
7 Appendix

7.1 Compensated Tracking Error Dynamics

The dynamics of the compensated tracking errors are
derived in three different cases.

(1) For i = 1

˙̄x1 =−k1x̄1 − βf1
+ us1

+ (f1 − f̂1) − βg1
x2

+(go
1 + ĝ1 + βg1

)x̄2 + (g1 − ĝ1)x2. (32)

(2) For 1 < i < n:

˙̄xi =−kix̄i − βfi
+ usi

+ (fi − f̂i)

−(go
i−1 + ĝi−1 + βgi−1

)x̄i−1 − βgi
xi+1

+(go
i + ĝi + βgi

)x̄i+1 + (gi − ĝi)xi+1. (33)

(3) For i = n (x̄n = x̃n):

˙̄xn =−knx̄n − (go
n−1 + ĝn−1 + βgn−1)x̄n−1 − βfn

+(fn − f̂n) − βgn
uad + (gn − ĝn)uad

+(go
n + gn)usn

. (34)

7.2 Command Filtering

For each i ∈ [2, n], the signal xic is required for eqn.
(3) and its derivative ẋic is required for calculating uai

(see eqns. (6) and (10)). They are defined by the follow-
ing procedure (Farrell et al. 2004, Farrell & Polycarpou
2006).

(1) For i=1,. . . ,n-1, define

x0
i+1,c = αi − ξi+1. (35)

The signals xi+1,c and ẋi+1,c are defined by

ẋi+1,c = −Ki+1(xi+1,c − x0
i+1,c) (36)

with Ki+1 > ki+1 being a designer specified con-
stant and xi+1,c(0) = αi(0). Since the filter of (36)
is being used as a means to compute xi+1,c and
ẋi+1,c without differentiation, the designer would
typically select Ki+1 � ki+1 so that xi+1,c accu-
rately tracks x0

i+1,c over the bandwidth of x0
i+1,c.

Since (36) is a stable linear filter, xi+1,c and ẋi+1,c

will be bounded if the input x0
i+1,c is bounded.

(2) For i=1,. . . ,n-1, define

ξ̇i = −kiξi + (go
i + ĝi + βgi

)(xi+1,c − x0
i+1,c) (37)

with ξi(0) = 0.
This is a stable low pass filter. Its input is the prod-
uct of (go

i + ĝi + βgi
) which we will prove to be

bounded and (xi+1,c − x0
i+1,c) which is small. For

xi+1,c, x
0
i+1,c ∈ D we always have that |(xi+1,c −

x0
i+1,c| < 2ρ(D) where ρ(D) = maxx1,x2∈D ‖x1 −
x2‖ is the diameter of set D. For any x, each ξi is
bounded by b̄ξ, i.e., |ξi| ≤ b̄ξ, where

b̄ξ =
2ρ(D)

k
max

i

[

sup
∀t

(|go
i + ĝi + βgi

|)
]

(38)

with k = mini{ki}.
For completeness, the signal ξn = 0.

7.3 Sliding Mode

For x(t) /∈ D, we implement sliding components within
the control design to return the state x to the approxi-
mation regionD in finite time. The following assumption
is required for the sliding mode design.

Assumption 4 For i = 1, . . . , n, there exist known up-
per bounds on unknown functions |fi(x)| and |gi(x)| such
that |fi(x)| ≤ b̄fi

and |gi(x)| ≤ b̄gi
for any x(t) ∈ <n−D.

Note that if constants b̄fi
and b̄gi

are not known, then
they could be estimated using the methods suggested in
(Polycarpou 1996). We do not present such an adaptive
bounding approach herein for x /∈ D as that portion
of the state space is not the main topic of this article.
Note also that the approach extends directly to more
general (e.g., linear or quadratic growth) bounds than
the constant bounds assumed herein.

The usi
(t) terms in eqns. (5–6) are defined as

usi
(t) = −ri(t)sign(x̄i) (39)

and the gain ri(t) is given by

ri(t) =

{

0, when x ∈ D

b̄fi
+ b̄gi

|xi+1|, when x /∈ D
(40)

where b̄fi
, b̄gi

are known bounds on |fi(x)| and |gi(x)|
satisfying the Assumption 4 for x /∈ D.

The sliding component usn
is defined as

usn
=−rn(t)sign(x̄n) (41)

rn(t) =

{

0, when x ∈ D
b̄fn+b̄gn |uad|

go
n+gl

, when x /∈ D.
(42)

where b̄fn
and b̄gn

are known bounds on |fn(x)| and
|gn(x)| satisfying the Assumption 4 for x /∈ D.

The main objective of this section is to demonstrate that
the definitions of usi, 1 ≤ i ≤ (n−1) in eqns. (39–40) and

9



usn in eqns. (41–42) ensure that any initial conditions
outside D will return to region D in finite time.

