• Challenges

• Runtime callback distribution across multiple threads
• Unsynchronized polling points of the threads

• Our ongoing efforts
• Develop real-time analysis for the default multi-threaded executors of ROS 2

• Revise conventional non-preemptive global scheduling analysis by considering semantic 
differences, e.g., callback dependencies, chains, polling points, and ready set management

• Extend PiCAS to multi-threaded executors 
• Enable priority-driven scheduling for better end-to-end latency and predictability

• Explore the effects of callback groups, e.g., mutually-exclusive vs. reentrant

Existing ROS 2 analyses are not directly applicable to multi-threaded executors



Real-time GPU acceleration
• Challenges

• Asynchronous and unstructured models for kernel execution on GPU accelerators
• Blocking time and priority inversion by GPU kernel execution from low-priority chains

• Our ongoing efforts
• Build a GPU server node in the ROS 2 software stack

• Priority-driven control of GPU requests to shared hardware accelerators
• Concurrent kernel execution with real-time spatial multitasking and prioritized CUDA streams

• Develop an architecture to support a low-overhead accelerator resource management 
framework

• Minimizing data copy delays with efficient zero-copy IPC methods, 
e.g., Iceoryx

Unpredictable real-time behavior of ML/AI workloads



Conclusion & Future work
• Conclusion

• Presented the benefit of enabling priority-driven scheduling in the ROS 2 
framework

• Integrated our PiCAS framework into the reference system
• Demonstrated that PiCAS outperforms the existing ROS 2 scheduling scheme 

w.r.t. key performance indicators, e.g., average end-to-end latency, dropped 
messages, and jitter of periodic node, under practical scenarios

• Discussed challenges and issues for multi-threaded executors and real-time 
support of ROS 2 with shared accelerators

• Future work
• Evaluate the effectiveness of PiCAS against other executors,

e.g., cbg executor



Q & A
Priority-Driven Real-Time Scheduling in ROS 2: 

Potential and Challenges

• ROS 2 PiCAS source
• https://github.com/rtenlab/ros2-picas

• PiCAS with the reference system
• https://github.com/rtenlab/reference-system

https://github.com/rtenlab/ros2-picas
https://github.com/rtenlab/reference-system

	Priority-Driven Real-Time Scheduling in ROS 2: Potential and Challenges
	ROS
	Limitations of current ROS 2
	Priority-driven scheduling framework for ROS 2
	PiCAS on the reference system (1/2)
	PiCAS on the reference system (2/2)
	Real-time support for multi-threaded executors
	Real-time GPU acceleration
	Conclusion & Future work
	Q & A