To analyze performance for x /∈ D, we consider the Lya-
punov function

V̄ =
1

2

n
∑

i=1

x̄2
i . (43)

Using βfi
= βgi

= 0, f̂i(x) = 0, and ĝi(x) = gl for
x /∈ D to simplify compensated tracking error dynamics
in eqns. (32 - 34) and applying the sliding control of (39)
and (41), we obtain the derivative of V̄ defined in eqn.
(43) as

dV̄

dt
≤−

n
∑

i=1

kix̄
2
i +

n−1
∑

i=1

|x̄i| (−ri + |di|)

+|x̄n|
(

− (go
n + gn)rn + |dn|

)

(44)

where we let

di =

{

fi + (gi − gl)xi+1, for 1 ≤ i < n

fn + (gn − gl)uad, for i = n.

Since the sliding gains of (40) and (42) yield, for i < n

|di| ≤ |fi| + (gi − gl)|xi+1| ≤ b̄fi
+ b̄gi

|xi+1| = ri,

and, for i = n

|dn| ≤ |fn| + (gn − gl)|uad| ≤ (go
n + gn)rn,

the last two terms on the right of (44) are non-positive.
Then, we attain

dV̄

dt
≤−

n
∑

i=1

kix̄
2
i < −kV̄ (45)

V̄ (t)≤ e−ktV̄ (0), for any t ≥ 0. (46)

Therefore, there exists a finite T2 such that for any

t > T2, V̄ (t) < γ2

8 which implies that ‖x̄(t)‖ < γ
2 . In ad-

dition, for x /∈ D, if xi+1,c, x
0
i+1,c are within a compact

region B, then |ξi| < b̄ξ where b̄ξ = 2ρ(B)
k

(go
i + gl) by

methods similar to those used to derive (38). Therefore,
we can attain ‖ξ(t)‖ < γ

2 for x /∈ D by choosing γ
2 > b̄ξ.

Therefore, for t > T2,

‖x̃(t)‖ ≤ ‖x̄(t)‖ + ‖ξ(t)‖ < γ

which implies that x returns to within D in finite time.
The state in D may leave that region, but will return to
D in finite time.

7.4 x̄ Modification

As we state in Section 5.1, the main drawback of the
standard σ-modification is that it causes the parameter
estimates to drift towards certain design vectors. This
can occur for θi either when x /∈ Si or when x ∈ Si and
‖x̄‖ is small. In Section 5.1 the first issue was addressed
by localization of the σ-modification term. The second
issue can be addressed by a localized x̄-modification as
presented in this section.

The localized x̄-modification terms are defined as,

Qfi
=−σfi

‖x̄‖Rfi
(θfi

− θ0fi
) (47)

Qgi
=−σgi

‖x̄‖Rgi
(θgi

− θ0gi
) (48)

QΨfi
=−σΨfi

‖x̄‖Rfi
(Ψfi

− Ψ0
fi

) (49)

QΨgi
=−σΨgi

‖x̄‖Rgi
(Ψgi

− Ψ0
gi

) (50)

for i = 1, . . . , n. For consistancy, we have used the same
design parameter notation as in the σ-modification ap-
proach.

Substituting the Q terms defined in (47–50) into (22),
we obtain the derivative of V (t) as

V̇ ≤ −k‖x̄‖2 + d̄+ ‖x̄‖ρ1 (51)

where ρ1 is defined in eqn. (29). In eqn. (51), using the

inequality pq ≤ α2p2 + 1
4α2 q

2 with α2 =
k

2 , we obtain

V̇ ≤−
1

2
k‖x̄‖2 + d̄+ ρ2 (52)

where ρ2 is a positive constant given by

ρ2 =
1

2k
ρ2
1. (53)

Therefore, we can summarize these results in the follow-
ing theorem.

Theorem 3 [x̄-modification] For the higher order sys-
tem described by (1)-(2) with the adaptive feedback con-
trol law of eqns. (8), (9–10), (41–42), and the parameter
adaptation laws of eqns.(13–14) and (15–16) with modi-
fication terms defined in (47–50), we have the following
stability properties, for i = 1, . . . , n,

(1) x̄i, θ̃fi
, θ̃gi

, Ψ̃fi
, Ψ̃gi

∈ L∞;
(2) xi, θfi

, θgi
, Ψfi

, Ψgi
∈ L∞;

(3) ˙̄xi, θ̇fi
, θ̇gi

, Ψ̇fi
, Ψ̇gi

∈ L∞;
(4) x̄ is small in the mean square sense, satisfying

∫ t+T

t

‖x̄(τ)‖2
2dτ ≤

2

k
V (t) +

2

k
(d̄+ ρ2)T. (54)

10



Similar comments about the localized forgetting apply
as were stated in the Section 5.1.

7.5 Deadzone

Another means to remove the issue of parameter drift is
to include a deadzone in adaptive laws. Implementation
of the deadzone requires knowledge of an assumed bound
on certain terms as will be discussed below.

For the deadzone approach, the modification terms in
eqns. (13–16) are defined as, for i = 1, . . . , n,

Qfi
=







0 if ‖x̄‖ >
√

ρ̄3+µ
k

−Φfi
x̄i otherwise,

(55)

Qgi
=



















0 if ‖x̄‖ >
√

ρ̄3+µ
k

−Φgi
x̄ixi+1 if ‖x̄‖ ≤

√

ρ̄3+µ
k

and i < n

−Φgn
x̄nuad if ‖x̄‖ ≤

√

ρ̄3+µ
k

and i = n,

(56)

and

QΨfi
=







−σΨfi
Rfi

(Ψfi
− Ψ0

fi
) if ‖x̄‖ >

√

ρ̄3+µ
k

−Φfi
x̄iω

(

x̄i

ε

)

otherwise,
(57)

QΨgi
=







































−σΨgi
Rgi

(Ψgi
− Ψ0

gi
) if ‖x̄‖ >

√

ρ̄3+µ
k

−Φgi
x̄ixi+1ω

(

x̄ixi+1

ε

)

if ‖x̄‖ ≤
√

ρ̄3+µ
k

and i < n

−Φgn
x̄nuadω

(

x̄nuan

glε

)

if ‖x̄‖ ≤
√

ρ̄3+µ
k

and i = n.

(58)

The constant ρ̄3 > 0 is a known strict upper bound on
(d̄+ ρ3), where d̄ is defined in eqn. (23) and

ρ3 =
1

2

n
∑

i=1

(

σΨfi(Ψ
M
fi

− Ψ0
fi

)>Rfi
(ΨM

fi
− Ψ0

fi
)

+ σΨgi(Ψ
M
gi

− Ψ0
gi

)>Rgi
(ΨM

gi
− Ψ0

gi
)
)

. (59)

The deadzone is in effect for ‖x̄‖ ≤
√

ρ̄3+µ
k

for some

positive design constant µ > 0. For ‖x̄‖ >
√

ρ̄3+µ
k

, the

parameter adaptation laws of θfi
and θgi

, i = 1, . . . , n
do not include any modification terms. When ‖x̄‖ ≤
√

ρ̄3+µ
k

, all parameter updates stop.

We are now ready to present the applicable stability
theorem.

Theorem 4 [Deadzone] Assuming the upper bound
ρ̄3 > d̄ + ρ3 > 0 is known, for the higher order system
described by (1)-(2) with the adaptive feedback control
law of eqns. (8), (9–10), (41–42), and the parameter
adaptation laws of eqns.(13–14) and (15–16) with modi-
fication terms defined in (55–58), we have the following
stability properties, for i = 1, . . . , n,

(1) x̄i, θ̃fi
, θ̃gi

, Ψ̃fi
, Ψ̃gi

∈ L∞;
(2) xi, θfi

, θgi
, Ψfi

, Ψgi
∈ L∞;

(3) ˙̄xi, θ̇fi
, θ̇gi

, Ψ̇fi
, Ψ̇gi

∈ L∞;
(4) x̄ is small in the mean square sense, satisfying

∫ t+T

t

‖x̄(τ)‖2
2dτ ≤

1

k
V (t) + b2dT (60)

where bd =
√

ρ̄3+µ
k

is the deadzone width.

(5) ‖x̄‖ is ultimately bounded by bd as t → ∞, i.e., the
total time for ‖x̄‖ > bd is finite.

Assuming that the design constant ρ̄3 > 0 is a strict
upper bound on (d̄+ ρ3), the ultimate bound in Item 5
of Theorem 4 has a useful form that allows the designer
to either increase k or decrease µ or ρ̄3 to decrease the
ultimate bound on the tracking error.

A disadvantage of deadzone modification is that the
implementation of the deadzone requires knowledge of
(d̄+ ρ3) or the upper bound on it over the whole region
D. If D is relatively large, the upper bound ρ̄3 can be
conservative, which may result in a large deadzone.

7.6 Numerical Example

For illustrative purposes, consider the second order sys-
tem given by

ẋ1 = sin(x1 + x2) +
(

2 + g1(x)
)

x2 (61)

ẋ2 = sin(x2) +
(

2 + g2(x)
)

u. (62)

with g1(x) = g2(x) = 1
20

(

x2
1 + |x1|

)

cos(0.01πx1) and

x = [x1, x2]
>. The system is designed to operate over

the region D = [−3, 3] × [−3, 3]. Note that eqns. (61 –
62) are in the form of (1 – 2). Assume that the known
design models is

ẋ1 = 2x2 (63)

ẋ2 = 2u. (64)

where fo
1 (x) = fo

2 (x) = 0, go
1(x) = go

2(x) = 2. In this
case, the unknown model errors are f1(x) = sin(x1+x2),
f2(x) = sin(x2), g1(x) and g2(x). Each of these unknown
functions will be adaptively approximated during oper-
ation.

11



The reference trajectory xd(t) and its derivative ẋd(t)
are generated as the output of a second order, unity DC
gain, low-pass prefilter given by

ż1 = z2

ż2 = a1

[

sat
(

a2(sat(r) − z1)
)

− z2

]

[

xd

ẋd

]

=

[

1 0

0 1

] [

z1

z2

]

where the two sat(·) functions are included to limit the
input magnitude and rate such that (xd, ẋd) ∈ D for
any t > 0. In our simulations, we select a1 = 2ζωn and

a2 =
ω2

n

2ζωn
with ζ = 0.9 and ωn = 5 such that, in the

absence of magnitude and rate saturation, the transfer
functions are

x
(i)
d (s)

r(s)
=

ω2
ns

i

s2 + 2ζωns+ ω2
n

, i = 0, 1

which are Bounded-Input-Bounded-Output (BIBO) sta-
ble. As long as r(t) is bounded, we obtain continuous,
bounded signals xd and ẋd that will be used in the com-
putation of x0

2c(t). Theoretically, the input to the pre-
filter r(t) can be any bounded signal. For the purpose of
this simulation we select r(t) = 3sin(0.2πt).

For approximation of f1, g1, f2 and g2, we use the same
vector of basis functions Φ(x) = [φ1(x), . . . , φN (x)]>

for all function approximations. The basis functions
φk(x), k = 1, . . . , N are the normalized biquadratic
kernels:

φk(x) =

{

(

1 −R2
)2
, if R < 1

0, otherwise.
(65)

where

R =

∥

∥

∥

∥

|x1 − ck,1|

µk,1
,
|x2 − ck,2|

µk,2

∥

∥

∥

∥

∞

;

ck = [ck,1, ck,2]
> is the center location of the k-th basis

function; and, µk,1 and µk,2 are the constant radii of the
region of support in the x1 and x2 directions, respec-
tively. For both x1 and x2, the centers are allocated 0.3
units apart with µk,1 = µk,2 = 0.45.

The simulation initial conditions for the parameter vec-
tors are θf1

(0) = θg1
(0) = θf2

(0) = θg2
(0) = [0, . . . , 0]>,

Ψf1
(0) = Ψg1

(0) = Ψf2
(0) = Ψg2

(0) = [0.5, . . . , 0.5]>,
and θ0f1

= θ0g1
= θ0f2

= θ0g2
= [0, . . . , 0]>, Ψ0

f1
= Ψ0

g1
=

Ψ0
f2

= Ψ0
g2

= [0.005, . . . , 0.005]>. The adaptation rate

matrices in (13-16) are set to Γf1
= Γg1

= Γf2
= Γg2

=
30IN , ΓΨf1

= ΓΨg1
= ΓΨf2

= ΓΨg2
= 3IN where IN is

the identity matrix in <N . For comparison purpose, we
choose the same value for the σ parameter in simulations
for each of the different modification terms. They are se-
lected as σfi

= σgi
= 1

300 and σΨfi
= σΨgi

= 1
30 , i = 1, 2.

0 5 10 15 20 25 30 35 40

−0.2

−0.1

0

0.1

0.2

0.3

x 1
 T

ra
ck

 E
rr

o
r

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

x 2
 T

ra
ck

 E
rr

o
r

0 5 10 15 20 25 30 35 40

−0.5

0

0.5

C
o

n
tr

o
l I

n
p

u
t,
 u

Time, t

Fig. 3. Compensated tracking errors x̄1, x̄2, and the con-
trol input u for simulations (1) with adaptive bounding
plus localized σ-modification (black solid lines) and standard
σ-modification (red solid lines) for both θi and Ψi, and (2)
without adaptive bounding (i.e., β terms are zero) plus lo-
calized (black dashed lines) and standard (red dashed lines)
σ-modification algorithms for θi.

The control gains are selected as k1 = 2 and k2 = 4. In
order to implement the ω(·) function in the definitions
of βfi

and βgi
, we select ε = 0.01.

This example compares the compensated tracking er-
ror performance when the approximator parameter es-
timates and bounding parameter estimates are updated
based on the adaptation laws of the three different modi-
fication methods. Figs. 3, 4 and 5 show the performance,
over the first four repetitions of the reference trajec-
tory, for the adaptation algorithms using σ-modification,
x̄-modification and deadzone modification, respectively.
Each figure plots compensated tracking errors x̄1 (top),
x̄2 (middle) and the control input u (bottom) for adapta-
tion algorithms with localized (black lines) and standard
(red lines) modification terms. To simplify the compari-
son between simulations with and without localization,
we use the same approximator structure and the same
design parameters.

The following discussion will first consider the results
with adaptive bounding. The effect of global forgetting
resulting from the standard modification terms is shown
especially clearly in Fig. 3. Note that with the local-
ized σ-modification (black solid curve), both x̄1 and x̄2

improve (i.e., become smaller) and the improvement is
maintained when the trajectory revisits a subregion Sk

12



0 5 10 15 20 25 30 35 40

−0.2

0

0.2

x 1
 T

ra
ck

 E
rr

o
r

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

x 2
 T

ra
ck

 E
rr

o
r

0 5 10 15 20 25 30 35 40

−0.5

0

0.5

C
o

n
tr

o
l I

n
p

u
t,

 u

Time, t

Fig. 4. Compensated tracking errors x̄1, x̄2, and the con-
trol input u for simulations (1) with adaptive bounding plus
localized (black solid lines) and standard (red solid lines)
x̄-modification algorithms for both θi and Ψi, and (2) with-
out adaptive bounding (i.e., β terms are zero) plus local-
ized (black dashed lines) and standard (red dashed lines)
x̄-modification algorithms for θi.

of D where it has operated in the past. After initial tran-
sients, no improvement occurs for x̄1 or x̄2 when the stan-
dard σ-modification term is used. This is because the
global effect of the σ-term causes the approximated func-
tions and bounds to lose their local approximation accu-
racy on any subregion Sk ofD when the trajectory leaves
Sk. When the state returns to the same local region Sk

later, all parameters will need to be estimated again.
The adaptation laws with the localized σ-modification
fix this issue by maintaining learned knowledge for later
use, since the corresponding parameters relevant to Sk

are left unchanged when the state is outside of Sk.

In Fig. 4, using the adaptation laws with the standard
x̄-modification terms (red solid) achieves improved (i.e.,
smaller) compensated tracking errors over each repeti-
tion of the reference trajectory. This indicates that a
standard x̄-modification term can be used to address the
drifting in the parameter estimates when x ∈ Sk and
‖x̄‖ is small. However, the parameter drifting could still
occur for each parameter estimate when x /∈ Sk, if ‖x̄‖
were not small. The localized x̄-modification term is de-
signed to address this issue by localizing the effect of
drifting to the vicinity of the present operating point. Al-
though we observe similar tracking performance for the
standard x̄-modification algorithm (red solid) and the
localized x̄-modification algorithm (black solid) in Fig.

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

x
1
 T

ra
c
k
 E

rr
o

r

0 5 10 15 20 25 30 35 40
−0.2

−0.1

0

0.1

0.2

x
2
 T

ra
c
k
 E

rr
o

r
0 5 10 15 20 25 30 35 40

−0.5

0

0.5

C
o

n
tr

o
l 
In

p
u

t,
 u

Time, t

Fig. 5. Compensated tracking errors x̄1, x̄2, and the control
input u for simulations (1) with adaptive bounding plus lo-
calized (black solid lines) and standard (red solid lines) dead-
zone modification algorithms for both θi and Ψi, and (2)
without adaptive bounding (i.e., β terms are zero) plus lo-
calized (black dashed lines) and standard (red dashed lines)
deadzone modification algorithms for θi.

4, these two algorithms have distinct learning features.
When x /∈ Sk, the parameter drifting caused by the stan-
dard x̄-modification algorithm has a global effect, but at
a much slower rate, than the standard σ-modification al-
gorithm due to inclusion of the ‖x̄‖ term. Therefore, the
local estimation accuracy could be mostly preserved in
the standard x̄-modification algorithm when the region
is revisited later. The localized x̄-modification algorithm
can retain all knowledge learned from past experience
for future use within Sk because the parameter drifting
is localized to Sk and will not occur when x /∈ Sk.

Fig. 5 has shown the tracking performance for simula-
tions with the standard (red solid) and localized (black
solid) deadzone modification algorithms. With the stan-
dard deadzone modification algorithm, we observe im-
provement for both x̄1 and x̄2 over each repetition of the
reference trajectory. This is because the global forget-
ting caused by the standard deadzone modification will
have no effect when ‖x̄‖ is small (i.e., within a designer
specified deadzone). Therefore, local approximation ac-
curacy on the subregion Sk is partially preserved for
future use in the standard deadzone modification algo-
rithm. Compared to tracking performance for the stan-
dard σ-modification algorithm (red solid) given in Fig. 3,
the standard deadzone modification algorithm is shown
to be effective to eliminate the issue of parameter drift-

13



−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

State, x
1

S
ta

te
, 
x 2

Fig. 6. Plot of x2 versus x1 for the simulation.

ing when x ∈ Sk and ‖x̄‖ is small. However, the forget-
ting caused by the standard modification term will still
have a global effect. Since the localized deadzone modi-
fication algorithm can address this issue and it will not
lose any learned knowledge when x /∈ Sk, better track-
ing performance is observed for the localized deadzone
modification algorithm than for the standard deadzone
modification algorithm in Fig. 5.

For simulations without adaptive bounding (i.e., β terms
are all zero), we have also compared the tracking perfor-
mance for localized (black dashed lines) and standard
(red dashed lines) modification algorithms in Figs. 3,
4 and 5. In this case, only the approximator parame-
ter estimates θi are updated based on either localized
or standard modification algorithms, while the adapta-
tion for the bounding parameter estimates Ψi is turned
off. In Fig. 3, we observe the effect of global forgetting
resulting from the standard σ-modification algorithm,
while the localized σ-modification algorithm maintains
improved (i.e., smaller) tracking error performance over
each repetition of the reference trajectory. Similar com-
ments about the x̄-modification terms apply in Fig. 4 as
were discussed for the case with adaptive bounding. Fig.
5 shows the same tracking error performance for local-
ized (black dashed) and standard (red dashed) deadzone
modification algorithms because the adaptation laws for
θi for these two cases are the same.

The goal of this paragraph is to demonstrate the issue
of global forgetting caused by the standard (i.e., non-
localized) modification terms. To allow illustration of
the approximator performance for a 2-input function,
the figures will consider the true function and the ap-
proximated function versus x1 for a fixed value of x2

(i.e., f1(x1, x2)|x2
and f̂1(x1, x2)|x2

) at different times.
Fig. 6 displays the x1-x2 trajectory from the simula-
tion in a phase plane plot. Consider x2 = 0.27, Fig. 6
shows that when x2 is near 0.27 then, for the trajec-
tory of this simulation, x1 was either near x1 = −2.8
or x1 ∈ [1.5, 2.5]. Fig. 7 plots the true f1 function
(dotted) versus x1 for x2 = 0.27 and the approxima-

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

f 1
 A

p
p

ro
xi

m
a

tio
n

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

State, x
1

f 1
 A

p
p

ro
xi

m
a

tio
n

t=2 sec

t=150 sec

t=105 sec

t=0 sec

True f
1
 function

True f
1
 function

t=0 sec t=2 sec

t=105 sec

t=150 sec

Fig. 7. True f1 function (dotted) versus x1 for x2 = 0.27 and

the approximation f̂1 at different times: t = 0s (solid), t = 2s
(solid), t = 105s (dash-dot) and t = 150s (dashed)for the
localized σmodification (top) and standard σ-modification
(bottom).

tion f̂1(x1, x2)|x2=0.27 at different simulation time in-
stants when the adaptation algorithm is the localized
σ-modification (top) and the standard σ-modification
(bottom). It can be clearly seen that for x2 near 0.27,

the approximation f̂1(x1, x2) is adapted near x1 = −2.8
and for x1 ∈ [1.5, 2.5], but outside this x1 range (e.g.,

near x1 = −0.5) f̂1(x1, x2)|x2=0.27 stays near its initial
value. This demonstrates locality of learning for both
the local and global σ-modification methods. Fig. 7
also illustrates the different learning retention abilities
between the local and global σ-modification methods.
Fig. 7 shows the function approximation at t = 0s
(solid), t = 2s (solid), t = 105s (dash-dot) and t = 150s
(dashed). Consider the approximator plots at t = 105s
to t = 150s. In the top subplot of Fig. 7 more accu-
rate approximation is achieved at t = 150s than at
t = 105s, which indicates that experience is accumu-
lated and retained as time passes. When the standard
σ-modification algorithm is used, the bottom subplot
of Fig. 7 shows that the approximation accuracy that
was achieved at t = 105s for x1 ∈ [1.5, 2.5] is lost at
t = 150s. The function approximations for the other
functions (i.e., f2, g1 and g2) and the adaptive bounds
behave similarly and are not given herein.

14



7.7 Useful Properties

7.7.1 Discussion for Assumption 5

Assumption 5 The scalar function −1 ≤ ω(z) ≤ 1
satisfies

0 ≤ |z| − zω
(z

ε

)

≤ ηε ∀z ∈ <, (66)

for any ε > 0 and some constant 0 < η <∞.

The function ω(z) = tanh(z) satisfies Assumption 5 for
η satisfying η = e−(η+1), i.e. η = 0.2785 (Polycarpou
1996). The function

ω(z) = sat(z) =















1 for z ≥ 1

z for |z| ≤ 1

−1 for z ≤ −1.

satisfies Assumption 5 with η = 0.25.

The inequality (66) in Assumption 5 can be extended to
another form needed in Section 5. The bound

0 ≤ |z| − zω
(za

ε

)

≤

∣

∣

∣

∣

z

za

∣

∣

∣

∣

ηε (67)

will be used to address the case of za 6= z, but sign(za) =
sign(z).

The inequality (67) can be shown by multiplying both
sides of

0 ≤ |za| − zaω
(za

ε

)

≤ ηε

by
∣

∣

∣

z
za

∣

∣

∣
. After algebraic manipulations, we have

0 ≤ |z| − sgn(za)|za|

∣

∣

∣

∣

z

za

∣

∣

∣

∣

ω
(za

ε

)

≤

∣

∣

∣

∣

z

za

∣

∣

∣

∣

ηε

0 ≤ |z| − sgn(z)|z|ω
(za

ε

)

≤

∣

∣

∣

∣

z

za

∣

∣

∣

∣

ηε

which completes the proof.

7.7.2 Adaptation Law with Parameter Projection

The objective of this appendix is to derive convex sets
within which the parameter updates of θgi and Ψgi, i =
1, . . . , n can be constrained to ensure that ĝi + βgi

sat-
isfies the controllability condition of Assumption 3.

For controllability, we must have ĝi + βgi
> gl which is

the same as

θ>gi
Φgi

+ Ψ>
gi

Φgi
ω(·) > gl, i = 1, . . . , n (68)

where the argument dependence of the function ω is
dropped for presentation simplicity. Since −1 ≤ ω(·) ≤
1, we can show

−Ψ>
gi

Φgi
≤ Ψ>

gi
Φgi

ω(·) ≤ Ψ>
gi

Φgi
. (69)

Therefore, it is easy to see that inequality (68) will hold
∀x ∈ D if and only if

θ>gi
Φgi

(x) − Ψ>
gi

Φgi
(x) > gl, ∀x ∈ D, i = 1, . . . , n. (70)

If the Φgi
, 1 ≤ i ≤ n form a partition of unity (i.e.,

∑

j Φgi,j = 1), we can easily show that condition (70) is
satisfied if and only if, for anyx ∈ D and i = 1, . . . , n, j =
1, . . . , N ,

θgi,j > gl, 0 ≤ Ψgi,j < θgi,j − gl (71)

is satisfied. The reason why we prefer to use condition
(71) instead of condition (70) is that the condition (71)
defines a convex set within which the projection modifi-
cation can be easily applied.

Then, we use the following parameter projection to con-
strain the parameter updates

PS{θ̇gi,j} =

{

θ̇gi,j if θgi,j > gl or θ̇gi,j > 0

0 otherwise.
(72)

Similarly,

PS{Ψ̇gi,j} =















Ψ̇gi,j if
(

Ψgi,j < θgi,j − gl or Ψ̇gi,j < 0
)

and
(

Ψgi,j > 0 or Ψ̇gi,j > 0
)

0 otherwise.

7.7.3 Proof of Lemma 1

Proof: Since the function M is positive definite and
satisfies the inequality

d

dt
M(z,Θ1, · · · ,Θp, t) ≤ −c1‖z‖

2 + c2,

we know that Ṁ is negative definite whenever c1‖z‖
2 >

c2. Assume that ‖z(t)‖ >
√

c2

c1
for t ∈ (τ1, τ2). Therefore,

the function M(z,Θ1, · · · ,Θp, t) on (τ1, τ2) is bounded
by M(z,Θ1, · · · ,Θp, τ1).

Let t ∈ [τ2, τ3] with ‖z(t)‖ ≤
√

c2

c1
, we will next show

that each Θi(t) is bounded on [τ2, τ3]. Since Θi satisfies

Θ̇i =
d

dt
(Θi − Θ0

i ) = Γ[Φzi − c0R(Θi − Θ0
i )],

15



Then Θi(t) can be explicitly solved as

Θi(t) = Θ0
i +

(

Θi(τ2) − Θ0
i

)

e
−c0Γ

∫

t

τ2

R(z(λ))dλ

+

∫ t

τ2

e
−c0Γ

∫

t

λ
R(z(v))dv

ΓΦ(z(λ))zi(λ)dλ.

Note that for t ∈ [τ2, τ3], |zi(t)| ≤
√

c2

c1
, R(z) is a square

diagonal matrix with nonnegative diagonal components,
and Φ(z) is a vector of positive, bounded functions;
therefore, ‖Θi(t)‖ is bounded on [τ2, τ3] by a finite value,
i.e., there exists a Θ̄i such that

‖Θi(t)‖ < Θ̄i <∞.

Also, it is easy to show that M is bounded such that

M(z,Θ1, · · · ,Θp, t) < ϕ2

(
√

c2

c1
, Θ̄1, · · · , Θ̄p

)

< ∞ for

t ∈ [τ2, τ3].

We thus conclude the boundedness ofM(z,Θ1, · · · ,Θp),
|zi(t)| and ‖Θi(t)‖ for any t ∈ [0, tf ]. �

7.7.4 Proof of Theorem 1

Proof. When x /∈ D, we have already shown in Section
7.3 that the sliding components usi

, i = 1, . . . , n will
return the state to D in finite time.

The proof for the case of x ∈ D and δfi
= δgi

= 0 is
based on the eqn. (21). The negative semi-definiteness of
dV
dt

implies that the variables x̄i, θfi
, θgi

, i = 1, . . . , n are

each bounded. Let Z(t) = ‖x̄(t)‖2. Since
∫ ∞

0 Z(τ)dτ ≤
V (0)

k
<∞ and Ż(t) =

∑n
i=1 x̄i ˙̄xi is bounded, Barbalat’s

lemma (p. 123 in (Slotine & Li, 1991)) applied to Z(t)
implies that each x̄i approaches zero as t approaches
infinity. Finally, since

V̇ ≤−
n

∑

i=1

kix̄
2
i

V (t) − V (0)≤−

n
∑

i=1

∫ t

0

kix̄
2
i (τ)dτ

V (0)≥

n
∑

i=1

∫ t

0

kix̄
2
i (τ)dτ, (73)

we show that each x̄i is in L2. �

7.7.5 Proof of Theorem 2

Proof. For the proof herein, we only consider the case of
x ∈ D. When x /∈ D, we have already shown in Section
7.3 that sliding control terms we define will return the
state to D.

Using Lemma 1, we have that V (t) defined in (17) is

bounded and then x̄i, θ̃fi
, θ̃gi

, Ψ̃fi
, Ψ̃gi

∈ L∞. This yields
directly θfi

, θgi
, Ψfi

, Ψgi
∈ L∞. The fact that xi ∈ L∞

comes from the fact that xd and ξi are bounded.

Together with the boundedness of Φfi
and Φgi

, we can

show directly that u ∈ L∞ and then ˙̄xi, θ̇fi
, θ̇gi

, Ψ̇fi
,

Ψ̇gi
∈ L∞.

For the proof of Item 4 given by (30), we consider inte-
grating (28) on both sides to obtain

V (t+ T ) − V (t)≤

∫ t+T

t

(−k‖x̄(τ)‖2 + d̄+ ρ1)dτ

k

∫ t+T

t

‖x̄(τ)‖2 dτ ≤ V (t) +

∫ t+T

t

(d̄+ ρ1)dτ

which directly yields (30). �

7.7.6 Proof of Theorem 3

Proof. Properties 1, 2, 3 of Theorem 3 are straightfor-
ward to show given the form of inequality (52). The proof
is similar to the proof of Theorem 2 in Section 5.1 and
will not be repeated here.

Property 4 can be proved by integrating on both sides
of (52) as

V (t+ T ) − V (t)≤

∫ t+T

t

(−
1

2
k‖x̄(τ)‖2 + d̄+ ρ2)dτ

k

2

∫ t+T

t

‖x̄(τ)‖2 dτ ≤ V (t) +

∫ t+T

t

(d̄+ ρ2)dτ

which directly yields (54). �

7.7.7 Proof of Theorem 4

Proof. Substituting the Q terms defined in (55–58) into

(22), for x ∈ D and ‖x̄‖ >
√

ρ̄3+µ
k

, V̇ is written as

V̇ ≤−k‖x̃‖2 + d̄

−

n
∑

i=1

(

σΨfiΨ̃
>
fi
Rfi

(Ψfi
− Ψ0

fi
)

+ σΨgiΨ̃
>
gi
Rgi

(Ψgi
− Ψ0

gi
)
)

.

Similarly as in Section 5.1, we obtain

V̇ ≤−k‖x̄‖2 + d̄+ ρ3 (74)

≤−k‖x̃‖2 + ρ̄3 ≤ −µ < 0. (75)

where ρ3 is defined in eqn. (59). Therefore, if ‖x̄‖ >
√

ρ̄3+µ
k

, then V is decreasing. If ‖x̄‖ ≤
√

ρ̄3+µ
k

then

16



θ̃fi
, θ̃gi

, Ψ̃fi
and Ψ̃gi

, i = 1, . . . , n are all constant and
‖x̄‖ is bounded. Thus, V (t) is bounded by the maximum
of V (0) or

max

‖x̄‖=

√

ρ̄3+µ

k

(

V (x̄, θ̃fi
(0), θ̃gi

(0), Ψ̃fi
(0), Ψ̃gi

(0))
)

which shows that x̄i, θ̃fi
, θ̃gi

, Ψ̃fi
, Ψ̃gi

∈ L∞. Properties
2, 3 of Theorem 4 can be similarly shown.

For the proof of Item 4, we integrate (74) to obtain

k

∫ t+T

t

‖x̃(τ)‖2dτ ≤ V (t) +

∫ t+T

t

(d̄+ ρ3)dτ

∫ t+T

t

‖x̃(τ)‖2dτ ≤
1

k
V (t) +

1

k
ρ̄3T

≤
1

k
V (t) + b2dT

which implies x̄ is small in the mean square sense
(m.s.s.).

Next, we will show Property 5 using a method of proof
similar to that in Chapter 1 of (French et al., 2003).
Assume x starts outside the deadzone at t0, enters the
deadzone at t2i−1 and leaves it at t2i, for i ≥ 1. Then,
at the boundary of deadzone

V (t2i−1) = V (t2i),

in the deadzone

V (t) ≤ V (t2i−1), ∀t ∈ [t2i−1, t2i],

and outside the deadzone according to (75),

V (t2i+1) − V (t2i) < −µ(t2i+1 − t2i).

Therefore, the total time of x staying outside the dead-
zone is

Td = (t1 − t0) +
∑

i≥1

(t2i+1 − t2i),

and

Td <
1

µ

(

V (t0) − V (t1) +
∑

i≥1

(V (t2i) − V (t2i+1))
)

<
1

µ

(

V (t0) − V (t1) +
∑

i≥1

(V (t2i−1) − V (t2i+1))
)

<
V (t0)

µ

which is a finite value. �

17


